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Abstract 
 
The natural convection thermal boundary layer adjacent to an inclined flat plate and 

inclined walls of an attic space subject to instantaneous and ramp heating and cooling is 

investigated. Attention in this study has been given to fluid having a Prandtl number 

less than unity. A scaling analysis has been performed to describe the flow behaviour 

and heat transfer. Major scales quantifying the flow velocity, flow development time, 

heat transfer and the thermal and viscous boundary layer thicknesses at different stages 

of the flow development are established.  

In Chapter 3, an investigation of the natural convection boundary layer adjacent 

to an inclined plate subject to sudden heating and a temperature boundary condition 

which follows a ramp function up until a specified time and then remains constant is 

reported. The development of the flow from start-up to a steady-state has been 

described based on scaling analyses and verified by numerical simulations. Different 

flow regimes based on the Rayleigh number are discussed with numerical results for 

both boundary conditions. For ramp heating, the boundary layer flow depends on the 

comparison of the time at which the ramp heating is completed and the time at which 

the boundary layer completes its growth. If the ramp time is long compared with the 

steady state time, the layer reaches a quasi steady mode in which the growth of the 

layer is governed solely by the thermal balance between convection and conduction. On 

the other hand, if the ramp is completed before the layer becomes steady; the 

subsequent growth is governed by the balance between buoyancy and inertia, as for the 

case of instantaneous heating.  

 In Chapter 4, the natural convection boundary layer adjacent to an inclined 

plate subject to sudden and ramp cooling boundary conditions is reported. It is found 

that the cold boundary layer adjacent to the plate is potentially unstable to a Rayleigh-

Bénard instability if the Rayleigh number exceeds a certain critical value. A scaling 

relation for the onset of instability of the boundary layer is achieved.  For the ramp 

cooling case, the onset of instability may set in at different stages of the boundary layer 

development. A proper identification of the time when the instability may set in is 

discussed. A numerical verification of the time for the onset of instability is presented 

in this chapter. Different flow regimes based on the stability of the boundary layer have 

also been discussed with numerical results.  
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In Chapters 5 and 6, a discussion of the fluid dynamics in the attic space is 

reported, focusing on its transient response to sudden changes of temperature along the 

two inclined walls. The transient behaviour of an attic space is relevant to our daily life. 

The sudden and ramp heating/cooling boundary conditions are applied on the sloping 

walls of the attic space. A theoretical understanding of the transient behaviour of the 

flow in the enclosure is performed through scaling analysis. A proper identification of 

the timescales, the velocity and the thickness relevant to the flow that develops inside 

the cavity makes it possible to predict theoretically the basic flow features that will 

survive once the thermal flow in the enclosure reaches a steady state. A time scale for 

the heating-up/cooling-down of the whole cavity together with the heat transfer scales 

through the inclined walls has also been obtained through scaling analysis. All scales 

are verified by the numerical simulations.  

Further, a periodic temperature boundary condition is also considered in 

Chapter 7 to show the basic flow features in the attic space over diurnal cycles. The 

numerical results reveal that, during the daytime heating stage, the flow in the attic 

space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. 

A symmetrical solution can be seen for relatively low Rayleigh numbers. However, as 

the Ra is gradually increased, a transition occurs at a critical value of Ra. Above this 

critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the 

night-time. It is also found that the calculated heat transfer rate at the night-time cooling 

stage is much higher than that during the daytime heating stage. 
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Chapter 1  

1 Introduction and literature review 

1.1 Introduction 
When heat is added to a fluid, most fluids expand at normal temperature, and thus 

changes its density. If the gravity is present this change in density will induce a change 

in the body forces, which may cause the fluid to move by itself without any externally 

imposed flow velocity. This is simply the phenomenon of natural convection, which is 

present everywhere in our daily experience: rising clouds of cigarettes, ripples of heat 

from a car's hood, thunderheads reaching into the stratosphere.  

Buoyancy is a vertical force exerted on an object when it is immersed, partially 

or fully, in a fluid and strictly where the fluid is subject to a gravitational force but is 

not in free fall and its value is equal to the weight of the fluid displaced by the object. 

All objects that are surrounded by air or water on the surface of the Earth experience 

buoyancy to a certain degree. This buoyancy effect has influential implications in life. 

The natural convection currents encountered in the oceans, lakes, and the atmosphere 

owes their existence of buoyancy. Also light boats as well as heavy warships made of 

steel float on water because of buoyancy. 

Natural convection flow is a leading mechanism of mass and heat transfer in 

many geophysical and technological phenomena. An understanding of such flows will 

improve predictions of the heat transfer rate and the development of effective methods 

for flow control. One can find a comprehensive discussion of the buoyancy-induced 

flows in Gebhart et al. (1988). 

Natural convection adjacent to a thermal boundary is often idealized as a flow 

adjacent to a thermal infinite or semi-infinite flat plate. If the heated flat plate is 

horizontally placed, a typical natural convection phenomenon, Rayleigh Bénard 

convection, may arise. An extensive review of Rayleigh Bénard convection can be 

found in Bodenschartz et al. (2000). However, the Rayleigh Bénard instability can also 

be observed if the plate is inclined to the horizontal plane with a certain angle (see 

Sparrow and Husar 1969).  

The main objective of this thesis is to investigate natural convection adjacent to 

the inclined walls of an attic space through scaling analysis. For a better understanding 

of the fluid flow and heat transfer adjacent to the inclined walls we consider an inclined 
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flat plate initially. Different inclinations of the plate and different aspect ratios of the 

attic space have been considered for this study. Comparatively a large number of 

studies on an inclined flat plate have been conducted previously both numerically and 

experimentally. However, very little attention has been given to the attic space problem 

although it has direct application in our daily life. A detailed literature review will be 

discussed in this chapter.   .  

1.1.1 Inclined flat plate 
Both heating and cooling boundary conditions on the flat plate are considered with both 

sudden and ramp function temperature changes. A temperature boundary condition 

which follows a ramp function means that the temperature increases or decreases until a 

specified time (ramp time) and then remains constant. Therefore, there are four 

different boundary conditions of temperature that have been chosen for the study of an 

inclined flat plate. The subsequent development of the boundary layer has been 

distinguished and the scaling results of the transient, quasi-steady and steady state stage 

of the flow have been achieved. Schematics of the geometry and the thermal boundary 

layer development for heating and cooling temperature boundary conditions are shown 

in Figures 1.1a and 1.1b respectively. 

    

(b)

g 

α

(a) 

α 

g 

 
 

Figure 1.1 Schematic of the boundary layers adjacent to a (a) heated and a (b) cooled 

inclined flat plate.  

1.1.2 Attic space 
Similarly to the flat plate, the same set of temperature boundary conditions has been 

considered for the inclined walls of an attic space. In addition to these boundary 

conditions, a periodic thermal boundary condition, simulating the alternative night and 
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day conditions, has also been considered to show a more realistic situation in the attic 

space. An extensive scaling analysis has been performed for sudden and ramp 

heating/cooling boundary conditions. A schematic of the attic space boundary 

conditions is sketched in Figure 1.2. Here 2l is the total length of the base, h is the 

height of the cavity. On the sloping walls, a temperature boundary condition, Ts has 

been applied. Ts can be either sudden, ramp or periodic. For sudden and ramp 

heating/cooling boundary conditions, the bottom surface is kept adiabatic. However, for 

periodic boundary condition on the sloping wall the bottom surface has a fixed 

temperature, T0. We applied a fixed temperature instead of adiabatic condition on the 

bottom surface to allow heat transfer through the ceiling. All boundaries are kept 

motionless and no slip.  
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Figure 1.2 Schematic of the geometry and boundary conditions of the attic space.  

 

1.2 Literature review 
Buoyancy-induced fluid motions in cavities have been discussed widely because of the 

applications in nature and engineering. A large body of literature exists on the forms of 

internal and external forcing, various geometry shapes and temporal conditions (steady 

or unsteady) of the resulting flows. Especially for the classic cases of rectangular, 

cylindrical or other regular geometries, many authors have investigated imposed 

temperature or boundary heat fluxes. Reviews of these research can be found in Ostrach 

(1988) and Hyun (1994). The rectangular cavity is not an adequate model for many 

geophysical situations where a variable (or sloping) geometry has a significant effect on 

the system. However, the convective flows in triangular shaped enclosures have 
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received less attention than those in rectangular geometries, even though the topic has 

been of interest for more than two decades.  

In previous studies of triangular geometries, researchers mainly focused on two 

applications. Firstly the fluid dynamics and heat transfer in an attic space with imposed 

temperature differences between the horizontal base and the sloping upper boundary 

have been studied by, for example, Poulikakos and Bejan (1983a; b), Salmun (1995a; 

b), Asan and Namli (2000). Secondly, the fluid dynamics and heat transfer in reservoir 

sidearms, seashores, lakes and other shallow water bodies with a sloping bottom have 

been studied by, for example, Horsch and Stefan (1988a; b); Horsch et al. (1994), 

Farrow and Patterson (1993a; b), Farrow and Patterson (1994); Lei and Patterson 

(2002a; b; c; 2003a; b; 2005) and Farrow (2004). 

In the literature of fluid mechanics and heat transfer, several methodologies 

exist for developing some form of solution to complex problems. Among these, scale 

analysis or scaling is one of the simplest and most cost effective methods that can be 

applied as a first step in understanding the physics underlying the fluid flow and heat 

transfer issues. The results of scale analysis can serve as a guide for both experimental 

and numerical investigations. Therefore, scaling has been used by many researchers to 

investigate the transient flow development for different kinds of geometries and 

thermal forcing. This is a method for determining answers to concrete problems, such 

as the heat transfer rate in a configuration that is described completely. The results are 

accurate in an order-of-magnitude sense. The analysis is based on the conservation 

equations and all the initial and boundary conditions.  

Patterson and Imberger (1980) carried out an extensive investigation by scale 

analysis of the transient behaviour that occurs when the two opposing vertical sidewalls 

of a two-dimensional rectangular cavity are impulsively heated and cooled by an equal 

amount. They devised a classification of the flow development through several 

transient flow regimes to one of three steady-state types of flow based on the relative 

values of the Rayleigh number Ra, the Prandtl number Pr (>1), and the aspect ratio A of 

the cavity. Patterson (1984) investigated the transient natural convection in a cavity 

driven by internal buoyancy sources and sinks distributed linearly in the horizontal 

direction and uniformly in the vertical direction using a scaling analysis and again 

found that there are a number of possible transient flow regimes. Schladow et al. (1989) 

conducted a series of two- and three-dimensional numerical simulations of transient 
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flow in a side-heated cavity, and their simulations generally agree with the results of the 

scaling arguments of Patterson and Imberger (1980).  

Scaling analyses coupled with numerical simulations have been used in a 

variety of other geometries and thermal forcing. Recently Lin et al. (2008), Lin et al. 

(2007) and Lin and Armfield (2005a; b) investigated the transient processes in the 

cooling of an initially homogeneous fluid by natural convection in a vertical circular 

cylinder and in a rectangular container. The results show that vigorous flow activities 

are concentrated mainly in the vertical thermal boundary layer along the sidewall and in 

the horizontal region comprising the lower part of the domain where the cold intrusion 

flow is created. The transient flow patterns at the unsteady and quasi-steady stages were 

analysed, including the activities of the travelling waves in the vertical thermal 

boundary layer along the sidewall, the cold intrusion movements in the horizontal 

region, the stratification of the fluid, and the long-term behaviour beyond full 

stratification. Various scaling relations characterizing the flow evolution at these 

distinct development stages were developed by scaling analysis; these were then 

verified and quantified by extensive direct numerical simulations under different flow 

situations in terms of Ra, Pr, and A. 

The majority of the past studies have focused on fluids with Pr > 1. Studies of 

natural convection flows with Pr < 1 resulting from the heating or cooling of vertical 

boundaries, especially those in which the long-term behaviour and the effect of Pr 

variation are examined, have been scarce.  

To identify possible flow regimes of the unsteady natural convection flow in a 

small-slope shallow wedge induced by the absorption of solar radiation, Lei and 

Patterson (2002c) presented a scaling analysis and established relevant scales to 

quantify the flow properties in each flow regime. They classified the flow development 

broadly into one of three regimes: a conductive regime, a transitional regime and a 

convective regime, depending on the Rayleigh number. 

Scaling analysis of the transient behavior of the flow in an attic space was 

conducted by Poulikakos and Bejan (1983a), valid for small aspect ratios, i.e H/B → 0, 

where H and B are the attic height and length respectively. The transient phenomenon 

began with the sudden cooling of the upper sloped wall. It was noted that both walls 

developed thermal and viscous layers whose thicknesses increased towards steady state 

values. The authors mentioned that, by properly identifying the timescales of various 

features that develop inside the enclosures, it was possible to predict theoretically the 
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basic flow features that would endure in the steady state. Finally, they focused on a 

complete sequence of transient numerical simulations covering a range of controlling 

parameters including the Grashof number, the aspect ratio and the Prandtl number.  

 

1.2.1 Natural convection adjacent to an inclined flat 
plate 
Natural convection adjacent to an inclined flat plate has received less attention than the 

cases of vertical and horizontal plates. However, natural convection heat transfer from 

an inclined surface is very frequently encountered in engineering devices and the 

natural environment. Most of the previous works have been conducted by either 

numerical simulations or experimental observations. Theoretical or scaling analyses 

have not been employed for this type of problem, especially with regard to the transient 

flow behavior from start up, which is of great fundamental interest and has practical 

importance. 

Jones (1973) studied free convection adjacent to a heated semi-infinite flat plate 

which is inclined at a small angle, α to the horizontal plane. Both positive and negative 

inclinations of the plate were considered for his studies. Positive values of the angle 

corresponded to cases in which the leading edge of the plate is its lowest point. It is 

noteworthy that near the leading edge of the plate the fluid absorbed insufficient heat 

for the buoyancy forces to be significant and therefore the flow is driven by a density 

variation. As the fluid moves over the plate and gains more heat from the plate by the 

conduction, the buoyancy forces become comparable with, and eventually dominate, 

the indirectly induced pressure gradient. For negative inclinations, although the 

pressure gradient associated with the indirect processes remains favourable, since the 

buoyancy forces now oppose the motion, finally the separation of the boundary layer 

from the plate occurs. For both positive and negative inclinations of the plate the author 

obtained a series of solutions, which is valid near the leading edge, using similarity 

variables. The solutions are then extended downstream beyond the range of 

applicability of the series by means of a step-by-step numerical method. In the case of 

α > 0 the numerical solutions approach the asymptotic solution which is valid far 

downstream.  
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One of the important interests of this study is to find a time scale of the onset of 

instability of the boundary layer adjacent to the inclined flat plate and the sloping walls 

of the attic space. In the literature many researchers have conducted the instability 

analysis in the past. Sparrow and Husar (1969) were the first to prove experimentally 

the existence of longitudinal vortices in a natural convection flow along an inclined flat 

plate. The authors found that the wavelength of the vortices is nearly invariant with the 

angle of inclination of the plate, but varies inversely with the temperature difference 

between the plate and the ambient fluid. They also found that the onset of the vortices is 

moved downstream with the decreasing angle of inclination from the vertical plane and 

the decreasing temperature difference between the plate and the ambient fluid.  

Lloyd and Sparrow (1970) made more quantitative measurements using the 

same experimental techniques as Sparrow and Husar (1969) used. They found a critical 

Rayleigh number (Ra) for the onset of instability at each angle of inclination, and 

compared their results with the results of previous investigations. However, these 

comparisons show a large scatter in the data because the earlier investigators were 

unaware of the presence of vortices, and it is not clear whether the critical Ra values 

found in the previous experiments indicated the onset or the breakup of the vortices. 

Lloyd and Sparrow (1970) also found that the vortices did not appear for angles from 

horizontal of more than 76°, and that the vortices coexisted with Tollmien-Schlichting 

wave instabilities between 73° and 76°. Lloyd (1974) studied the wavelength of the 

longitudinal vortices over an isothermal plate in water, using the same technique as that 

of Sparrow and Husar (1969). The author obtained a relation between the temperature 

differences and the spanwise wavelength, and confirmed that the wavelength is nearly 

invariant with the angle of inclination. 

Cheng and Kim (1988) performed an experimental investigation of the vortices 

on an isothermal inclined plate using smoke visualization in air for low angles of 

inclination from the horizontal plane. Wavelengths and critical Rayleigh numbers for 

the onset of vortices were found and agreed qualitatively with the results of the 

previous studies. However, the angles studied were closer to the horizontal direction 

than those investigated in the earlier experiments, and so quantitative comparisons with 

the results of Lloyd (1974) are difficult. 

An experimental investigation of the onset and wavelength of the vortices on a 

constant heat flux inclined plate has been performed by Shaukatullah and Gebhart 
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(1978). The authors measured local temperatures and velocities using thermocouples 

and constant temperature hot-film anemometers. A spanwise variation in fluid 

velocities was observed, indicating the presence of longitudinal vortices, and the onset 

and wavelength of these vortices were determined. In addition, growth rates were 

calculated from the temperature measurements. The effects of the angle of inclination 

and temperature difference on the onset locations and wavelengths of the vortices agree 

qualitatively with those of earlier investigations, but quantitative comparisons are not 

appropriate because of the different boundary conditions on the plate. 

The onset of the vortices has been studied analytically, as well as 

experimentally, using linear stability theory by Haaland and Sparrow (1973). The 

authors performed a temporal linear stability analysis in which some non-parallel flow 

effects were taken into account and a numerical integration was performed. They 

determined that the parallel flow assumption does not lead to the correct behaviour at 

the outer edge of the boundary layer, and a modified parallel flow assumption allowing 

for the flow normal to the plate was used instead. A modified Reynolds number, R was 

introduced in place of the Rayleigh number, which has the advantage of providing 

critical values that are independent of the angle of inclination of the plate. The relation 

between the Reynolds number and the Grashof numbers is given by 

64

4RGr = . 

As was observed experimentally, the onset of instabilities is moved downstream 

with the decreasing angle from the vertical; however, the predicted onset occurs much 

farther upstream than that was observed experimentally by Lloyd and Sparrow (1970). 

Iyer and Kelly (1974) postulated that these experiments were not sensitive enough to 

detect the first instabilities predicted by theoretical analyses. Thus, using a spatial linear 

stability analysis with the parallel flow assumption, Iyer and Kelly (1974) examined the 

formation and growth of both wave instabilities and longitudinal vortices and attempted 

to find a correlation between experimental and theoretical results by finding the total 

amplification between the earliest disturbances and the observed disturbances. Chen 

and Tzuoo (1982) included the gravity component, which acts perpendicular to the 

plate in their temporal stability analysis. However, their results showed that the 

inclusion of the gravity component in the analysis did not change the predicted critical 

R significantly and the onset of the vortices was again predicted to occur far upstream 

of where it was observed experimentally by Lloyd and Sparrow (1970). 
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While most stability analyses deal with the onset of the vortices, another 

important feature of this flow is the pairing and breakup of the vortices. The 

photographs of Sparrow and Husar (1969) revealed that the longitudinal vortices 

merged and finally broke up at a downstream location; however, this transition had not 

been specifically studied in subsequent experiments. Chen et al. (1991) performed a 

temporal stability analysis that studied the locations of the onset and the merging and 

annihilation of the vortices, formulating the problem in the same manner as Haaland 

and Sparrow (1973). As in the case of onset, the merging and breakup of the vortices 

observed in the photographs of Sparrow and Husar (1969) occur much farther 

downstream than predicted by the stability analysis. 

Zuercher et al. (1998) re-examined the formation and growth of the vortices 

experimentally. It differs from previous experiments in that it includes both 

visualization and velocity measurements of the flow, which allows the flow 

visualization to be correlated to the velocity field. In addition to investigating the 

streamwise location of the onset of the vortices, the authors also examined the locations 

of the merging and breakup of the vortices so that for the first time comparisons with 

the stability analysis of Chen et al. (1991) can be made. Finally, fluid velocity 

measurements were used to determine spatial instability growth rates by measuring the 

circulation in the vortices at successive streamwise locations. These results were 

compared with the calculations of Iyer and Kelly (1974). 

 

1.2.2 Natural convection in an attic space 
Heat transfer through the attic space into or out of buildings is an important issue for 

attic shaped houses in both hot and cold climates. One of the most important objectives 

for design and construction of houses is to provide thermal comfort for occupants. In 

the present energy-conscious society, it is also a requirement for houses to be energy 

efficient, i.e. the energy consumption for heating or air-conditioning must be 

minimized. Because of the relevance to these objectives, research related to the heat 

transfer in attics has been conducted for about three decades.  

From the literature it is observed that two basic sets of temperature boundary 

conditions in the context of an attic have been considered previously: night-time or 

winter-time cooling (cold top and hot bottom) and day-time or summer-time heating 
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(hot top and cold bottom). Other topics related to the attic space have also been 

researched recently such as attics subject to localized heating, and attics filled with 

porous media. 

 

1.2.2.1 Night-time boundary conditions 
The night-time or winter-time boundary conditions mean the sloping walls of the attic 

are isothermally cooled and the bottom is heated. Flack (1980) adopted an isosceles 

triangle for his experimental model, and conducted flow visualizations and heat transfer 

measurements for the night-time conditions. From the temperature difference between 

the boundaries the author obtained heat transfer data and the motions of suspended 

particles were qualitatively observed. Also, the velocities at a few selected locations 

were measured using a laser velocimeter. The velocity measurements were made 

primarily to aid in the general understanding of the structure and direction of the flow. 

The author also showed the temperature profiles along the apparatus centerline. It was 

also found that initially, at low Rayleygh numbers, the flow remained laminar. 

However, as the Rayleigh number was increased, the flow eventually became turbulent. 

The author mentioned that four Bénard type convective cells were present in the 

laminar flow regime, but there was no mention of the development of the cellular flow 

pattern, or the relative positions of the cells. 

The night-time attic problem was again investigated experimentally by 

Poulikakos and Bejan (1983b). In their study they modeled the enclosure as a right-

angled triangle with an adiabatic vertical wall, which was half of a full attic space 

domain if the flow is assumed to be symmetric about the geometric mid plane. The 

focus of their investigation was on the flow regime with a Rayleigh number range 106 

to 109, higher than considered previously. It was observed that the flow inside the 

enclosure was turbulent which was consistent with Flack (1980). Similarly, the authors 

showed a plot of the Nusselt number versus the Rayleigh number as a demonstration of 

heat transfer. To visualize the flow, the thymol blue pH indicator technique was used.  

A fundamental study of the fluid dynamics inside an attic-shaped triangular 

enclosure at night-time was performed by Poulikakos and Bejan (1983a) with the 

assumption that the flow was symmetric about the center plane. The study was 

undertaken in three distinct parts. Firstly the flow and temperature fields in the cavity 

are determined theoretically on the basis of an asymptotic analysis which is valid for 
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shallow spaces i.e. H/B→0, where H and B are the attic height and length. They were 

able to show that in the H/B→0 limit the circulation consists of a single elongated cell 

driven by the cold upper wall. The net heat transfer in this limit is dominated by pure 

conduction. Secondly, scaling analysis examined the transient behaviour of the attic 

fluid. The transient phenomenon begins with the sudden cooling of the upper sloping 

wall. The authors mention that by properly identifying the timescales of various 

features that develop inside the enclosures, it is possible to predict theoretically the 

basic flow features that will endure in the steady state. Finally, they focused on a 

complete sequence of transient numerical simulations covering the ranges of 

parameters such as the Rayleigh number, aspect ratio and Prandtl number. The authors 

reported that the resulting flow patterns in the enclosure corresponded to a single 

convective cell, for the range of conditions considered. 

 Salmun (1995a) studied the problem of natural convection inside a two 

dimensional triangular geometry filled with air or water, with various aspect ratios and 

Rayleigh numbers ranging between 102 5 and 10 . Following the earlier simulations, only 

half of the domain was examined. The center plane was insulated and this was thought 

to adequately model the entire domain. Numerical solutions of the time dependent 

problem were obtained using two different numerical techniques. The general flow 

structure corresponded to a single convective cell for low values of the Ra and to a 

multi-cellular regime for the high values of this parameter. The author disagreed with 

some results obtained by Poulikakos and Bejan (1983b) regarding the heat transfer 

mechanism. The problem regarding the stability of the single-cell steady state solution 

was re-examined by Salmun (1995b). The author used the same method that was 

developed by Farrow and Patterson (1993b). It is noted that the author attempted to 

present the results obtained from a linear stability analysis of the steady state 

asymptotic solution in a shallow triangular enclosure and to show that it is not stable to 

the type of instabilities expected in fluid layers heated differentially along horizontal 

boundaries.          

Latter, an investigation to examine the details of the transition from single cell 

to multi cell flow was carried out by Asan and Namli (2001). The results of their study 

showed that both the height-base ratio and the Rayleigh number had a profound 

influence on the temperature and flow field. In addition, it was shown that as the aspect 

ratio decreases, the transition to multi cell flow takes place at higher Rayleigh numbers. 
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The results also showed that once a secondary cell began to form, it caused the primary 

cell to shift towards the plane of symmetry. However, since it was assumed that the 

plane of symmetry could be modeled as an adiabatic surface, the flow patterns obtained 

are comparable with those from works mentioned above.  

 Haese and Teubner (2002) investigated the phenomenon for a large-scale 

triangular enclosure for night-time or winter day conditions. The authors point out that 

for a realistic attic space, Rayleigh numbers as high as 1010 or 1011 would be 

encountered. This study focused on the existing building structure. It is interesting to 

note that, contrary to the previously mentioned work of Asan and Namli (2001), the 

authors of this study reported that the shift of multi cellular flow is accelerated by a 

decrease in the aspect ratio, for the same Rayleigh number. This is consistent with the 

results presented by Salmun (1995a), which indicated that the number of cells that 

developed, increased as the aspect ratio decreased. 

The studies mentioned above assumed that the flow was symmetric about the 

centre plane. However, Holtzman et al. (2000) for the  first time examined the validity 

of this assumption. The authors pointed out that at low Ra, symmetric solutions are 

obtained, indicating that a symmetry assumption is valid in agreement with the single 

cell solutions found in previous studies. However, as the Rayleigh number increases, a 

pitchfork bifurcation is observed in which two steady asymptotic mirror image 

solutions can be found. However, it was reported that only asymmetric solutions were 

stable beyond a critical Rayleigh number, if a finite perturbation was applied. To 

confirm the numerical predictions of the flow patterns and the existence of a symmetry-

breaking bifurcation, a flow visualization study was conducted. The flow patterns were 

observed by slowly injecting smoke into the enclosure.  

Transient thermal convection in an air-filled isosceles triangular cavity heated 

from below and cooled from above has been studied numerically by Ridouane and 

Campo (2006) for a fixed aspect ratio A = 0.5 over an extensive range of Rayleigh 

numbers. The authors applied a finite volume method for discretization of the 

governing conservation equations. The influence of Ra on the flow and temperature 

patterns is analyzed and discussed for two contrasting scenarios, which correspond to 

increasing and decreasing Ra. Two steady-state solutions were obtained numerically 

using appropriate initial perturbations. For increasing Ra, it is confirmed that the 

symmetric flow is achievable at relatively low Ra numbers. However, as Ra is 

continually increased, the symmetric plume breaks down and fades away. Thereafter, a 
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subcritical pitchfork bifurcation is created, giving rise to an anti-symmetric plume 

occurring at a critical Rayleigh number, Ra=1.5×105. The evolution of the flow 

structure with time is studied in detail to illustrate how this physical transition 

manifests. The multiplicity of solutions is not a simple theoretical finding, because 

experimental evidence taken from the specialized literature supports it in a convincing 

manner. The existing ranges of these solutions are reported for both scenarios, i.e., 

increasing and decreasing Ra. The emergence of a hysteresis phenomenon is observed. 

This implies that the critical Ra characterizing the transition from a steady-state 

solution to another steady-state solution depends markedly on the scenario considered. 

In fact, when increasing Ra, this value is equivalent to Ra=1.5×105, but when 

decreasing Ra this value decreases to Ra=1.0×104. In the subinterval between these two 

critical values of Ra, both solutions are possible depending solely on the initial 

conditions. Quantitatively, for a fixed Ra in this subinterval, the difference in the mean 

Nusselt number between the symmetrical and the asymmetrical solutions is found to be 

about 1% – 3%. 

Recently Lei and Patterson (2007) and Lei et al. (2008) studied both 

experimentally and numerically the natural convection flow in an isosceles triangular 

enclosure subject to abrupt heating from the base and simultaneous cooling from the 

inclined surfaces. The authors used water as the working fluid for flow visualization 

using a shadowgraph technique. A Finite Volume Method has been used for simulation 

by keeping a fixed aspect ratio A = 0.5, and a range of Rayleigh numbers is examined in 

the experiment. They classified the transient flow development in the enclosure into 

three distinct stages, an early stage, a transitional stage, and a steady or quasi-steady 

stage in both the experiments and numerical simulations. The early stage flow is 

characterized by the growth of thermal boundary layers adjacent to all the interior 

surfaces and the initiation of primary circulations. The transitional stage flow is 

characterized by the appearance of convective instabilities in the form of rising and 

sinking thermals and the formation of cellular flow structures. The steady-state flow at 

low Rayleigh numbers is characterized by symmetric flows about the geometric 

symmetry plane, and the quasi steady flow at relatively higher Rayleigh numbers is 

characterized by the pitchfork bifurcation, which results in alternative occurrence of 

convective instabilities from the two sides of the enclosure and the oscillation of the 

upwelling flow near the centre. They also established two important time scales from 

the numerical simulation; time scale for the onset of instability and the time scale for 
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the transition of the flow from symmetry to asymmetry due to the pitchfork bifurcation. 

All studies reported for the attic space problem are for the two dimensional domain. It 

is found that two dimensional simulations are good enough to characterize the flow.   

 

1.2.2.2 Day-time boundary conditions 
Unlike night-time conditions, the attic space problem under daytime conditions has 

received very limited attention. The boundary conditions for day-time or summer-time 

are that the sloping walls of the attic space are isothermally heated and the bottom 

surface is cooled. Flack (1980) first investigated the daytime boundary conditions on 

the triangular enclosures. The author found that under this conditions, the flow inside 

the enclosure remained laminar for Rayleigh numbers up to 4.9 × 107. It was found that 

the resulting heat transfer data could be correlated with heat fluxes calculated for one-

dimensional conduction, suggesting that the heat transfer through the enclosure was 

dominated by conduction. Under the daytime conditions, the heat transfer rates and 

flow velocities were significantly lower than those under the night-time conditions. 

Latter Akinsete and Coleman (1982) numerically simulated the attic space with a hot 

upper sloping wall and cooled base. Their aim was to obtain previously unavailable 

heat transfer data, relevant to air conditioning calculations. This study considered only 

half of the domain. The authors considered two forms of heating on the hot wall 

including isothermal heating and constant heat flux heating. The calculated flow 

remained laminar in this study, which agrees with Flack (1980)'s experiment for 

daytime conditions. 

With the continuation of the previous work for air conditioning calculation, 

Asan and Namli (2000) reported results for steady, laminar, two-dimensional natural 

convection in a pitched roof of triangular cross-section under the summer day boundary 

condition. The results showed that the height-to-base ratio has a profound influence on 

the temperature and flow field. On the other hand, the effect of Rayleigh number is not 

significant for H/B <1 and Ra < 105. For small Rayleigh numbers, two counter rotating 

vortices are present in the enclosure and the eye of the vortices is located at the center 

of the half of the cross-section. With the increase of the Rayleigh number, a secondary 

vortex developed and the newly develop secondary vortex pushes the eye of the 

primary vortex further towards the inclined wall. The transition from a two-vortex 

solution to a multiple vortex solution is dependent on the Rayleigh number and the 
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height-to-base ratio. It is noted that near the place of intersection of the cold horizontal 

wall and hot inclined wall a considerable proportion of the heat transfer across the base 

wall of the region takes place. The authors also showed the relationship between the 

mean Nusselt number, the Rayleigh number, and the height-to-base ratio. 

 

1.2.2.3 Other boundary conditions 
The effect of Prandtl number on natural convection in a right angled triangular 

enclosure with localized heating has been analyzed by Koca et al. (2007). In this study, 

the bottom wall of the triangular enclosure is partially heated while the inclined wall is 

maintained at a lower uniform temperature. The remaining walls were kept insulated. 

Various Prandtl numbers  (0.01≤ Pr ≤15) and Rayleigh numbers  (103≤ Ra ≤106) have 

been considered for computation with a range of heater locations and lengths. They 

observed that both flow fields and temperature fields are affected profoundly by the 

change of the Prandtl number, the location and the length of the heater as well as the 

Rayleigh number.  

Varol et al. (2006a) studied the natural convection heat transfer numerically in a 

triangular enclosure with flush mounted heater on the vertical wall. The authors 

investigated the heat transfer as well as the steady state flow field for a range of 

Rayleigh numbers with a fixed Prandtl number. The authors also showed the effect of 

the variation of the size and the position of the heater and observed that the most 

important parameter on heat transfer and flow field is the position of the heater. A 

protruding heater which is located in a triangular enclosure has also been analysed by 

Varol et al. (2007c) numerically. The temperature on the inclined walls was considered 

lower than the heater and the rest of the bottom wall was kept adiabatic. They found 

that all parameters relevant to the geometrical dimensions of the heater were effective 

on the temperature distribution, flow field and heat transfer.      

Natural convection of a triangular cavity filled with porous media was first 

investigated by Bejan and Poulikakos (1982). The authors studied analytically the 

natural convection in a wedge-shaped porous layer cooled from above and showed that 

the flow pattern can differ fundamentally from Bénard circulation encountered in 

constant-thickness horizontal layers. Recently Varol et al. (2006b; 2007a; b) and Varol 

et al. (2008) investigated the natural convection in porous triangular enclosures. They 

applied finite difference method to solve the governing equations which were written 
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using Darcy method. The effect of a range of aspect ratios and Rayleigh numbers on 

heat transfer and flow field is investigated. 

Omri et al. (2005) examined the thermal exchange by natural convection and 

effects of buoyancy forces on flow structure. The authors revealed useful information 

on the sensitivity of the flow structure to the Rayleigh numbers and the tilt angle on the 

thermal exchange. They also found that many recirculation zones could occur in the 

core of the cavity. Recently, Basak et al. (2007) studied right-angled triangular 

enclosures with two cases; in one case the vertical wall is uniformly or linearly heated 

while the inclined wall is isothermal; and in the other case the configuration is opposite. 

They considered various values of the Rayleigh number and Prandtl number. It was 

noted that the average Nusselt number for the vertical wall is 21/2 times that of the 

inclined wall.       

           

1.3 Objectives and outline of the present 
study 
From the above review it is clear that the understanding of the transient flow 

development and the heat transfer for the attic space problem is not complete and the 

realistic diurnal temporal effect on the attic shape roof is still unrevealed. Moreover, 

theoretical understanding of the flow adjacent to an inclined flat plate as well as in an 

attic space in the form of scaling analysis is almost absent in the literature. Therefore, 

the objectives of the present study are: 

• To develop an understanding of the transient flow behaviour in the boundary 

layer adjacent to an inclined flat plate by scaling analysis. 

• To quantify the onset of instability of the boundary layer when the plate is 

cooled and to describe some parameter regimes based on different stages of the 

flow development. 

• To establish the heating-up and cooling-down time scales for an attic domain 

filled with a hot and cold fluid respectively. The corresponding heat transfer 

calculation for the sloping wall of the attic space is also an objective. 

• To achieve an understanding of the flow development and heat transfer in an 

attic space subject to a realistic diurnal temperature boundary condition.    
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The outline of the thesis is illustrated in Figure 1.3. An introduction of this 

study has been given above along with a review of the related literature. A brief 

description of the numerical approach that has been employed in this investigation 

comprises Chapter 2. Based on the outline, the main body of this thesis consists of two 

parts; the inclined flat plate and the attic space, as illustrated in the figure below.    

 

 

Chapter 2 
Numerical approach

Chapters 3-7 
Main body 

The thesis 

Chapters 3-4 
Inclined plate 

Chapters 5-7 
Attic space 

Chapter 3 
Sudden/ramp heating 

Chapter 4 
Sudden/ramp cooling

Chapter 5 
Sudden/ramp heating 

Chapter 6 
Sudden/ramp cooling 

Chapter 7 
Diurnal temperature 

Chapter 8 
Conclusions 

Chapter 1 
Literature review 

 
Figure 1.3 Outline of the thesis.  

 

Natural convection boundary layer adjacent to an inclined flat plate due to 

sudden heating and ramp heating boundary conditions is discussed in Chapter 3. 

Scaling analyses of the transient flow development are established for both boundary 

conditions. Steady state scaling of the flow velocity, time and thickness has been 

developed for sudden heating. For the ramp heating boundary condition, several scaling 

relations are obtained with comparison of different time scales (ramp time and quasi-

steady time).  

Chapter 4 deals with the cooling boundary conditions. Sudden and ramp cooling 

boundary conditions are applied on the inclined plate. The boundary layer is potentially 

unstable if the Rayleigh number exceeds a certain critical value. A scaling prediction of 

the onset of instability is obtained for both boundary conditions. Different flow regimes 

based on the Rayleigh number are identified through scaling analysis for two different 

boundary conditions. Numerical simulations for a wide range of Rayleigh numbers and 

aspect ratios have been performed to verify the scaling results. 
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Chapter 5 and 6 consider the heating and cooling boundary conditions 

respectively for an attic space. Both sudden and ramp temperature boundary conditions 

are applied on the sloping walls of the attic space. Initially the boundary layer develops 

adjacent to the sloping wall. Latter, the hot or cold fluid ejected from the boundary 

layers eventually fills up the entire domain. The scaling results for heating-up or 

cooling-down for both sudden and ramp temperature boundary conditions are obtained. 

Moreover, the subsequent heat transfer scales during the heating-up or cooling-down 

stages are obtained. All scales are verified by numerical simulations. 

Numerical simulations of natural convection of an attic space subject to diurnal 

temperature condition on the sloping walls have been investigated in Chapter 7. The 

effect of the aspect ratio and Rayleigh number on the flow field and heat transfer has 

been discussed in detail in this chapter. Furthermore, the formation of a pitchfork 

bifurcation of the flow at the symmetric line of the enclosure is also discussed. A 

comparison of the heat transfer during the day and night is also showed here. Chapter 8 

summarizes the major findings of this study with suggestions for future studies.                  
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2 Governing equations and 
numerical procedures  
The governing equations describing natural convection adjacent to an inclined flat plate 

and in an attic space are presented and simplified in this chapter. The numerical 

procedures for solving the governing equations using FLUENT 6.2, a commercial 

Computational Fluid Dynamics (CFD) package, are also introduced. More details of the 

numerical procedures are available in the FLUENT User’s Guide. The initial and 

boundary conditions as well as grid and time step dependence tests are not discussed in 

this chapter. Instead, they will be discussed in respective chapters.     

2.1 Formulation 

2.1.1 Governing equations 
Natural convection adjacent to an inclined flat plate and in an attic space satisfies the 

conservation equations of mass, momentum and energy under the assumption of 

continuous media. The mathematical expressions of these conservation equations may 

be written together with the equation of state in Cartesian tensor notations as follows.  

The equation for conservation of mass, or continuity equation, 
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Conservation of energy equation, 
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And the equation of state, 

( ),,Tpρρ =  (2.4) 
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In Equation (2.2), the body force Fi has three components: Fx, Fy and Fz in x-, y-, and z-

directions respectively. In addition, D/Dt is a derivative operator defined as, 

,
j

j x
u

tDt
D

∂
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+
∂
∂

=  (2.5) 

 

2.1.2 Appropriate assumptions 
The governing equations (2.1)-(2.3) are general forms of conservation equations, and 

may be simplified for particular problems such as the one considered in this study. 

Moreover, these equations are highly non-linear and coupled, and are very difficult to 

solve. Therefore, it is of significance to simplify these equations based on particular 

features such as follows so that numerical discretization and analyses can be easily 

performed.   

 For the transient natural convection adjacent to an inclined flat plate or an 

inclined wall of an attic space, it is understood that, when heat is added to the fluid, the 

fluid expands, and thus changes its density. If the gravity is present, this change in 

density induces a change in the body force, which may cause the fluid to move by itself 

without any externally imposed flow velocity. If the temperature difference between the 

walls and the ambient is not very large, the correlation between the density and the 

temperature may be considered as a linear relation. As a result, the equation of state 

(2.4) may be given by 

( )[ ],1 00 TT −−= βρρ  (2.6) 

where β is the thermal expansion coefficient. It is generally of an order of magnitude 

between 10-2 and 10-4 for different fluids (Ostrach (1964)).  

The natural convection flows often involve a relatively small temperature 

difference and a low flow velocity, and thus an incompressible flow assumption is 

appropriate (see Batchelor (1954) ). Accordingly, the continuity equation (2.1) may be 

simplified as follows, 
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x
u

    (2.7) 

The Boussinesq approximation is assumed for this problem, meaning that all 

fluid properties such as the viscosity and the thermal conductivity are treated as 

constants except the density in the buoyancy term. In the present study, a two 

dimensional coordinate system has been adopted, where the x-axis and the y-axis are 
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not parallel to the horizontal and the vertical respectively (see Figure 2.1). The 

inclination angle of the x-axis with the horizontal plane is θ.  Therefore the effect of the 

gravitational acceleration on the flow field has two components; x-component (gsinθ) 

and y-component (gcosθ). Since there is no other volumetric force, the two components 

(Fx, Fy) of the body force in equation (2.2) may be written as  

( ).sin 0ρρθρ −−= gFx    (2.8) 

and 

( ).cos 0ρρθρ −= gFy     (2.9) 

Substituting Equation (2.6) to Equations (2.8) and (2.9) and applying the Boussinesq 

approximation we have  

( ).sin 0TTgFx −= θβ    (2.10) 

and 

( ).cos 0TTgFy −−= θβ     (2.11) 

Now equation (2.2) becomes after incorporating equations (2.7), (2.10) and (2.11) 
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Similarly, the energy equation can be simplified by assuming that the viscous 

energy dissipation and the pressure gradient associated with the incompressible 

assumption may be neglected if the velocity induced by the natural convection flow is 

lower. Therefore, the energy equation (2.3) can be simplified as 
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Figure 2.1 Schematic of the boundary layers adjacent to a (a) heated and a (b) cooled 

inclined flat plate. 
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The simplified continuity, momentum and energy equations of a 2D model are 

expressed as follows: 
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The above set of governing equations has been successfully adopted in previous 

numerical simulations of natural convection in cavity (see e.g. Nateghi and Armfield 

(2004)). It is noted that in the case with a large temperature difference, the fluid does 

not satisfy the Boussinesq approximation, and thus cautions must be taken when 

adopting the above equations.   

 

2.2 Numerical approach 
The governing equations (2.14)-(2.17) are highly non-linear and coupled each other. 

Therefore it is impossible to get an analytical solution. Numerical methods can provide 

an approximate solution. The accuracy of the solution, however, depends on the 

adopted numerical scheme. In parallel with in-house CFD (Computational Fluid 

Dynamics) codes developed by researchers, there are a large number of commercially 

available CFD packages such as CFX, PHOENICS and FLUENT. These commercial 

packages are being improved day by day with the involvement of a large team of CFD 

specialists. From the above mentioned CFD packages, the FLUENT package has been 

chosen for the numerical simulations in this thesis. FLUENT is a Finite Volume based 

CFD package. It is one of the most widely used CFD packages.  

 

2.2.1 Numerical Schemes 
In this thesis, the Finite Volume scheme has been chosen to discretize the governing 

equations, with the QUICK scheme (see Leonard and Mokhtari 1990) approximating 
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the advection term. The diffusion terms are discretized using central-differencing with 

second order accurate. A second order implicit time-marching scheme has also been 

used for the unsteady term. Briefly, the control-volume-based technique:  

• Divides the domain into discrete control volumes using a computational grid.  

• Integrates the governing equations on the individual control volumes to 

construct algebraic equations for the discrete dependent variables such as 

velocities, pressure and temperature.  

• Linearizes the discretized equations and solution of the resultant linear equation 

system to yield updated values of the dependent variables.  
 

 

 

 Stop 

Converged?

t > tmax 

No 

No Yes 

Yes 

Update properties 

Set time step Δt 

Solve momentum equations

Solve pressure-correction (continuity) equation. 
Update pressure, face mass flow rate 

Solve energy equation.

Initialize properties

Let t = t + Δt

START 

 
Figure 2.2 Flow chart of the SIMPLE method for transient flow. 

 The momentum and continuity equations are solved sequentially, in which the 

continuity equation appears as an equation of pressure correction although pressure 
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does not appear explicitly in the continuity equation for incompressible flows (i.e. the 

SIMPLE method). The numerical procedure of the SIMPLE method is shown in Figure 

2.2.  

Discretization of the governing equations can be illustrated most easily by 

considering the unsteady conservation equation for transport of a scalar quantity φ. This 

is demonstrated by the following equation written in integral form for an arbitrary 

control volume V as follows: 

∫ ∫∫∫ +∇Γ=+
∂
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V
ee
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dVSAdAddV
t φφ φφφ rrv ..v  (2.18) 

where  

t∂
∂φ       = conservative form of transient derivative of transported  

               variable, φ   

vr   = velocity vector (=  in 2D) jiu ˆˆ v+
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 = surface area vector 

 = diffusion coefficient for φ φΓ

φ∇  = gradient of φ (= ( ) ( ) jyix ˆ/ˆ/ ∂∂+∂∂ φφ in 2D) 

Sφ  = source of φ per unit volume 

 Equation (2.18) is applied to each control volume, or cell, in the computational 

domain. Discretization of Equation (2.18) on a given cell yields 
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where nb is the number of edges enclosing the control volume.  
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Figure 2.3 One-Dimensional Control Volume. 
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For quadrilateral meshes, where unique upstream and downstream faces and 

cells can be identified, the QUICK scheme (see Leonard and Mokhtari 1990) is adopted 

for computing a higher-order value of the convected variable φ at a face. QUICK-type 

schemes   are based on a weighted average of second-order-upwind and central 

interpolations of the variable. For the face ‘e’ in Figure 2.3, if the flow is from left to 

right, such a value can be written as   

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−
+
+

−+⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

= W
cu

c
P

cu

cu
E

dc

c
P

dc

d
e SS

S
SS
SS

SS
S

SS
S

φφθφφθφ
2

1  (2.20) 

θ = 1 in the above equation results in a central second-order interpolation while θ = 0 

yields a second-order upwind value. The traditional QUICK scheme is obtained by 

setting θ = 1/8. The QUICK scheme is typically more accurate on structured grids 

aligned with the flow direction.  

 For transient simulations, the governing equations must be discretized in both 

space and time domains. The spatial discretization for the time-dependent equations is 

identical to the steady-state case. Temporal discretization involves the integration of 

every term in the differential equations over a time step Δt. The integration of transient 

terms is straightforward and a generic expression for the time evolution of a variable φ 

is given by 

( )φφ F
t
=

∂
∂  (2.21) 

where the function F(φ) incorporates any spatial discretization. If the time derivative is 

discretized using backward differences, the first-order accurate temporal discretization 

is given by 
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and the second-order discretization is given by 

( )φφφφ F
t

nnn
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Δ
+− −+

2
43 11

 (2.23) 

Here, the implicit time integration is employed in order to evaluate F(φ) at a future time 

instance. An advantage of the implicit scheme is that it is unconditionally stable with 

respect to the time step. This implies that φ n+1 n+1 in a given cell is related to φ  in a 

neighboring cells through F(φ n+1). This implicit equation can be solved by iterating the 

following equation 
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The iteration terminates until a convergence criterion is met. The truncation error here 

is second-order with respect to the time step. 

 Because of the nonlinearity of Equations (2.14)-(2.17), it is necessary to control 

the change of φ. This is typically achieved by under-relaxation, which reduces the 

change of φ produced at the time of each iteration. In a simple form, the updated value 

of the variable φ within a cell depends upon the old value, φold, the computed change Δφ 

and the under-relaxation factor, α, as follows,  

φαφφ Δ+= old  (2.25) 

In the present study, the under-relaxation factors α are set to the default values in 

FLUENT, which are 0.3 for pressure, 0.7 for velocities and 1 for all other quantities. 

   

2.2.2 Convergence criterion 
For the efficiency and the success of iteration, convergence criteria control the iteration 

process. Therefore, selecting an appropriate convergence criterion is crucial for an 

iteration process.  

 In the present numerical solution using FLUENT 6.3.26, the residual sum for 

each of the conserved variables is computed and compared with the set convergence 

criterion. The iteration will continue until the sum of residuals drops bellow the set 

convergence criterion.  

 After discretization, the conservation equation for a general variable φ at a cell  

P can be written as  

baa
nb

nbnbPP += ∑ φφ  (2.26) 

is the center coefficient, aHere aP nb are the influence coefficients for the neighboring 

cells, and b is the contribution of the constant part of the source term. The residual, Rφ 

may be defined as the imbalance in equation (2.26) summed over all the computational 

cells P (see Fluent User’s Guide for details)  

∑
∑ ∑ −+

=
P PP

P PPnb nbnb

a

aba
R

φ

φφ
φ (2.27)  

For the momentum equations and energy equation, φ is replaced by u, v, or T 

respectively. For the continuity equation, the residual is defined by 
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∑
∑

=
iterations fivefirst in Max 

 cellin creation  mass of rate
 cellin creation  mass of rate

P
P

R P
c   (2.28) 

Here, the denominator is the largest absolute value of the continuity residual in the first 

five iterations. The details of above convergence criteria can be found in the FLUENT 

User’s Guide.  

 On a computer with infinite precision, these residuals will go to zero as the 

solution converges. On an actual computer, the residuals decay to some small value 

(round-off) and then stop changing (level out). For double precision computations, 

residuals can drop by up to twelve orders of magnitude (10-12). In the present study 

double precision Fluent version is used and most of the numerical simulation 10-5 is 

adopted as the absolute convergence criteria of the continuity, x- and y-momentum and 

energy equations. Several tests were conducted for different convergence criteria from 

10-3 to 10-8 and found that 10-5 is suitable for all simulation considered in this thesis.    

 

2.3 Summary 
In this chapter, the governing equations have been introduced and simplified for natural 

convection adjacent to an inclined plate and in an attic space. FLUENT package has 

been adopted for the numerical simulations of this problem with a finite volume method 

used to discretize the governing equations. SIMPLE scheme has been used to solve the 

linearized and discretized algebraic equations.   
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3 Natural convection boundary layer 
adjacent to an inclined flat plate 
subject to sudden and ramp heating 
 

Scale analysis is a cost-effective way that can be applied as a first step in understanding 

the physics behind fluid flow and heat transfer issues. The results of scale analysis can 

serve as a guide for both experimental and numerical investigations. Therefore, scaling 

has been used by many researchers to investigate the transient flow development 

involving different kinds of geometry and thermal forcing. An extensive scaling 

analysis has been carried out by Patterson and Imberger (1980) for the transient flow 

behaviour that occurs when the two opposing vertical sidewalls of a two-dimensional 

rectangular cavity are impulsively heated and cooled by an equal amount. They devised 

a classification of the flow development through several transient flow regimes to one 

of three steady-state types of flow based on the relative values of the Rayleigh number, 

Ra, the Prandtl number, Pr, and the aspect ratio, A, of the cavity. Various scaling 

relations characterizing the flow evolution at distinct development stages were 

developed by scaling analysis. 

In this chapter, scaling analysis will be carried out for the boundary layer 

development adjacent to an inclined flat plate for suddenly increased and linearly 

increasing (ramp) temperature boundary conditions. A series of numerical calculations 

has also been carried out for different parameters to verify the scaling predictions. 

Details of the numerical procedures can be found in the previous chapter (Chapter 2). 

However, the geometry, boundary conditions and grid and time step dependence tests 

are included in this chapter. 

3.1 Problem formulation  
 

Under consideration is the flow behaviour resulting from the heating of an initially 

motionless and isothermal Newtonian fluid with Pr < 1 by a heated flat plate. The 

physical system sketched in Figure 3.1 consists of an inclined flat plate (CD = L). We 
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extend both ends of the plate by a distance equal to its length and form a rectangular 

domain, which is filled with an initially stationary fluid at a temperature Tc. If we 

consider the plate as the hypotenuse of a right angled triangle then the altitude is h, the 

length of the base is l and the angle that the plate makes with the base is θ. Except for 

the plate (the section CD shown in Figure 3.1), all walls of the rectangular domain are 

assumed to be adiabatic, rigid and non-slip. Two heating boundary conditions are 

applied on the plate; sudden heating to a specified temperature which is then 

maintained, and heating by a linearly increasing temperature to a specified temperature 

over certain time (the ramp time) after which the temperature is maintained (the ramp 

function) . The ramp function is described in the scaling section in this chapter below.    

 

 

Th x

y

Tc,  Th > Tc 

h

θ

∂T/∂y = 0
u=v=0 

∂T/∂y = 0 
u=v=0 

∂T/∂x = 0 
u=v=0 

∂T/∂x = 0 
u=v=0 

∂T/∂y = 0
u=v=0

C

DL

l

 
 

Figure 3.1 Schematic of the computational domain and boundary conditions. 

 

3.2 Overview of the transient flow 
 

 As noted above, two thermal boundary conditions have been considered for the natural 

convection boundary layers adjacent to the inclined plate in this chapter.  

The first case is the sudden heating boundary condition. The plate is suddenly 

heated to and thereafter maintained at a higher temperature Th, whereas the ambient 

fluid has a lower temperature Tc.  

 

29 



Chapter 3 

         y (m)

u
(m

/s
)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

0.15

(b)(a) 

7Figure 3.2 (a) Velocity vector and (b) velocity profile for Ra = 3.00×10  with Pr = 0.72 

and A = 0.5. 

 

The characteristic velocity in this case is the maximum velocity parallel to the 

inclined plate. The velocity vector field in the region near the plate and the 

corresponding velocity profile along a line perpendicular to the plate at the mid point 

have been plotted in Figure 3.2 after initiation for a typical case. It is seen that the flow 

direction is approximately parallel to the heated plate.  
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Figure 3.3 Time series of the maximum velocity parallel to the plate through the line 

perpendicular to its mid point for Ra = 3.00×107, A = 0.5 and Pr = 0.72 for sudden 

heating.  

 

Figure 3.3 shows a typical time series of the maximum velocity parallel to the 

plate for sudden heating, taken from the above-mentioned temperature profile at the 

mid point of the heated plate. Since the inclined plate is hot relative to the ambient 

fluid, the flow is laminar and stable so long as Ra is not too large. As a consequence, a 
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natural convection boundary layer develops adjacent to the hot inclined plate and 

continues to grow with increasing time. The development of the boundary layer can be 

described in three different stages (refer to Figure 3.3); namely, the early stage, 

transition stage and the steady state stage.  
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Reach to quasi-steady mode

Initial stage

Steady state mode
Ramp finishes

Figure 3.4 Time series of the maximum velocity parallel to the plate through the line 

perpendicular to its mid point for Ra = 7.63×106, A = 0.5 and Pr = 0.72 for ramp 

heating. 

 

The second case is an inclined plate subject to a temperature boundary condition 

which follows a linear function up until some specified time and then remains constant. 

The development of the thermal boundary layer flow depends on the comparison of the 

time at which the ramp heating finishes and the time at which the thermal boundary 

layer completes its growth. If the ramp time is long compared with the steady state 

time, the layer reaches a quasi-steady mode (see Figure 3.4). Further increase in the 

heat input simply accelerates the flow to maintain the proper thermal balance. The 

overall flow development for this case may be characterized as: the early stage, the 

quasi-steady stage and the steady state stage which can be clearly identified in Figure 

3.4. On the other hand, if the ramp is completed before the layer becomes steady, the 

subsequent growth is the same as the case of sudden heating. What that means is that 

the boundary layer then grows as though the startup were instantaneous and eventually 

reaches a steady state, and thus there is no difference between the ramp and 

instantaneous start up cases (see Figure 3.5).  
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Figure 3.5 Time series of the maximum velocity parallel to the plate through the line 

perpendicular to its mid point Ra = 6.11×105, A = 0.5 and Pr = 0.72 for ramp heating. 

 

In the following sections, the detailed scaling analyses of the flow development 

for the two different thermal boundary conditions described above will be discussed.  A 

grid and time step dependence test for numerical simulation will be described. To 

verify the scaling, a set of numerical results have been obtained for various parameters 

(Rayleigh numbers, Ra, aspect ratio, A) with a fixed Prandtl number, Pr, given the 

value for air.  

3.3 Scaling for sudden heating 
With the initiation of the flow, a thermal boundary layer develops adjacent to 

the heated inclined plate. The parameters characterizing the boundary layer 

development are predominantly the thermal boundary-layer thickness δT, the maximum 

velocity parallel to the plate us within the boundary layer, and the time ts for the 

boundary layer to reach steady state.  

3.3.1 Growth of the thermal boundary layer 
As mentioned above, the sudden heating of the flat plate results in a thermal boundary 

layer developing adjacent to the inclined plate. We follow the arguments given by 

Patterson and Imberger (1980), appropriately modified for the inclined plate and the 

Prandtl number ( Pr < 1). 
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The energy equation (2.15) indicates that since the fluid is initially motionless 

the heating effect of the plate will first diffuse into the fluid layer through pure 

conduction, resulting in a thermal boundary layer of thickness δT. Within the boundary 

layer, the dominant balance is between the unsteady and diffusion terms in the energy 

equation (2.15), that is,  

2~
T

T
t
T

δ
κ ΔΔ ,  

which leads to a scale for the thickness of the thermal boundary layer 
2/12/1~ tT κδ . (3.1) 

This scaling is valid till the convection term becomes important. 

The unsteady inertia term of the momentum equation (2.2) is O(u/t), the viscous 

term O(νu/δT
2), and the advection term O(u2/L). The ratio of the advection term to the 

unsteady term is then O(ut/L). For very small time ut/L << 1. Therefore the advection 

term is not significant for small time. The ratio of the unsteady to viscous term is 

(u/t)/(νu/δT
2) ∼ δT

2/(ν t) ~ 1/Pr, where Pr = ν/κ. For Pr << 1 the viscous term is much 

smaller than the unsteady term, and therefore, the correct balance is between the 

unsteady term and buoyancy. However, for Pr >> 1, the unsteady term is much smaller 

than the viscous term and the correct balance is between viscosity and buoyancy. If Pr 

~ O(1), then the unsteady and viscous terms are of the same order, and thus both terms 

need to be included in a balance with the buoyancy term. This balance was introduced 

by Lin et al. (2007).  

The unsteady term is O(u/t) and the viscous term is O(Pru/t), so these two terms 

together are O((1 + Pr)u/t). Now the balance in the inclined momentum equation is 

( ) θβ sin~1 Tg
t
uPr Δ+ . (3.2) 

Therefore u ~ gβsinθΔTt/(1+Pr). The inclination angle θ is related to the slope or 

aspect ratio A through sinθ  = A/(1+A2)1/2. Hence (3.2) becomes  

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

++ hh
t

APr

PrARau κ
κ/11

~ 22/12
, (3.3) 

3where the Rayleigh number is defined as Ra = gβΔTh /νκ.  

 

33 



Chapter 3 

3.3.2 Steady state stage 
As time passes, the thermal boundary layer thickness δT continues to grow until a 

balance between convection and conduction is reached. i.e.  

2~
T

T
L
Tu

δ
κ ΔΔ   

t
Lu ~⇒ . (3.4) 

Using the velocity scales (3.3) and (3.4) we conclude that the growth of the 

thermal boundary layer along the inclined plate ends at a time of the order t  given by s

( )( ) t
L

hh
t

APr

PrARa s ~
/11

22/12
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

++

κ
κ

  

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
⇒

κ

2

2/12/1

2/122/1 11~ h
PrARa

APrts . (3.5) 

The thickness of the thermal boundary layer along the plate at the steady state time, ts is 

( ) ( )
4/14/12/1

4/124/1 11~
PrRaA

APrh
T

++δ (3.6) . 

At the time when the thermal boundary layer reaches the steady state, the u velocity 

scale is 

( )
⎟
⎠
⎞

⎜
⎝
⎛

+ hPr
PrRaus

κ
2/1

2/12/1

1
~ . (3.7) 

The thermal boundary layer thickness at the steady state is shorter than the 

length of the plate if  

1<
L
Tδ . 

 
This is equivalent to having 

( )
( )2

2

1
1

APr
PrARa

+
+

> . (3.8) 

Concurrently with the formation of a thermal boundary layer, a viscous 

boundary layer is developing. The thickness, δv of this viscous layer is a direct result of 

a balance between the viscous and inertia terms in the momentum equation, 

( ) Tv Prt δνδ 2/12/1 ~~ . (3.9)  
It is noted that for Pr < 1, the thickness of the viscous boundary layer is smaller than 

that of the thermal boundary layer. When the thermal layer has reached the steady state, 

the viscous layer has a thickness of the order 
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( ) ( )
4/12/1

4/124/14/1 11~
RaA

APrPrh
v

++δ (3.10). 

 

3.3.3 Possible flow regimes 
Based on the above scale analysis we may define some regimes of the flow 

development depending on the Rayleigh number. Since the viscous boundary layer is 

smaller than the thermal boundary layer for Pr < 1, the viscous layer is always 

embedded in the thermal boundary layer. We may classify the flow development as 

follows: 
2 (1 + Pr) / [Pr(1 + A2 (i) If Ra < A )], the thermal boundary layer has grown to a 

thickness greater than the length of the heated plate at the steady state.  

(ii) If Ra > A2 (1 + Pr) / [Pr(1 + A2)], the thermal boundary layer thickness at 

the steady state is shorter than the length of the heated plate. That means the boundary 

layer flow becomes steady before the thickness reaches a length scale equivalent to the 

length of the heated plate. For sufficiently high Rayleigh numbers the flow may 

become turbulent, which is beyond the scope of this thesis.  

 

3.4 Scaling for ramp heating  
The flow behavior adjacent to an inclined plate subject to a ramp temperature boundary 

condition is considered for Pr < 1. Scaling analysis for this boundary condition is still 

absent in the literature. However, Patterson et al. (2008) has developed a scaling 

analysis for the ramp heating of a vertical flat plate with Pr > 1 and we follow that 

scaling here with Pr < 1. For this problem the physical system is the same as that for 

the sudden heating case which is depicted in Figure 3.1. The plate CD = L is heated to 

T  according to the following function. h

( )
⎪
⎩

⎪
⎨

⎧

≥Δ+

<<Δ+
≤

=

; if             

;0 if    /
;0   if                      

pc

ppc

c

h

ttTT

ttttTT
tT

T  (3.11)

ch TTT −=Δ  and twhere  is the time duration of ramp heating.  p

Initially the flow is motionless and isothermal. As soon as the above 

temperature, T  applied on the plate, a thermal boundary layer develops adjacent to the h
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heated inclined plate. The subsequent flow development is described in the following 

sections.   

 

3.4.1 Early stage 

The start-up stage is initially dominated by heat transfer via conduction through the hot 

plate, resulting in a thermal boundary layer of a thickness δT. As mentioned earlier for 

the case of the sudden heating boundary condition, initially the boundary layer grows 

according to the scale κ1/2 1/2t . Furthermore, for Pr ~ O(1), the unsteady and viscous 

terms together (i.e. (1+Pr)u/t) balance the buoyancy term in the momentum equation; 

( )
pt
tTg

t
uPr Δ+ θβ sin~1   

( ) ptPr
Ttgu

+
Δ

⇒
1
sin~

2θβ . (3.12) 

The above scale leads to the following velocity scale after substituting the Rayleigh 

number relation and the aspect ratio relation: 

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

++ ht
t

h
t

APr

RaPrAu
p

r
κ

κ/11
~ 22/12

. (3.13) 

This balance holds as long as t < ts. 

3.4.2 Quasi-steady state time 
The boundary layer adjacent to the inclined plate continues to develop with the velocity 

scale defined in (3.13) and the thickness scale κ1/2t1/2 until the ramp finishes i.e. t < tp or 

until a balance between convection and conduction is reached at time tsr determined 

below: 

p

sr

Tp

sr

t
tT

t
tT

L
u

2~
δ

κ Δ
Δ   

θcos
~

srAt
hu⇒ . (3.14) 

Using the velocity scales (3.13) and (3.14) we conclude that the growth of the 

thermal boundary layer along the inclined wall ends at time t  when sr

( )( ) θ
κ

κ cos
~

/11
22/12 srp

srsr

At
h

ht
t

h
t

APr

RaPrA
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

++
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( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
⇒

κκ

23/1

23/13/2

3/123/1

/
11~ h

h
t

PrRaA
APrt p

1/3sr (3.15). 

so long as tsr < t . This is the same as saying that  p

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
>

κ

2

2/1

2/122/1 11 h
PrRaA

APrt 1/2p . (3.16)

The right-hand side of (3.16) represents the steady state time scale for an instantaneous 

start up function (refer to 3.5). This means that if the ramp time is longer than the time 

it would take for the step function start up to reach a steady state boundary layer, then 

the boundary layer will have reached a convection-conduction balance before the ramp 

has finished. 

The thickness of the thermal boundary layer along the plate at the time tsr is 

( ) ( )
( )

6/1

26/13/1

6/126/1

/
11~ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛++
⇒

κ
δ

h
t

RaPrA
APrh p

Tr (3.17) . 

At the time when the plate boundary layer is steady, the u velocity scale is 

( ) ( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

ht
h

PrA
ARaPru

p
sr

κκ
3/12

3/13/1

6/123/1 /
1

1~ . (3.18) 

On the other hand, if tp<(1+Pr)1/2(1+A2)1/ 1/2h2 2/[A(RaPr) κ], then tsr>tp and the thermal 

boundary layer has not finished growing when the ramp finishes. At the time when the 

ramp is finished (t = tp) the unsteady velocity scale in the boundary layer is obtained 

from (3.13) as  

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++ hh

t

APr

RaPrAu p κ
κ/11

~ 22/12
,  

which is identical to the unsteady velocity scale (3.3) for the case of sudden heating 

boundary condition at the same time. The subsequent development of the boundary 

layer for t > tp will follow the same thickness and velocity scales as those obtained for 

the sudden heating case until a steady state is reached. Hence there is no difference 

between the ramp and instantaneous start up cases after the ramp is finished. 

 

3.4.3 Quasi-steady stage 
For the case for which the steady state time is less than the ramp time, once the steady 

state time tsr is reached, the boundary layer stops growing according to κ1/ 1/2 2t  which is 

only valid for conductive boundary layers. The thermal boundary layer is in a quasi-
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steady mode with convection balancing conduction. Further increase of the heat input 

simply accelerates the flow to maintain the proper thermal balance. For the ramp 

function startup, this means that 

 

p

sr

Tp

sr

t
tT

t
tT

L
u

2~
δ

κ Δ
Δ  

2~
T

Lu
δ
κ

⇒ . (3.19) 

At this time the unsteady term is not important because the ratio of the unsteady term to 

the viscous term is O(δT
2/(ν t)) and for large values of t, δT

2/(ν t) →0. Therefore, the 

viscous term balances the buoyancy term. Hence, 

 

pT t
tTgu

Δθβ
δ

ν sin~2  

( ) 4/1

4/12/1

4/121~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+
⇒

t
t

RaA
Ah p

Tδ (3.20) . 

From (3.19) the velocity scale in the quasi-steady mode becomes 
2/1

2/1~ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

pt
t

h
Rau κ (3.21) . 

Notice that the boundary layer thickness decreases beyond tsr. This has to happen as the 

fluid is accelerating and is therefore more effective in convecting the heat away; the 

boundary layer has to contract so that conduction is increased to balance the increased 

convection. 

In parallel with the formation of the thermal boundary layer for t < tsr, a viscous 

boundary layer also appears adjacent to the inclined plate with a balance between the 

viscous and inertia terms of the momentum equation, i.e.  

Tv Prt δνδ 2/12/12/1 ~~  (3.22) 
For Pr < 1, δν is smaller than δT, implying that the viscous boundary layer is 

always embedded within the thermal boundary layer. When the thermal layer has 

reached the quasi steady state (at tsr), the viscous layer has a thickness of order 

( ) ( ) 6/1

26/13/1

6/126/13/1

/Ra
1Pr1Pr~ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛++
κ

δ
h

t
A

Ah p
vr . (3.23) 

However as the temperature on the plate continues to increase for t > tsr , the viscous 

boundary layer thickness after the quasi steady state is  

( ) 4/1

4/12/1

4/122/1 1~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+
t

t

RaA
APrh p

vδ (3.24) . 
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Here it is also noted that the viscous boundary layer thickness also decreases after the 
time t = t . sr

 

3.4.4 Possible flow regimes 
Similarly to the sudden heating case we may also classify the flow development under 

the ramp heating boundary condition into different flow regimes. It is found in the 

scaling analysis that the flow development depends on two time scales: the ramp time 

and the quasi-steady time. Based on these two time scales we may classify the flow 

development as follows: 

(i) If Ra > (1+Pr)(1+A2)h4/[A2Prκ2 2tp ], then the ramp time is longer than the 

quasi-steady time, and the flow becomes quasi-steady before the ramp is finished. Once 

conduction and convection are in balance, the thickness of the thermal boundary layer 

has reached a maximum. 

 If Ra > A4 2(1+Pr)κ tp/[Prh (1+A2)2], then the thermal boundary layer thickness 

is shorter than the length of the heated plate. In this regime the flow is dominated by 

convection. The flow, however, may become turbulent for sufficiently high Rayleigh 

numbers. Turbulent analysis is out of the scope of this thesis. 

(ii) If Ra < (1+Pr)(1+A2)h4/[A2Prκ2 2tp ], then the ramp time is shorter than the 

steady/quasi-steady time and the boundary layer has not finished growing when the 

ramp is finished. What that means is that the boundary layer then grows as though the 

start-up were instantaneous and reaches a steady state at ts. Therefore, there is no 

difference between the ramp and instantaneous start up cases in this flow regime.   

 In the following sections, the above scaling relations are validated against the 

numerical simulation. However grid and time step dependence tests must first be 

performed to ensure the accuracy of the numerical results.      

 

3.5 Grid and time step dependence tests 

3.5.1 Grid generation 
The resolution of the grid inside the computational domain plays an important role in 

the accuracy and the stability of numerical simulations. In some regions of the domain a 

significant number of meshes are required in order to resolve the true physical flow 
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features (e.g boundary layers). A poorly distributed mesh in a critical region could 

result in false results. Unfortunately, it is often difficult to determine the locations of 

significance before the calculation is actually carried out. However we may use our 

previous knowledge to locate the regions of large flow gradients. Although an increase 

of the grid resolution generally increases the numerical accuracy, it also requires 

significant computing resources for both calculation and post-processing. Therefore, it 

is necessary to compromise between the numerical accuracy and computing efficiency 

when considering the numerical grid. 

x

y

 
Figure 3.6 Grid distribution of the heated plate. 

 

 For natural convection adjacent to an inclined flat plate strong flows are present 

in the vicinity of the plate. Therefore, we need to distribute a non-uniform finer mesh 

near the plate when compared to other regions. We may use an expansion factor to 

distribute the non uniform mesh. However, the expanding factor of grid is usually 

limited in order to ensure that the solution is not degraded. A factor of up to 10% may 

be used according to Patterson and Armfield (1990).   
 

Table 3.1 Grid parameter for A = 0.5 and 1.0. 

Along x-axis Along y-axis Time 
step Mesh size Plate GN Both side GN EF GN EF 

170×200 90 40 1.030 200 1.010 0.004 
255×150 135 60 1.020 150 1.015 0.003 
340×200 180 80 1.015 200 1.010 0.002 
510×300 270 120 1.010 300 1.008 0.0015 

   Note: GN is Grid Number, EF is expansion factor. 
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The distribution of mesh tested is shown for three different aspect ratios in 

Tables 3.1 and 3.2. The grid distribution on the plate surface is uniform; however on 

the surface of the two extended sides of the plate an expansion factor has been used to 

form a non-uniform mesh. A non-uniform mesh has also been applied along the y-axis 

of the domain with finer mesh near the plate. A schematic of the grid distribution is 

shown in Figure 3.6.   

Table 3.2 Grid parameter for A = 0.1. 

Along x-axis Along y-axis Time 
step Mesh size Plate GN Both side GN EF GN EF 

220×200 140 40 1.010 200 1.010 0.004 
330×150 210 60 1.008 150 1.015 0.003 
440×200 280 80 1.005 200 1.010 0.002 
660×300 420 120 1.004 300 1.008 0.0015 

 

3.5.2 Test results 
Grid and time step dependence tests have been conducted based on the numerical 

procedures described earlier for the highest Rayleigh number case for both thermal 

forcing conditions (that is, sudden heating and ramp heating). It is expected that the 

mesh selected for the highest Rayleigh number will also be applicable for all lower 

Rayleigh numbers.  

The time histories of the calculated maximum velocity parallel to the sloping 

wall for different aspect ratios with four different meshes are plotted in Figure 3.7 for 

the case of the sudden heating boundary condition. It is seen in the figure that all 

solutions indicate three stages of the flow development, an initial growth stage, a 

transitional stage and a steady state stage. In the initial growth stage, the four solutions 

follow each other closely (except the solution with a coarse mesh 330×150, which 

deviates slightly from the other three meshes for A = 0.1 in Figure 3.7a). The 

transitional stage is characterized by a single overshoot. The time to reach the steady 

state is around 0.8s, 1.5s and 6s for A = 1.0, 0.5 and 0.1 respectively.  
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Figure 3.7 Time series of the maximum velocity for sudden heating with Ra = 3.00×107 

and Pr = 0.72. (a) A = 0.1 and (b) A = 0.5 and 1.0.    

 

The maximum variation of the velocity between the coarsest and finest meshes 

for A = 0.1 is approximately 3.8%, and the maximum variation among the three fine 

meshes is only about 1.4%. The maximum variations of the velocity between the 

coarsest and finest meshes for A = 0.5 and 1.0 are 1.3% and 0.4% respectively. 

Therefore a fine mesh of 440 × 200 for A = 0.1 and a relatively coarse mesh 340× 200 

for A = 1.0 and 0.5 are adopted for the present simulations with a time step 0.002s. 
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Figure 3.8 Time series of the maximum velocity for ramp heating with Ra = 3.00×107 

and Pr = 0.72. (a) A = 0.1, (b) A = 0.5 and (c) A = 1.0. 

 

Mesh and time step dependence tests have also been conducted for the ramp 

heating boundary condition to ensure the accuracy of the numerical solutions. The same 

meshes as the sudden heating case have been considered here for three different aspect 

ratios.   

Figure 3.8 shows the time series of the maximum velocity parallel to the 

inclined surface calculated along a line normal to the surface at the mid point of the 
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heated plate for three different aspect ratios for the ramp heating boundary condition for 

Ra = 3.0×107 and Pr = 0.72. The ramp time has been set to 20s for all cases. As is 

mentioned in the scaling analysis, the ramp time may be longer or shorter than the 

steady state time for the boundary layer. If the ramp time is longer than the steady state 

time, then after the steady-state time the velocity continues to increase as the plate is 

still being heated. However, the growth rate of the velocity is reduced compared with 

that in the earlier phase. The two-stage growth of the velocity is clearly seen in the 

simulation results (see Figure 3.8). It is seen in this figure that at about 12s, 5.2s and 4s 

for A = 0.1, 0.5 and 1.0 respectively, the boundary layer becomes quasi steady. At t = 

20s the ramp finishes and the boundary layer becomes completely steady. 

The maximum variation of the calculated maximum velocity between the 

coarsest and finest meshes for A = 0.1, 0.5 and 1.0 is 3.85%, 0.54% and 0.50% 

respectively. Therefore any of these meshes is appropriate for this simulation, and the 

mesh size 440×200 is adopted for A = 0.1 and 340×200 is adopted for A = 0.5 and 1.0 

for the following simulations with the time step size 0.002s. 

 

3.6 Flow development in different flow 
regimes for sudden heating  

3.6.1 Conduction regime 
The numerical results for a low Rayleigh number case are shown in Figure 3.9 with Pr 

= 0.72, Ra = 10 and A = 0.5. The temperature contours and streamlines at t/ts=2.4 are 

plotted in Figures 3.9(a) and (b), respectively. The heated portion of the inclined plate 

has been marked at the time of post processing. This is also the case for subsequent 

Figures 3.10, 3.11, and 3.12. In this flow regime the thermal boundary layer eventually 

expands to the entire domain. Figure 3.9(c) shows the temperature profile which has 

been extracted along a line perpendicular to the plate at the mid point. The distance has 

been normalised by the length of the plate. It is seen in Figure 3.9(c) that the thickness 

of the thermal boundary layer is larger than y/L = 1. Therefore, the flow is dominated 

by conduction in this regime. 

 

44 



Chapter 3 

(a) (b)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

T-Tc

ΔT
___

y
L

__

(c)

 
Figure 3.9 (a) Temperature contours, (b) streamlines and (c) temperature profiles along 

the line perpendicular to the plate at mid point of the boundary layer development for 

Ra =10, Pr = 0.72 and A = 0.5 at t/t  =2.4. s

 

3.6.2 Convection regime 
The numerical results for a higher Rayleigh number with Pr = 0.72, Ra = 2.58×107 and 

A = 0.5 at t/ts = 1.58 are shown in Figure 3.10. The temperature contours are presented 

in Figure 3.10(a) and the streamlines are presented in Figure 3.10(b). We notice that 

convection increases significantly in this regime as the Rayleigh number increases. The 

temperature contours are very much concentrated in the thin thermal boundary layer 

near the inclined plate as the result of strong convection. A temperature profile along a 

line perpendicular to the plate at the mid point has been shown in Figure 3.10(c). The 

thermal boundary layer thickness can easily be deduced from this profile and is very 

small when compared to the length of the plate, supporting the strong convection effect 

in the heat transfer and fluid flow.  
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Figure 3.10 Temperature contours and streamlines of boundary layer development for 

Ra = 2.58×107, Pr = 0.72 and A = 0.5 at t/ts = 1.58.  
 

3.7 Flow development in different regimes 
for ramp heating  

3.7.1 Ramp time shorter than steady state time 
Figure 3.11 shows the temperature contours, the streamlines and a temperature profile 

for Pr = 0.72, Ra = 5 and A = 0.5 at t/tsr = 2.77 where the length of the ramp time is t /tp sr 

= 0.042. Figures 3.11(a) presents the temperature contours and Figure 3.11(b) presents 

the corresponding streamlines. For this regime the steady state time is larger than the 

ramp time. Therefore the flow behaviour at the steady state stage is identical to that for 

the sudden heating case. As soon as the heating starts, the thermal boundary layer 

expands outwards from the heated plate and eventually arrives at the opposite wall of 

the rectangular domain as time passes. A temperature profile has been shown in Figure 

3.11(c) which is calculated along a line perpendicular to the plate at the mid point. The 

distance is normalised by the length of the plate. It is seen that the thickness of the 
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thermal boundary layer is larger than y/L = 1. Therefore, the flow is dominated by 

conduction in this regime. 
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Figure 3.11 Temperature contours, (b) streamlines and (c) temperature profiles along 

the line perpendicular to the plate at mid point of the boundary layer development for 

Ra =5, Pr = 0.72 and A = 0.5 at t/ts = 2.77. 
 

3.7.2 Ramp time longer than steady time 
In this regime, the flow becomes quasi-steady state before the ramp is finished. As it is 

mentioned in the scaling development section, the boundary layer thickness decreases 

beyond the quasi-steady time, t . A representative Rayleigh number of Ra = 7.63×106
sr  

has been chosen to demonstrate the flow features in this flow regime.  A time series of 

the maximum tangential flow velocity in the boundary layer obtained at this Rayleigh 

number has been presented in Figure 3.4, in which different stages of the flow 

development including the start up stage, the quasi-steady state and the steady state can 

be clearly identified. The corresponding temperature contours and streamlines are 

shown in Figure 3.12 at different times of the boundary layer development for an aspect 

ratio A = 0.5.  
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Figure 3.12 (a, b, c) Temperature contours (left) and the streamlines (right) for different 

times of boundary layer development (d) temperature profiles along a line 

perpendicular to the plate at mid point for Ra = 7.63×106, Pr = 0.72 and A = 0.5.  

 

 

We notice in Figure 3.12 that the boundary layer develops adjacent to the plate 

and moves upwards. The ramp time, selected for this problem, is t /tp sr = 4.928. The 

isotherms and streamlines in Figure 3.12(a) are at t/tsr = 0.49, that is, before the flow 

becomes quasi-steady; those in Figure 3.12(b) are at t/tsr = 2.464 when the flow is in 

quasi-steady mode; and those in Figure 3.12(c) are at the time when the ramp just 

finishes (t/tsr = 4.928) and the flow is in a transitional stage from the quasi steady to the 

final steady state. We see from the start-up of the flow development to the steady state, 

48 



Chapter 3 

the boundary layer is not affected significantly by the adiabatic walls which are 

artificial boundaries for forming a closed computational domain. 

Figure 3.13 shows the temperature profiles at two different times, t/tsr = 2.464 

and 4.928 respectively. At t/tsr = 2.464 the flow just becomes quasi-steady (see figure 

3.4) and at t/tsr = 4.924, the ramp time finishes. It is seen in the temperature profiles that 

the thickness of the thermal boundary layer is smaller at the time 4.924 than that at 

2.464. This supports the scaling relation (3.20) that the thermal boundary layer 

contracts beyond the quasi-steady time t .   sr

 

 

 
Figure 3.13 Temperature profiles along a line perpendicular to the plate at mid point for 

Ra = 7.63×106, Pr = 0.72 and A = 0.5. 
 

3.8 Validation of selected scales 

3.8.1 Scaling for sudden heating 
The unsteady velocity scale (3.3), steady state time scale (3.5), steady state thermal 

layer thickness scale (3.6) and steady state velocity scale (3.7) of the boundary layer 

development for the case of sudden heating can be re-written in non-dimensional forms 

as 
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In Table 3.3, Runs 1-5 with Ra = 3.00×107, 6.11×106, 2.58×106, 5.17×105 and 

2.58×105 while keeping A = 0.5 and Pr = 0.72 unchanged have been carried out to 

show the dependence of the scaling relations on the Rayleigh number Ra; Runs 6-7 and 

1 with A = 1.0, 0.1 and 0.5 respectively while keeping Ra = 3.00×107 and Pr = 0.72 

unchanged have been carried out to show the dependence on the slope of the inclination 

of the plate. 

 
Table 3.3 Values of A, and Ra for 7 runs. 

A Ra Runs  
71 0.5 3.00×10
62 0.5 6.11×10
63 0.5 2.58×10
54 0.5 5.17×10
55 0.5 2.58×10
76 1.0 3.00×10
77 0.1 3.00×10

 

The velocity components and the temperature have been recorded at several 

locations along a line perpendicular to the plate at the mid point to obtain the velocity 

and temperature profiles along that line.  The maximum velocity parallel to the plate, us 

has also been calculated from the velocity components and is used to verify the velocity 

scale relation.  

 The thermal boundary-layer thickness δT is determined as the perpendicular 

distance from the mid point of the heated wall to the location where the temperature 

difference between the fluid in the thermal boundary layer and the ambient drops to 
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0.01(Th − T ). The steady state time, tsc  for the boundary-layer development to reach the 

steady state is determined as the moment when the first trough appears in the time 

history of the maximum parallel velocity, us, which is calculated along the line 

perpendicular to the plate at the mid point (see Figure 3.1). 

The unsteady velocity scale (3.25) has been plotted in Figure 3.14 for different 

parameters considered here, in which the x-axis is the normalised time and the y-axis 

includes the rest of the scale values. It is seen that all lines for different Rayleigh 

numbers and aspect ratios lie together initially on a straight line through the origin. This 

indicates that the scaling relation for the unsteady velocity is appropriate.  

 

 
Figure 3.14 Normalised unsteady velocity against time for 7 runs. 

 

 

Numerical results supporting the scaling laws for the steady state time, the 

steady-state thermal boundary layer thickness and the steady-state velocity parallel to 

the plate, (3.26), (3.27) and (3.28) respectively, are presented in Figure 3.15. It is found 

in the figure that the numerical results agree very well with these three scaling relations. 

For all the calculated cases, the numerical results fall approximately onto a straight line, 

which proves that the scaling relations (3.26), (3.27) and (3.28) properly describe the 

thermal boundary layer at the steady state. 
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Figure 3.15 Numerically obtained values of the steady state (a) time, (b) thermal 

boundary layer thickness and (c) maximum velocity parallel to the plate at the mid 

point against corresponding scaling values, for all 7 runs. , run 1; Δ, run 2; ∇, run 3; 

, run 4; , run 5; ◊, run 6, ο, run 7. Solid line, linear fit. 
 

 

The velocity and temperature profiles at t/ts = 3.0 (when the flow is fully steady) 

are shown in Figure 3.16 for different Rayleigh numbers and aspect ratios. Figure 

3.16(a) shows the raw data of the velocity along the line perpendicular to the plate at 

the mid point. In Figure 3.16(b), the velocity parallel to the plate has been normalized 

by its steady state scale (3.7) and the distance normalized by its viscous boundary layer 

thickness scale (3.10). Raw data of the temperature profiles is depicted in Figure 

3.16(c) at the same time for various Rayleigh numbers and aspect ratios. In Figure 

3.16(d), the temperature has been normalized by the maximum temperature difference 

(ΔT) and the distance normalized by the steady state thermal boundary layer thickness 

(3.6).  
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Figure 3.16 Velocity profiles (top) and temperature profiles (bottom) for 7 runs. 

 

The scaling relations for the steady state velocity (3.7) and viscous boundary 

layer thickness (3.10) are seen to perform well for the velocity profiles. All profiles 

collapsing almost onto a single curve (see Figure 3.16b). The scaling relation for the 

thermal boundary layer thickness (3.6) also works very well as all temperature profiles 

for the different parameters fall together. Therefore the scaling, derived from the 

sudden heating boundary condition, has been verified by the numerical simulation.      

 

3.8.2 Scaling for ramp heating 
A total of nine simulations have been performed to verify the scaling relations 

derived from the ramp heating boundary condition. Table 3.4 shows the details of the 

flow parameters considered for this study. Here, Runs 1-7 with the same aspect ratio A 

= 0.5 and Prandtl number Pr = 0.72 but different Rayleigh numbers have been carried 

out to show the dependence of the scaling relations on the Rayleigh number Ra; and 

Runs 8-9 and 1 with A = 0.1, 1.0 and 0.5 respectively while keeping Pr = 0.72 and Ra = 
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3.00×107 unchanged have been carried out to show the dependence of the scaling 

relations on the aspect ratio A.   

 
Table 3.4 Values of A, and Ra for 9 runs. 

A Ra Runs 
1 0.5 3.00×107

2 0.5 7.63×106

3 0.5 6.11×106

4 0.5 3.00×106

5 0.5 1.55×106

6 0.5 1.30×106

7 0.5 1.04×106

8 1.0 3.00×107

9 0.1 3.00×107

 

For this problem, the velocity parallel to the plate and the temperature have also 

been recorded at several locations along a line perpendicular to the plate at the mid 

point to obtain the velocity and temperature profiles. Moreover, the maximum velocity 

parallel to the plate has been calculated as the characteristic velocity (usr) of the 

boundary layer, which is used to verify the velocity scale relation.   

 

   
1/2Figure 3.17 (a) Normalised velocity plotted against normalised time; (b) uh/[κRa ] 

plotted against (t/t 1/2
p) . 

 

Figure 3.17(a) shows the time series of the maximum velocity parallel to the 

inclined plate at the mid point of the plate, where both the time and velocity are 

normalised with respect to their respective steady state scaling values. It is clear that 
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initially all lines collapse together; at about t/tsr = 2.2 all curves bend together, 

indicating that at this time the flow reaches its quasi-steady mode. After that quasi-

steady state time, all curves continue to follow the same trend until the ramp is finished 

at respective times. This confirms the scaling relations (3.15) and (3.18). 

 

  

  
Figure 3.18 Velocity profiles (top) and temperature profiles (bottom) at t/tsr = 2.6 for 

all runs. 

 

To verify the scaling relation (3.21), uh/κRa1/2 1/2 has been plotted against (t/tp)  

for different Rayleigh numbers and aspect ratios with Pr = 0.72 in Figure 3.17(b). This 

scaling is valid for t > tsr. It is seen that all lines after the quasi-steady state time fall 

approximately onto a single line. However, those cases for which the quasi-steady time 

and the ramp time are very close deviate a little from others.  It is seen that after 

t/tp=1.0, when ramp time finishes, all lines for different parameters lie together and 

form a horizontal line which confirms the scaling relation (3.21).    

Figure 3.18 shows the velocity and temperature profiles for different Rayleigh 

numbers and aspect ratios along the line perpendicular to the plate at the mid point at 
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time t/tsr = 2.6, when the flow becomes quasi steady. Raw velocity profiles for different 

aspect ratios and Rayleigh numbers have been shown in Figure 3.18(a). In Figure 

3.18(b), the velocity is normalized with respect to the quasi-steady state velocity scale 

(3.18) and the position is normalized with respect to the viscous boundary layer 

thickness scale (3.23). In Figure 3.18(c) the raw temperature has been plotted against 

the normalized position with respect to the quasi-steady state thermal layer thickness. 

The temperature on the inclined plate does not reach the maximum temperature at this 

time as the ramp has not yet finished. Moreover, the instantaneous temperature 

differences are not the same at this time for different Rayleigh numbers and aspect 

ratios. The position of the temperature profile in Figure (d) is also normalized by the 

quasi steady state thermal boundary layer thickness (3.17). However, the temperature is 

normalized by the instantaneous temperature difference (ΔTinst).  

It is seen in Figure 3.18(b) that all velocity profiles for different Ra and A, fall 

into a single curve. Therefore, the scaling relations (3.18) and (3.23) are appropriate 

representations of the velocity and thickness respectively of the boundary layer. The 

same scenario can be seen in the temperature profiles in Figure 3.18(d). All profiles fall 

onto a single line, confirming the scaling of the thermal boundary layer thickness 

(3.17).  

3.9 Summary 
Natural convection adjacent to a heated inclined flat plate is examined by scaling 

analysis and verified by numerical simulations for air (Pr = 0.72). It is found that the 

flow is mainly dominated by three distinct stages for the sudden heating boundary 

condition, i.e. the start-up stage, the transitional stage and the steady state stage. The 

scaling relations are formed based on the established characteristic flow parameters of 

the maximum velocity inside the boundary layer (us), the time for the boundary layer to 

reach the steady state (ts) and the thermal (δT) and viscous (δν) boundary layer 

thickness. Through comparisons of those scaling assumptions with the numerical 

simulations, it is found that the scaling results agree very well with the numerical 

simulations. Hence the numerical results have confirmed the scaling relations which 

characterize the transient flow development. 

A temperature boundary condition of a ramp function which is applied on the 

inclined plate has also been investigated for the same problem. The boundary layer 
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flow for this boundary condition depends on the comparison of the time at which the 

ramp heating is completed with the time at which the boundary layer completes its 

growth. If the ramp time is long compared with the steady state time, the thermal 

boundary layer reaches a quasi-steady mode in which the growth of the layer is 

governed by the thermal balance between convection and conduction. On the other 

hand, if the ramp is completed before the thermal boundary layer becomes steady, the 

subsequent growth is governed by the balance between buoyancy and inertia, as for the 

case of sudden heating. Several scaling relations have been established in this study, 

which include the maximum velocity parallel to the inclined plate inside the boundary 

layer (u ), the time for the boundary layer to reach the quasi-steady state (tsr sr) and the 

thermal and viscous boundary layer thicknesses (δ  and δTr ν) for both quasi-steady and 

steady state mode. The comparisons between the scaling relations and the numerical 

simulations demonstrate that the scaling results agree very well with the numerical 

simulations. 
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4 Natural convection of an inclined 
flat plate subject to sudden and 
ramp cooling boundary conditions 
 

The scaling analysis of a cooling boundary layer adjacent to an inclined flat plate is 

very similar to that for the heating boundary layer except for the formation of 

instability. It is seen in the previous chapter (Chapter 3) that the heated boundary layer 

is stable and laminar for relatively high Rayleigh numbers. However, in the cooling 

case, if the Rayleigh number exceeds a certain critical value, the boundary layer 

becomes unstable to the Rayleigh-Bénard instability. Sparrow and Husar (1969) and 

Lloyd (1974) were the first to prove experimentally the existence of longitudinal 

vortices in a natural convection flow along an inclined flat plate. For Pr = 7.0, they 

observed vortices over an isothermal plate for inclination angles of 73° or less from the 

horizontal plane and a two-dimensional wave structure for inclination angles of 76° or 

greater. Based on the local Rayleigh number, a scaling prediction for the onset of 

instability can be achieved.  

A scaling analysis in a wedge subject to surface cooling has been investigated 

by Lei and Patterson (2005). In that study, the authors identified different flow regimes 

based on the Rayleigh number through scaling analysis for the boundary layer adjacent 

to the horizontal surface. They found that the flow is stable if the Rayleigh number is 

less than a critical value. However, the flow becomes unstable, characterised by 

plunging surface plumes, if the Rayleigh number exceeds that critical value. The same 

authors (Lei and Patterson (2002c) also carried out a scaling analysis in the wedge 

subject to radiative heating. In the latter case, the bottom inclined surface absorbs the 

residual radiation from the sun and re-emits the absorbed energy as a boundary heat 

flux. Therefore, a hot boundary layer develops adjacent to the sloping wall which is 

potentially unstable to the Rayleigh-Bénard instability for higher Rayleigh numbers. 

Similar to the cooling case, the authors also identified different flow regimes based on 

the Rayleigh numbers. 
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 In this chapter, analytical and numerical models for suddenly decreased and 

linearly decreasing (ramp) temperature boundary conditions on an inclined flat plate are 

formulated. The aim is to formulate a model that will exhibit many of the 

characteristics of the flow adjacent the cooling plate which can be used to verify the 

scaling results derived from the governing equations with the specified model 

configuration and boundary conditions. A series of numerical calculations have been 

carried out for different parameter values to verify the scaling predictions. Details of 

the numerical procedures can be found in Chapter 2. However, the geometry, boundary 

conditions and grid and time step dependence tests specific to the present cases of 

sudden and ramp cooling of an inclined plate are shown in this chapter.  

 

 

Tc 

y 

Th 

θ 

∂T/∂x = 0 
u=v=0 

∂T/∂x = 0
u=v=0

∂T/∂y = 0
u=v=0

C

D

E 

F 

h

l 

L

Th > Tc 

W 

E

x 

 
Figure 4.1 Schematic of the geometry and the coordinate system. 

 

The flow adjacent to the inclined flat plate is modeled by the two dimensional 

flow of an initially stationary fluid contained in a rectangular domain CDEF shown in 

Figure 4.1. Unlike the heating case, we consider the full side of the rectangle, CD = L 

as a cooled inclined flat plate. If the middle portion of the plate is cooled and the rest of 

the plate is adiabatic similarly to Chapter 3, then the leading edge triggers the instability 

for even very lower Rayleigh number. Initially the fluid temperature in the domain is 

Th. If we consider the plate as the hypotenuse of a right angled triangle then the altitude 

is h, the length of base is l and the angle that the plate makes with the base is θ. Except 
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for the plate, all three other walls of the rectangle are assumed to be insulated, rigid and 

non-slip. Two cooling boundary conditions are applied on the plate; sudden cooling to a 

specified temperature which is then maintained, and cooling by a linearly decreasing 

temperature to a specified temperature over some time (the ramp time) after which the 

temperature is maintained (the ramp function).  

  

4.1 Scaling analysis for sudden cooling 
4.1.1 Thermal and viscous layer development 
The instantaneous cooling on the flat plate triggers transient natural convection with a 

cold thermal boundary layer developing adjacent to the inclined plate. The thickness of 

the thermal boundary layer grows according to the scale κ1/2 1/2t  as for the case for 

sudden heating (3.1) until there is a balance between conduction and convection in the 

energy equation (eqn 2.17). At the same time the velocity inside the boundary layer 

develops, governed by the balance of viscous and inertial terms with the buoyancy term 

in the inclined momentum equation (eqn 2.15). This unsteady velocity scale from (3.3) 

is   

( )( )
.
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PrARau κ

κ
  (4.1) 

This scale is valid until the time when conduction balances convection. Note that this 

boundary layer is potentially unstable at higher Rayleigh numbers. 

 The steady state scales of the boundary layer can be achieved by balancing the 

conduction and convection terms in the energy equation (eqn 2.17). The steady state 

scales of time (ts), thickness (δT) and velocity (us) in the boundary layer from (3.5), 

(3.6) and (3.7) respectively are as follows,  
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 At the same time with the formation of the thermal boundary layer, a viscous 

boundary layer also develops as a direct result of a balance between the viscous and the 

inertia terms in the momentum equation which is,  

.~ 2/1PrTv δδ  (4.5) 

The steady state scale of the viscous boundary layer can be achieved at the time when 

conduction balances convection in the energy equation,  

( ) ( ) .11~ 4/14/12/1

4/124/1

PrRaA
APrh

v
++δ (4.6)  

Like heating case, here it is also noted that for Pr < 1, the viscous boundary layer 

thickness is smaller than that of the thermal boundary layer.  

 

4.1.2 Onset of the thermal layer instability 
It is found in the literature (e.g. Chandrasekhar 1961; Drazin and Reid 1981) that the 

main characteristic parameter governing the stability property of a fluid layer cooled 

from above is the local Rayleigh number, Ra, which is defined by 

,
3

νκ
δβ T

L
TgRa Δ

= (4.7)  

where δT, is the thermal layer thickness, ΔT the temperature difference across the 

thermal boundary layer. Therefore, a critical Rayleigh number exists above which the 

instability will occur. 

The critical Rayleigh number for the inclined plate can be derived directly from 

that of a differentially heated horizontal layer as suggested by Kurzweg (1970) and 

Chen and Pearlstein (1989). They established a relation between the critical Rayleigh 

number for the case of a differentially heated horizontal layer and an inclined plate 

layer, which is given by  

( ) ( )
,

cos
0
θ

θ
ο

c
c

Ra
Ra = (4.8)  

where θ is the inclination angle of the plate with the horizontal plane and Rac(θ) and 

Rac(0ο) are the critical Rayleigh numbers for the inclined and the horizontal fluid 

layers, respectively.  

In the present case, the thermal boundary layer is bounded by a rigid surface of 

the plate and a cold air layer, which is equivalent to the free-rigid boundary 

configuration (see Chandrasekhar 1961; Drazin and Reid 1981; Lei and Patterson 
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2002c), for which Rac(0ο) = 1101. We will use this critical value and the angle of the 

inclined plate with the horizontal plane to calculate the critical Rayleigh number for the 

inclined thermal boundary layer in subsequent analyses and calculations. 

The local Rayleigh number in the thermal boundary layer can now be calculated 

from (4.7), for which the thickness of the fluid layer is δT = κ1/2t1/2. Applying this δT 

value to (4.7) the local Rayleigh number is given by.  

.
/

2/3

2 ⎟
⎠
⎞

⎜
⎝
⎛=

κh
tRaRaL (4.9)  

The instability will set in if RaL ≥ Rac, where Rac is calculated from (4.8). From (4.9), a 

critical time scale for the onset of thermal layer instability at a given global Rayleigh 

number is obtained as 
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⎛=  (4.10) 

where Rac ≈ 1106.5, 1122.8 and 1230.9 for A = 0.1, A = 0.2 and A = 0.5 respectively. 

For t < tB, the surface layer is stable, and for t > tBB B, the instability will set in. The scale 

(4.10) indicates that the critical time for the onset of instability in the boundary layer 

increases as the Rayleigh number decreases. Theoretically, tB approaches infinity if Ra 

→ 0. However, for Rayleigh numbers below a critical value the instability will never 

occur irrespective of the cooling time. 

B

Two important time scales have been obtained from the above calculation; first, 

the time scale for the growth of the thermal boundary layer (ts given by 4.2) and 

secondly, the time scale for the onset of convective instability (tB given by 4.10). The 

ratio of these two times is 

B
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Therefore, for 
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ts > tB, and the instability will set in before the growth of the thermal boundary layer 

completes. On the other hand, if 

B
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++
<  (4.13) 
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ts < tB, the thermal boundary layer will reach its steady state before the instability sets in 

and an instability will not occur.  

B

 

4.1.3 Possible flow regimes 
The time scale for conduction across the full domain is the diffusion time, tc ~ h2/κ. A 

comparison of the three time scales tc, ts and tB gives three possible regimes.  B

(i)  If the diffusion time is shorter than the steady state time, i.e.  tc < ts then, Ra 

< (1+Pr)(1+A2)/[A2Pr] and Ra < Rac and the flow is stable to the Rayleigh-Bénard 

instability. The thermal boundary layer grows slowly and exceeds the length of the 

plate before convection becomes important.  

 (ii) Again if (1+Pr)(1+A2)/[A2Pr] < Ra < (Pr3A6Rac
4)(1+Pr)−3 −3(1+A2) . The 

flow is still stable to the Rayleigh-Bénard instability. A thermal boundary layer is 

established in the enclosure, and it reaches to the steady state at ts. 

 (iii) If Ra > (Pr3A6Rac
4)(1+Pr)−3(1+A2)−3 then the thermal boundary layer is 

unstable to the Rayleigh-Bénard instability. The instability sets in before the growth of 

the thermal boundary layer is completed. 

 There is also a regime at sufficiently high Rayleigh numbers, in which the 

thermal boundary layer becomes turbulent. This regime is not considered here. 

 

4.2 Scaling analysis for ramp cooling 
The boundary condition of the ramp temperature which is applied on the inclined plate, 

L in Figure 4.1 for the second case is given by  
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T  (3.14)

Initially the temperature on the plate and the ambient is the same. Then the temperature 

on the plate decreases linearly up to a specified time (t ) and remains constant after that.     p

 

4.2.1 Thermal layer development 
The start-up stage is initially dominated by heat transfer via conduction through the 

cold plate, resulting in a cold thermal boundary layer of a thickness O(δT). This layer 

grows according to κ1/2t1/2, which is obtained from a balance between the unsteady term 

63 



Chapter 4 

and the diffusion term in the energy equation (eqn. 2.17). The velocity inside the 

boundary layer increases with time according to the following velocity scale from 

(3.13)   

( )( )
.

/11
~ 22/12

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

++ ht
t

h
t

APr
PrARau

p
r

κ
κ

 (4.15) 

This velocity scale is valid until the conduction balances convection (if the conduction 

and convection balance before the ramp is finished) or the ramp is finished (if the 

conduction and convection balance after the ramp is finished). The flow inside the 

boundary layer will be in a quasi-steady mode when conduction and convection balance 

at the time from (3.15) 
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<tso long as tsr p. As discussed in the previous chapter (chapter 3), if the quasi-steady 

state time is longer than the ramp time, then the steady state time is the same as the case 

of sudden cooling and there is no difference between ramp and instantaneous cooling at 

the later stage of the flow development after the ramp cooling is finished.     

The thickness of the boundary layer along the plate and the velocity inside the 

boundary layer at the quasi-steady time respectively from (3.17) and (3.18) are   
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Now if the quasi-steady state time is shorter than the ramp time then once tsr is 

reached, the boundary layer stops growing according to κ1/ 1/2 2t  which is valid only for 

conductive boundary layer. The thermal boundary layer is in a quasi-steady mode with 

convection balancing conduction. Further decrease of the heat simply accelerates the 

flow to maintain the proper thermal balance. Therefore, the thickness and the velocity 

scales at the quasi-steady mode are from (3.20) and (3.21)  
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respectively. 

The corresponding viscous boundary layer thickness prior to and at the quasi-

steady time can be obtained and is given by 

,~~ 2/12/12/1
Tv Prt δνδ  (4.21)

and 
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However the temperature on the plate still decreases, therefore, the viscous boundary 

layer thickness after the quasi steady state is  
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4.2.2 Onset of the thermal layer instability 
The stability property of a fluid layer cooled from above is characterised by a local 

Rayleigh number, RaL, which is defined by (4.7). For the ramp cooling boundary 

condition the local Rayleigh number is calculated as  
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= (4.24) 

Therefore, there exists a critical Rayleigh number for which the instability will occur. 

The critical Rayleigh number can be obtained from the relation (4.8).    

From the above scaling analysis, it is found that the flow may become quasi-

steady either before or after the ramp is finished.  

For the case when the quasi-steady time is much shorter than the ramp time, the 

onset of instability may set in before or after the quasi-steady state but before the ramp 

is finished. If the instability sets in before the quasi-steady state, then the local Rayleigh 

number in the thermal boundary layer is calculated from (4.24), for which the thickness 

of the boundary layer develops according to δT ~ κ1/2 1/2t  and is given by 
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If RaL ≥ Ra , where Rac c is calculated in (4.8), the instability will set in. From (4.25), a 

critical time scale for the onset of thermal layer instability can be obtained as 
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 < t . For t < t  < t , the thermal boundary layer is stable.  For t > tso long as tB1 sr B1 sr B1 , the 

instability will set in, and tsr is irrelevant. 

 If the instability sets in after the quasi-steady state, then the local Rayleigh 

number in the thermal boundary layer is also calculated from (4.24), for which the 

thermal boundary layer thickness develops according to the scale (4.19). Therefore the 

local Rayleigh number is given by 
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and the time scale for onset time of instability is  
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so long as tsr  < t  < t .  B2 p

As we discussed before, if the steady state time is longer than the ramp time 

then there is a mode where the flow develops as per the instantaneous case. Therefore, 

the instability may set in after or before the ramp is finished. If instability sets in before 

the ramp is finished then the scaling for the onset of instability is the same as (4.26). 

For the case when the instability sets in after the ramp is finished, the local Rayleigh 

number can be calculated from (4.7), for which the thermal boundary layer thickness 

develops according to δT = κ1/2 1/2t . As such the local Rayleigh number is given by,  
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and the time scale for onset time of instability is  
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4.2.3 Possible flow regimes 
If the quasi-steady time is shorter than the ramp time (tsr < tp), then the global Rayleigh 

number must satisfy the following condition: 
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and if the flow is stable until the ramp is finished then  
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However, if the instability happens after the quasi-steady state is reached but before the 

ramp is finished, the time scale for the onset of instability is (4.28), thus the global 

Rayleigh number is  
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and if the instability happens before the quasi-steady state then the global Rayleigh 

number is  
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and if the steady state time is longer than the ramp time, then 
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If the instability sets in after the ramp is finished but before the steady state then  
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However, the instability may set in before the ramp is finished when the ramp time is 

shorter than the steady time if 
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Based on the onset of instability, we may classify certain flow regimes based on the 

global Rayleigh number. The flow regimes for different Rayleigh numbers are 

tabulated in Tables 4.1 and 4.2.  
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Table 4.1 Possible flow regimes for ramp cooling boundary condition for tsr > tp or 

Ra<(1+Pr)(1+A2)h4/[A2Prκ2 2t ]. p

Ra < Rac Rac < Ra < Rac[(h2/κ)/tp]3/2 Rac[(h2/κ)/tp]3/2 < Ra <  

(1+Pr)(1+A2)h4/[A2 2Prκ tp
2]   

Regime 1 Regime 2 Regime 3 

The flow is stable to the 

Rayleigh-Bénard instability. 

The thermal boundary layer 

grows very slowly and 

exceeds the length of the 

plate before convection 

becomes important. 

The flow is stable until the 

ramp is finished. However, it 

becomes unstable before the 

steady-state of the thermal 

boundary layer is reached.  

The thermal boundary 

layer is unstable to the 

Rayleigh-Bénard 

instability before the 

ramp is finished.  

 

Table 4.2 Possible flow regimes for ramp cooling boundary condition for tsr < tp or 

Ra>(1+Pr)(1+A2)h4/[A2Prκ2 2t ]. p

(1+Pr)(1+A2)h4/[A2 2Prκ tp
2 4] < 

Ra < Rac
4A6/(1+A2)3

Rac A6/(1+A2)3 Ra > 

Pr

< Ra < 

Pr5A10 6Rac tpκ/[(1+Pr)5(1+A2)5h2 5] A10 6Rac tpκ/[(1+Pr)5(1+A2)5h2] 

Regime 4 Regime 5 Regime 6 

The flow is stable to the 

Rayleigh-Bénard 

instability until the ramp 

is finished. The 

boundary layer reaches a 

quasi-steady state prior 

to the completion of the 

ramp time.  

Again the thermal 

boundary layer reaches 

quasi-steady state with 

conduction convection 

balance. However, the flow 

becomes unstable to 

Rayleigh-Bénard instability 

in the quasi-steady state 

mode. 

The thermal boundary layer is 

unstable to the Rayleigh-

Bénard instability. The 

instability sets in before the 

growth of the thermal 

boundary layer completes.  
 

 

 In the following section, mesh and time step dependence tests will be carried for 

the accuracy of the numerical simulation. The numerical results will be used to verify 

the scaling relations derived above.   
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4.3 Grid and time step dependence test  
The distribution of the mesh is shown for three different aspect ratios in Table 4.3. Grid 

distribution in the middle portion of the plate surface is uniformly distributed along the 

x-direction; however in the two end portions of the plate, an expansion factor has been 

used to construct non-uniform meshes. Non-uniform mesh has also been constructed 

along the y-direction of the domain with finer mesh near the plate. A schematic of grid 

distribution is shown in Figure 4.2   

x

y

 
Figure 4.2 Schematics of grid distribution. 

 

Table 4.3 Grid parameter. 

Along the plate  Normal to the plate  Mesh size Middle Both side GN EF GN EF 
100 50 1.030 100 1.010 200×100 
150 75 1.020 150 1.015 300×150 
200 100 1.015 200 1.010 400×200 
300 150 1.010 300 1.008 600×300 

  Note: GN=Grid Number, EF = Expansion Factor  
  

Grid and time step dependence tests have been conducted for both the sudden 

and ramp cooling cases. The time steps have been chosen in such a way that the CFL 

(Courant-Freidrich-Lewy) number remains the same for all meshes. The maximum 

CFL number for A = 0.1, 0.2 and 0.5 are 2.54, 3.04 and 1.55 respectively. Four 

different mesh sizes, 200×100, 300×150, 400×200 and 600×300, have been considered 

for each aspect ratio. The computed time series of the temperature at a fixed point and 
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the standard deviation of temperature along a line parallel to the plate are shown in 

Figures 4.3 and 4.4 respectively as well as in Tables 4.4 and 4.5 respectively.  

 

Table 4.4 Onset time of instability and the temperature at that time at a point, E  for 

sudden cooling. 

A = 0.1 A = 0.2 A = 0.5 Mesh 
size T (at t=0.570s) t T (at t=0.718s) t T (at t=3.332s) tB B BB B B

0.550s 291.898 K 0.715s 291.692 K 3.352s 290.798 K 200×100 
0.510s 291.903 K 0.705s 291.697 K 3.348s 290.797 K 300×150 
0.570s 291.909 K 0.718s 291.702 K 3.332s 290.797 K 400×200 
0.562s 291.908 K 0.720s 291.699 K 3.342s 290.794 K 600×300 

    

Table 4.5 Onset time of instability and the temperature at that time at a point, E for 

ramp cooling. 

A = 0.1 A = 0.2 A = 0.5 Mesh 
size T (at t=1.31s) T (at t=4.21s) T (at t=10.87s) t t tB B BB B B

1.215s 3.58s 298.168 K 10.45s 295.028 K 200×100 299.494 K 
1.251s 3.92s 298.177 K 10.65s 295.029 K 300×150 299.490 K 
1.310s 4.21s 298.178 K 10.87s 295.030 K 400×200 299.496 K 
1.321s 4.25s 298.176 K 10.92s 295.029 K 600×300 299.495 K 

 

 Calculated results of the grid dependence tests for the case of sudden cooling 

and ramp cooling boundary conditions are listed in Tables 4.4 and 4.5 respectively, 

which include the onset of instability and the temperature calculated at a point, E. The 

method of calculation of the onset of instability will be described in details in section 

4.4. The temperature has been calculated at the time when the instability sets in. The 

variations of the onset time for the finest (600×300) and the second finest mesh 

(400×200) are less than 2% for all aspect ratios with the two different boundary 

conditions. However, the variations of the temperature among the four different meshes 

are very small (bellow 0.11%) for both boundary conditions and all aspect ratios. 

Therefore any one of the meshes can be selected for the simulations based on the 

temperature variation. However, based on the response of the onset of instability, either 

of the two finest meshes can be adopted.  
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Figure 4.3 Time series of temperature (a, c, e) at a point (0.6m, 0.00121m) and the 

growth of the standard deviation of the temperature (b, d, f) for four different grids for 

the sudden cooling boundary condition. 

 

Figure 4.3 plots the time series of the temperature at a point, E and the growth 

curves of the standard deviation of the temperature along a straight line which is 

parallel and very close (0.00121m far from the plate) to the plate for the sudden cooling 

boundary condition. The same unsteady calculation has also been performed for the 

case of ramp cooling boundary condition which is depicted in Figure 4.4. For both 

cases, instead of considering the straight line equal to the total length of the plate, we 
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choose to calculate the standard deviation in the middle portion (1/3 of the plate) of the 

plate to avoid the effect of two adiabatic end walls. Clearly, the predicted growth of the 

perturbation depends on the grid resolution. However, for the two finest grids (400×200 

and 600×300), the dependency of the onset time of instability on the grid resolution is 

weak, consistent with the results shown in Tables 4.3 and 4.4.  

 

 
Figure 4.4 Time series of temperature (a, c, e) at a point (0.6m, 0.00121m) and the 

growth of the standard deviation of the temperature (b, d, f) for four different grids for 

ramp cooling boundary condition. 
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The time series of the temperature in both Figures 4.3 and 4.4 initially fall 

together for four different grid sizes of each aspect ratio. At the time when the 

instability sets in, the dependency of the temperature on the grid is negligible. 

However, after the instability sets in the temperature depends strongly on the mesh 

which can be seen in both boundary conditions and for all aspect ratios. Since the 

purpose of this study is to predict the onset of instability rather than resolving the 

details of the instability, either of the 400×200 and 600×300 meshes can be adopted to 

reproduce the basic features of the flow. Hence, a mesh size of 400×200 will provide 

adequate resolution for the present analysis and has been adopted for subsequent 

calculations. 

 

4.4 Amplitude of the perturbation test  
Since the two ends of the plate are connected with two adiabatic walls, some end 

effects are inevitable. To avoid the end-wall effects, we have calculated the standard 

deviation along a line parallel to the plate in the middle portion of the plate (1/3rd of the 

total length) which is very close to the plate. An artificial perturbation has also been 

continuously applied in time on the cold inclined plate, which is defined by 

( )[ ]5.01,0randˆ −= εT (4.38) , 

where ε specifies the intensity of the perturbation (ε <<1); rand (0, 1) generates random 

numbers between 0 and 1. 

We first examine the system response to different perturbation amplitudes to 

ensure that the selected amplitude for this study is within the range in which the system 

response is linear. Three different values of the amplitude (ε = 0.5%, 1.0% and 2.0% 

respectively) are calculated for the case of Pr = 0.72 and Ra = 8.50×106.  
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Figure 4.5 Growth of the standard deviation of the temperature for different amplitude 

of perturbation source for Ra = 8.50×106. 

 

Figure 4.5 shows the calculated results with different amplitudes of the 

perturbation source. The system response to perturbations, or the growth of 

perturbations, is indicated well by the time series of the standard deviation of 

temperature parallel to the plate. It is noted that the standard deviation is plotted on a 

logarithmic scale in this figure. As described by Lei and Patterson (2003a), each of the 

plots in Figure 4.5 can be divided into three regions in time: a constant-response region, 

an exponential-growth region, which is represented by the linearly increasing part of 

the curve, and a transitional region connecting the above two regions. In the constant-

response region, the perturbation is not amplified, suggesting that the flow, and in 

particular the inclined thermal boundary layer, is stable, and the system response 

echoes the random perturbation.  

The perturbation grows exponentially in the exponential-growth region with 

time, which is given by 
( )Bttc

DEV aeT −= , (4.39)

where TDEV is the standard deviation of temperature along the line parallel and very 

close to the plate, a is the amplitude, c is the growth rate and tB is the critical time for 

the onset of instability. The growth rate c then corresponds to the slope of the linearly 

increasing part in Figure 4.5, which can be determined accordingly. The critical time, t

B

B 

for the onset of the instability has been determined in Figure 4.5 as the intersection 

point between the constant-response curve and the exponential-growth curve (see Lei 

and Patterson 2003a). Note that the critical time is independent of the amplitude of the 

perturbation source. 
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In summary, within the range of parameters examined here, the variation of the 

perturbation amplitude does not change the stability properties of the flow (e.g. the 

critical time for the onset of instability), and the system response to perturbations is 

linear. Subsequent calculations will be conducted with a fixed perturbation amplitude 

of ε = 1.0%. 

 

4.5 Effect of plate length on transient flow  
Figure 4.6 shows the temperature contours of inclined plates of three different lengths 

at the time 1000s for A = 0.1. The length of the plate of Figure 4.6(a) is 5.4m, (b) is 

10.8m and (c) is 16.2m. All the physical fluid properties were kept the same for three 

geometries except the physical length of the plate. The Rayleigh numbers for (a), (b) 

and (c) are 7.74×104, 6.20×105 and 2.10×106 respectively. We see that a cold thermal 

boundary layer has been developed adjacent to the plate. It is also observed that there is 

an end effect at the top right corner of the enclosure for all three geometries. However, 

the middle portion of the plate is unaffected by that end effect.        

 

 
Figure 4.6 Temperature contours of the inclined plate with three different plate 

lengths. 

  

Figure 4.7 shows the time series of the temperature at nine different positions 

along the plate which are taken at a distance of W/4 from the plate for A = 0.1. The 

length of the plate is 10.8m in Figure 4.7(a) and 16.2m in Figure 4.7(b). It is clear in 

Figure 4.7(a) that the onset of instability occurs almost at the same time (about at 
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1150s) at eight different positions. However, at the position 10L/12, which is the closest 

to the downstream region, the response is much earlier. This is due to the end effect. On 

the other hand, when the length is increased to 16.2m (see Figure 4.7b), the response of 

the onset of instability is at the same time at all nine different positions.  

        

 

 
Figure 4.7 Time series of the temperature at different position of the plates of two 

different lengths which are W/4 distance far from the plate.  

 

Time series of the temperature at the mid position of the plate and W/4 away 

from the plate obtained with the three different lengths of the plate are shown in Figure 

4.8. It is noticed that the onset of instability for three different lengths is at the same 

time. However, for the smallest plate the response after the onset of instability is 

different from the other two. This may be attributed to the random nature of the 

instability in the form of sinking plumes which may happen at a random location. It is 

interesting to see that the time series of the temperature for the three different plate 

lengths fall together until the instability is set in. The reason for this can be explained 

by the scaling relations of transient velocity (4.1) and the unsteady thermal layer 

thickness (δT ∼ κ1/2 1/2t ), both of which are length independent.      
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Figure 4.8 Time series of the temperature at the mid position of the plate and W/4 

away from the plate. 

  

Figure 4.9 shows the velocity profiles and the temperature profiles along the 

line perpendicular to the plate at midpoints for the three different plate lengths at the 

time t = 1000s. This is the time just before the instability sets in. It is seen in Figure 

4.9(a) that the velocity profiles for the three different plate lengths fall almost onto a 

single profile which proves that the unsteady velocity does not depend on the plate 

length and confirms the scaling relation (4.1). The corresponding temperature profiles 

also fall onto a single profile as the thermal layer thickness increases according to 

κ1/2 1/2t  at the transient stage. Therefore it does not depend on the plate length.      

  

 
Figure 4.9 (a) velocity profiles and (b) temperature profiles along the line 

perpendicular to the plate at midpoints at time t = 1000s.  
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The time series of the thermal layer thickness at the mid position of two plates 

of different lengths are shown in Figure 4.10(a). The thickness has been calculated at 

the mid position of the plates as the distance from the plate to the position where the 

fluid temperature reaches 0.2(T  - Th c)/ΔT. In Figure 4.10(b), the thickness is plotted 

with respect to t1/2. Two lines initially fall together and make straight line which 

confirms the scaling relation δT ∼ κ1/2t1/2. However, at about 1150s, the instability sets 

in for both plates. 

 

 
Figure 4.10 Time series of the thermal layer thickness at the mid position of the plates 

of two different lengths.  

 

Temperature profiles at two different times are obtained with the 16.2-m long 

plate along five different perpendicular lines to the plate and depicted in Figure 4.11. 

Figure 4.11(a) represents the temperature profiles at t = 600s and Figure 4.11(b) shows 

the temperature profiles at t = 1000s. Both times are before the onset of instability. It is 

seen in both curves that all profiles at five different positions fall onto a single curve. 

Therefore, the thickness of the thermal layer is independent of the location along the 

plate.  

 

78 



Chapter 4 

 
Figure 4.11 Temperature profiles at two different times of the plate (length = 16.2m) 

calculated along five different lines which are perpendicular to the plate. 

 
 

4.6 Flow development in different regimes 
for sudden cooling  
4.6.1 Conduction regime  

Figure 4.12 presents the numerical results of a representative case in this low-

Rayleigh number regime, Ra < (1+Pr)(1+A2)/(PrA2) with Pr = 0.72, Ra = 50 and A = 

0.1. The temperature contours and streamlines are plotted in Figures 4.12(a) and 

4.12(b), respectively at time t/ts = 0.7. The thermal boundary layer expands and exceeds 

the width of the domain and the steady state solution can not be reached. Since it is a 

closed domain with three adiabatic sides, the whole domain cools down with time. The 

streamlines typically show a single closed cell structure as it is a closed domain.  

Figure 4.12 (a) Temperature contours  and (b) streamlines  for Ra = 50, Pr = 0.72 and A 

= 0.1 at t/ts = 0.7 . 
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4.6.2 Stable convection regime 
Figure 4.13 presents the numerical results of a representative case in this flow regime, 

(1+Pr)(1+A2)/(A2Pr) < Ra < (Pr3A6Rac
4)(1+Pr)− −3(1+A2 3)  with Pr = 0.72, Ra = 8.5 × 

102 and A = 0.1 at t = t/ts= 1.02. Temperature contours are presented in Figures 4.13(a) 

and streamlines are in 4.13(b). In the isotherms we see that near the two ends of the 

plate there are some end effects. This is because of the presence of the two adiabatic 

walls at the ends of the plate. However, the middle portion of the plate is not affected 

by the end effects.    

 
Figure 4.13 (a) Temperature contours and (b) streamlines for Ra = 8.5 × 102, Pr = 

0.72 and A = 0.1 at t/ts= 1.02. 

 

4.6.3 Unstable convection regime 
− −This regime, Ra > (Pr3A6Rac

4 3)(1+Pr) (1+A2 3)  is characterized by the presence of the 

Rayleigh Bénard instability in the form of sinking plumes. Figure 4.14 represents the 

isotherms and the streamlines for Pr = 0.72, Ra = 1.70×107 and A = 0.1 at time t/ts = 

1.22 and t/tB = 2.88 to demonstrate the features of this flow regime. In this regime, the 

boundary layer becomes unstable and forms sinking plumes adjacent to the cold plate 

before the steady state of the thermal boundary layer.  

B
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Figure 4.14 (a) Temperature contours and (b) streamlines for Ra = 1.7×107, Pr = 0.72 and 

A = 0.1 at t/ts= 1.22. 

 
 
 

4.7 Flow development in different regimes 
for ramp cooling  
4.7.1 Ramp time shorter than steady state time 
Figure 4.15 shows the temperature contours and the streamlines (Regime 1) for Pr = 

0.72, Ra = 10 and A = 0.1 at time t/ts = 0.22, where tp/ts = 4.35×10-3. Figures 4.15(a) 

presents the temperature contours and Figure 4.15(b) presents the corresponding 

streamlines. In this regime the steady state time is longer than the ramp time. Therefore, 

the boundary layer grows according to the scale κ1/2 1/2t  even after the ramp is finished. 

The thermal boundary layer expands and exceeds the length of the plate with time 

before the steady state of the boundary layer is reached. Since it is a closed domain with 

three adiabatic sides, the whole domain cools down with time. The streamlines 

typically show a single closed cell structure as it is a closed domain.  
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Figure 4.15 (a) Temperature contours and (b) streamlines for Ra = 10, Pr = 0.72 and A 

= 0.1 at t/ts = 0.22. 

 

Figure 4.16 represents the temperature contours and the streamlines for (Regime 

2) Pr = 0.72, Ra = 8.5×104 and A = 0.1 at time t/ts = 2.04, where t /tp s = 0.58. Figures 

4.15(a) presents the temperature contours and Figure 4.15(b) presents the 

corresponding streamlines. In this regime the thermal boundary layer becomes unstable 

to the Rayleigh-Bénard instability after the ramp is finished. The corresponding 

streamlines show a number of convective cells near the cooled plate. Since the two ends 

of the domain are not open, one larger cell forms inside the domain.    

 

 
Figure 4.16 (a) Temperature contours and (b) streamlines for Ra = 8.5×104, Pr = 0.72 

and A = 0.1 at t/ts = 2.04. 

 

The numerical results for Regime 3 are presented in Figure 4.17. Figure 4.17 

shows the temperature contours and the streamlines for Pr = 0.72, Ra = 3.40×105 and A 

= 0.1 at time t/ts = 2.33, where tp/ts = 0.81. The temperature contours and the 

corresponding streamlines are shown in Figures 4.17(a) and (b) respectively. In this 
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regime the instability sets in before the ramp is finished which is seen in the 

temperature contours. The corresponding streamlines show a number of convective 

cells near the cooled plate. Two larger cells appear inside the domain as two ends of the 

domain are adiabatic.    

 

Figure 4.17 (a) Temperature contours and (b) streamlines for Ra = 3.40×105, Pr = 0.72 

and A = 0.1 at t/ts = 2.33. 

 
 
 
4.7.2 Ramp time longer than the quasi-steady time 

3A representative case in Regime 4 has been chosen as Ra = 2.00×10 , Pr = 0.72, A = 

0.1, and t /tp s = 1.05. The temperature contours and streamlines are shown in Figure 4.18 

for the above mentioned case at t/tsr = 1.05. In this regime the flow is stable to the 

Rayleigh-Bénard instability until the ramp is finished. The boundary layer reaches a 

quasi-steady state prior to the completion of the ramp time. Since two ends of the plate 

have adiabatic walls, the boundary layer has an end effect (see Figure 4.18a). However, 

the middle portion of the boundary layer is unaffected. The corresponding streamlines 

show a big cell inside the enclosure (Figure 4.18b) with two small cells near two ends 

of the plate.  
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Figure 4.18 (a) Temperature contours and (b) streamlines for Ra = 2.00×103, Pr = 0.72 

and A = 0.1 at t/t  = 1.05. sr

 

The representative case in Regime 5 is chosen as Ra = 1.35×106, Pr = 0.72, A = 

0.1, and t /tp s = 1.76. The temperature contours and streamlines are shown in Figure 4.19 

for the above mentioned case at t/tsr = 1.5. In this regime the flow is stable initially and 

reaches to the quasi-steady state time. However, in the temperature contour (see Figure 

4.19a) it is seen that the boundary layer becomes unstable in the quasi-steady mode as 

the plate is still cooling in the quasi-steady mode until the ramp is finished. The 

convective cells due to the Rayleigh-Bénard instability can be seen in the 

corresponding streamlines (Figure 4.19b).  

 

Figure 4.19 (a) Temperature contours and (b) streamlines for Ra = 1.35×106, Pr = 0.72 

and A = 0.1 at t/tsr = 1.5. 

 

On the other hand, the instability may set in before the flow becomes quasi-

steady (Regime 6). Figure 4.20 represents the numerical results in this sub-regime at 
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t/tsr =  0.81 for a case with t /tp sr = 4.10. The isotherms and streamlines for Ra = 

1.70×107 and A = 0.1 with Pr = 0.72 are depicted in Figure 4.20(a) and 4.20(b) 

respectively. This regime is characterized by the presence of convective instability at 

the early stage of the flow development in a form of sinking plumes, as can be observed 

in Figure 4.20.  

 

 

Figure 4.20 (a) Temperature contours and (b) streamlines for Ra = 1.70×107, Pr = 0.72 

and A = 0.1 at t/t  = 0.81. sr

 
4.8 Validation of selected scales 
4.8.1 Sudden cooling 

A total of 13 simulations have been performed to verify the scaling relations. 

These are listed in Table 4.6. Three aspect ratios, A = 0.1, 0.2 and 0.5 are considered to 

show the aspect ratio dependency of the scaling. For the aspect ratio A = 0.1, Rayleigh 

numbers in the range of 3.40×103 7 < Ra < 1.70×10  are selected to verify the Rayleigh 

number dependency. For all simulations the Prandtl number has been fixed at 0.72 (air).  

 The flow velocity parallel to the inclined plate has been recorded at several 

locations along a line perpendicular to the plate at the mid point to obtain the velocity 

profile along that line.  From this velocity profile, the maximum parallel velocity, us has 

been calculated and is used to verify the velocity scale relation. 
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Table 4.6 Values of A, and Ra for 13 runs. 

Regimes A Ra Runs  
71 0.1 1.70×10
62 0.1 2.81×10
63 0.1 1.70×10
54 0.1 1.70×10
55 0.1 1.35×10
46 0.1 8.50×10 Unstable convection
47 0.1 3.40×10
48 0.1 1.70×10
49 0.1 1.35×10

10 0.2 1.30×108

11 0.5 1.54×108

Stable convection 12 0.1 8.50×102

Conduction 13 0.1 50 
 

As soon as a cold temperature boundary condition is applied to the plate, a cold 

boundary layer starts to develop adjacent to the inclined plate. This boundary layer is 

potentially unstable to Rayleigh-Bénard instability if the Rayleigh number is higher 

than the critical Rayleigh number.   

 

 
Figure 4.21 Normalised unsteady velocity against normalised time. 
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The unsteady velocity scale (4.1) is verified in Figure 4.21. The maximum 

velocity parallel to the surface has been calculated from the numerical simulation for 

different parameters considered here. Relatively smaller Rayleigh numbers have been 

chosen to verify the unsteady velocity scale to avoid complication caused by the 

instability in the early stage (runs 6 – 9). It is seen that all of the plots for different 

Rayleigh numbers lie together initially, forming a straight line through the origin, 

indicating that the scaling relation for the unsteady velocity (4.1) is valid for the cooling 

boundary layer. As we have seen for the case of sudden heating, this scaling is valid 

until the steady-state of the boundary layer is reached. However, in the selected 

Rayleigh number cases the flow is unstable to the Rayleigh-Bénard instability since the 

Rayleigh numbers are higher than the critical value corresponding to the aspect ratio. 

The deviation of the curves from the straight line in Figure 4.21 indicates the onset of 

instability.  
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Figure 4.22 Numerically obtained onset time of instability against corresponding 

scaling values, for 11 runs; Solid line, linear fit. 

  

For the sudden cooling boundary condition, as soon as the plate starts to cool, a 

cold boundary layer develops adjacent to the plate which is potentially unstable to the 

Rayleigh-Bénard instability. We calculate the onset time of instability for different 

Rayleigh numbers from the numerical simulations and compare it with the scaling 

results which have been depicted in Figure 4.22. The critical time, tB for the onset of the 

instability from the numerical simulation has been determined as the intersection point 

B
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between the constant-response curve and the exponential-growth curve of the time 

series of standard deviation of the temperature which is shown previously in Figure 4.5. 

It is found that all calculated results fall onto a straight line. Therefore, the numerical 

results verify the scaling prediction (4.10). 

 

4.8.2 Ramp cooling 
Fourteen simulations of different Rayleigh numbers and aspect ratios with a fixed 

Prandtl number, which are shown in Table 4.7, have been performed to verify the 

scaling relations for different flow regimes under the ramp cooling condition. Based on 

the onset time of instability at different stages of flow development, there are four 

possible flow regimes. Runs 1-7 falls in the regime when the instability sets in before 

the quasi-steady state of the boundary layer is reached (t  < tB1 sr). Runs 8-10 falls into 

the regime when the instability sets in after the quasi-steady state but before the ramp is 

finished (t  < t  < tsr B2 p). Run 14 falls in the regime where the instability sets in before the 

ramp is finished in which the steady-state time is longer than the ramp time and runs 

11-13 are in the regime when the instability sets after the ramp is finished (t  > tB3 p) for 

the case when the steady-state time is longer than the ramp time. For all the simulations 

the ramp time has been chosen to be 20s.  

 

Table 4.7 Values of A, and Ra for 14 runs. 

A Ra Regimes Runs  
81 0.1 1.70×10
72 0.1 8.50×10
73 0.1 3.40×10
74 0.1 1.70×10 Regime 6 
75 0.1 1.35×10
66 0.1 8.50×10
87 0.2 1.30×10
68 0.1 2.88×10
69 0.1 2.35×10 Regime 5 

10 0.1 1.70×106

11 0.1 1.70×105

12 0.1 1.35×105 Regime 2 
13 0.1 8.50×104

14 0.5 1.54×108 Regime 3 
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 Similarly to the sudden cooling case, the velocity parallel to the plate has been 

recorded at several locations along a line perpendicular to the plate at the mid point to 

obtain the velocity profile along that line.  The maximum velocity parallel to the plate, 

us, is then calculated from the velocity profiles and used to verify the velocity scale 

relation. 

 The unsteady velocity scale (4.15) for ramp cooling boundary condition is 

verified in Figure 4.23. The maximum velocity parallel to the surface has been 

calculated from the numerical simulation for different parameters considered here. 

Relatively smaller Rayleigh numbers have been chosen to verify the unsteady velocity 

scale to avoid complication caused by the instability in the early stage. It is seen that all 

the plots for different Rayleigh numbers lie together initially, forming a straight line 

through the origin until the instability sets in for some Rayleigh numbers. This indicates 

that the scaling relation for unsteady velocity (4.15) is valid. Like the heating case 

(Chapter 3), this velocity scale is valid until the conduction and convection balance in 

the energy equation, provided that the flow remains stable for the cooling case. 

However, the flow for the cooling case is potentially unstable to the Rayleigh-Bénard 

instability if the Rayleigh number exceeds a critical value. The deviation of the curves 

from the straight line in Figure 4.23 indicates the onset of instability.  

 

 
Figure 4.23 Normalised unsteady velocity against normalised time.  

  

Figure 4.24 shows the comparison of the calculated critical time from the 

numerical simulation with the predicted critical time from the scaling analysis for 

different flow regimes. There are four possible scenarios based on the comparison of 
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three time scales, namely steady-state time, ramp time and the onset of instability time 

(see Regimes 2, 3, 5 and 6 in Table 4.1 and 4.2).  
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Figure 4.24 Numerically obtained onset time of instability against corresponding 

scaling values, for all runs. (a) t  < t , (b) tB1 sr sr < t  < t , (c) t  > t . B2 p B3 p

 

Figure 4.24(a) shows the comparison of the calculated and predicted critical 

times in the case with the onset time shorter than the quasi-steady state time, which is 

shorter than the ramp time. This figure also includes the onset time of instability for the 

third scenario mention above (run 14). It is found in the figure that all values for 

different Rayleigh numbers and aspect ratios with a fixed Prandtl number fall onto a 

single straight line with the same order of magnitude. Therefore, the scaling relation 

(4.26) is verified. The second regime in which the instability sets in after the quasi-

steady state has been shown in Figure 4.24(b). Again all results fall on a straight line 
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which confirms the scaling relation (4.28). Finally, the regime in which the instability 

sets in after the ramp is finished for the case with the steady state time longer than the 

ramp time is shown in Figure 4.24(c). Once again, all solutions fall onto a straight line. 

Therefore, the scale relation (4.30) is verified.  

 

4.9 Summary 
Natural convection adjacent to a cooled inclined flat plate is examined by scaling 

analysis and verified by numerical simulation for air (Pr = 0.72). Two types of cooling 

boundary condition are considered; sudden cooling and ramp cooling. For the sudden 

cooling boundary condition, as soon as the cold temperature is applied to the inclined 

plate, a cold boundary layer is formed. This boundary layer is potentially unstable to 

Rayleigh-Bénard instability. The scaling relations are formed based on the established 

characteristic flow parameters of the maximum velocity inside the boundary layer (us), 

the time for the boundary layer to reach the steady state (ts), the thermal (δT ) and 

viscous (δν) boundary layer thicknesses, and the onset time of instability (tB).  Through 

comparisons of these scaling predictions with the numerical simulations, it is found that 

the scaling relations agree very well with the numerical simulations. Hence the 

numerical results have confirmed the scaling relations which characterize the transient 

flow development under the sudden cooling condition. 

B

Under the ramp cooling condition, the development of the boundary layer flow 

depends on the comparison of the time at which the ramp cooling is completed with the 

time at which the boundary layer completes its growth. As we know that the cold 

boundary layer is potentially unstable to the Rayleigh-Bénard instability, the instability 

may occur in different regimes, based on the global Rayleigh number. The instability 

may set in before the quasi-steady time, after the quasi-steady time or after the ramp is 

finished. Several scaling relations have been established in this case, which include the 

maximum velocity parallel to the inclined plate inside the boundary layer (usr), the time 

for the boundary layer to reach the quasi-steady state (tsr), the thermal and viscous 

boundary layer thicknesses (δ  and δTr ν) for both quasi-steady and steady state modes, 

and the onset time of instability for four different regimes. The comparisons between 

the scaling relations and the numerical simulations demonstrate that the scaling results 

agree very well with the numerical simulations.  
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5 Natural convection in attics 
subject to sudden and ramp heating 
boundary conditions    
The objective of this chapter is to understand the phenomenon of thermal convection in 

an attic or a wedge-shaped space, filled with a Newtonian fluid. The phenomenon of 

natural convection in spaces with perfectly parallel horizontal and vertical surfaces has 

received considerable attention because of its fundamental importance in geophysical 

fluid mechanics, solar-engineering applications, heat exchangers, buildings and 

thermal-insulation systems (see Ostrach 1972; Catton Catton 1979). The attic or wedge 

geometry is of equal importance in all these applications, however, much less attention 

has been given to this geometry. 

In this chapter, we investigate the fluid dynamics in the attic space, focusing on 

its transient response to sudden changes of temperature along two inclined walls. The 

transient behaviour of an attic space is relevant to our daily life. Certain periods of the 

day or night may be considered as having a constant ambient temperature (e.g. during 

11am - 2pm or 11pm - 2am). However, at other times during the day or night the 

ambient temperature changes with time (e.g. between 5am - 9am or 5pm - 9pm). Based 

on these natural scenarios, we consider two cases in this chapter: one with sudden 

heating on the roof of the attic and the other with ramp heating under which the 

temperature on the roof follows a ramp function up until a specified temperature and 

then remains constant. A theoretical understanding of the transient behaviour of the 

flow in the enclosure is most valuable in a fundamental sense. Proper identification of 

the timescales relevant to various flow features that develop inside the cavity makes it 

possible to predict theoretically the basic flow features that will survive once the 

thermal flow in the enclosure reaches steady state.  

The transient development of the flow in the attic space is described using 

scaling analysis for sudden heating as well as ramp heating boundary conditions in this 

chapter. These draw on the results of previous chapters. A time scale for the heating-up 

of the whole cavity together with the heat transfer through the inclined walls has also 

been predicted through scaling analysis. The scaling results have been verified with a 
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series of numerical simulation. Details of the numerical procedure can be found in 

Chapter 2. However, grid and time step dependence tests specific to the cases of sudden 

and ramp heating of an attic space are described in this chapter.  

Under consideration is a triangular cavity of height h, half length of the base l, 

containing a Newtonian fluid with Pr < 1 which is initially at rest with a temperature 

Tc. At the time t = 0, two possible heating boundary conditions are considered on the 

inclined walls: sudden heating to a specified temperature which is then maintained; and 

heating by a linearly increasing temperature to a specified temperature over some time 

(the ramp time) after which the temperature is maintained (the ramp function). The 

ramp function is described in Chapter 3 (eqn 3.11). In order to avoid the singularities (if 

there is any) at the tips in the numerical simulation, the tips are cut off by 5% and at the 

cutting points (refer to Figure 5.1) rigid non-slip and adiabatic vertical walls are 

assumed. We anticipate that this modification of the geometry will not alter the overall 

flow development significantly. 
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Figure 5.1 The schematic of the geometry and the coordinate system of h/l = 0.5. 

 

5.1 Overview of the transient flow 
As mentioned earlier, this chapter deals with two types of thermal boundary conditions 

applied to the inclined walls of an attic space. The first case is the sudden heating 

boundary condition. In this case, both inclined walls of the attic are suddenly heated to 

a temperature T , with , where Tch TT >h c is the initial fluid temperature inside the 

enclosure.  
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Figure 5.2 Time series of the temperature at D for A = 0.5 and Ra = 1.5×107. 

 
 Figure 5.2 shows a typical time series of temperature at the point D (marked in 

the enclosure) for A = 0.5 which is very close to the left inclined surface. Since the 

inclined wall (roof) is hot and the ambient is relatively cold, the flow is laminar and 

stable as long as the Rayleigh number is not too large. As a consequence, a stable 

thermal boundary layer develops adjacent to the hot inclined wall and continues to 

grow with time. The overall flow development in this case may be classified as: an 

initial stage, a transitional (overshoot) stage and a steady state stage of the boundary 

layer and a heating-up stage of the cavity. Since the bottom surface of the attic is 

adiabatic, the fluid inside the attic space will be heated up with time when the ‘return 

flow’ from the top reaches to the bottom surface. The detailed flow phenomena of these 

stages will be discussed in the scaling section.  

The natural convection boundary layer adjacent to the inclined wall of an attic 

space subject to a ramp heating boundary condition is considered in the second case. 

Similarly, the overall flow development for this case may be characterized as: an early 

stage, a quasi-steady stage, a steady state stage of the thermal boundary layer, and a 

heating up stage of the cavity, all of which can be clearly identified in Figure 5.3. The 

boundary layer flow depends on the comparison of the time at which the ramp heating 

is completed and the time at which the thermal boundary layer completes its growth.  

If the ramp time is longer than the steady state time, the boundary layer reaches 

a quasi-steady mode before the ramp finishes (see Figure 5.3). On the other hand, if the 

ramp is completed before the boundary layer becomes steady, the subsequent growth is 

the same as the case of instantaneous heating. It is noted that different stages for the 
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boundary layer development adjacent to an inclined plate have been shown in Chapter 

3. However, heating-up stages in the attic space has been identified from the time series 

of temperature for both boundary conditions here in addition to other stages.  

 

 
Figure 5.3 Time series of the temperature at the point, D for A = 1.0 and Ra = 3.0×106. 

 

In the following sections, the details of the scaling analyses of the flow 

development, grid and time step dependency tests and the numerical verification of the 

scaling relations will be presented. The major findings are summarised at the end of this 

chapter.     

 

5.2 Scaling analysis for sudden heating 
In this section we focus on the flow which is dominated by two distinct stages of 

development, i.e. a boundary-layer development stage and a heating-up stage. The 

boundary layer development stage is the early stage of the flow development and the 

heating up stage is the stage when the cavity is filled with hot fluid.   

The scaling results of the boundary layer development adjacent to the sloping 

walls of the attic space are identical to those obtained in Chapter 3 for the case of a 

heated inclined flat plate. Initially the thermal boundary layer adjacent to the sloping 

wall grows according to δT ~κ1/2 1/2t . We see in Chapter 3 for the case of sudden heating 

boundary condition on the inclined flat plate that the transient velocity scale inside the 

boundary layer is given by (3.3) and is rewritten as 
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and the steady state time, thickness and velocity scales from (3.5), (3.6) and (3.7) are 

respectively given by  
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In addition to these scaling results the scaling for heat transfer through the inclined wall 

of the attic space at the steady state time, in the form of a Nusselt number, have been 

developed as follows 

 

5.2.1 Heat transfer scales 
 The instantaneous local Nusselt number during the boundary-layer development 

stage can be calculated as 

.~~~~ 2/12/1 t
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T
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h
T
y
T

Nu
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×
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∂

(5.5)  

Using (3.5), the average steady-state Nusselt number for the boundary layer is given by 

( ) ( )
.

11
~1~ 4/124/1

4/14/12/1

0 APr
PrRaANudx

L
Nu

L

s
++

∫  (5.6) 

 

5.2.2 Heating up stage 
Once the boundary layer is fully developed, the interior of the enclosure is gradually 

stratified by the hot fluid ejected from the boundary layer, starting from the top of the 

cavity, and this heating-up stage continues until the hot fluid layer from the top reaches 

the bottom surface. The appropriate parameters to characterize this heating-up stage are 
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the time, tf for the fluid to be fully heated-up and the average Nusselt number on the 

heated wall. 

Let us consider an arbitrary moment, t during the heating-up stage. At this 

moment, the fluid inside the enclosure can be assumed to consist of two layers with the 

location x = xi as the interface. The bottom layer is at the original temperature, Tc 

whereas the top layer is filled with the hot fluid discharged from the thermal boundary 

layer, the temperature of which is assumed to be the same as the wall temperature T .  h

 

A′ 

B′ 
C 

D E 
xi 

L-xi 

hi 

h-hi

l  
Figure 5.4 Schematic of heating-up process for sudden heating. 

 
 

From ΔA′B′C and ΔA′DE in Figure 5.4, we have, 
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Therefore  
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Suppose the total volume of the enclosure ABC is  

lhV
2
1

total = . (5.10)

During the transient time the volume filed by the hot fluid is  

, sTs tuV δ~steady (5.11)

which gives 
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It is estimated that the maximum ratio of the volume filled by hot fluid during 

the transient stage (from start-up to the steady state time) to the total volume of the 

enclosure is less than 0.095 over the ranges of Ra, A and other parameters considered 

here. Therefore, the filled volume at the transient stage is insignificant compared to the 

total volume and is neglected below. 

From the mass conservation law 
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  Now applying (3.6) and (3.7) in (5.14) we have, 
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The time when the whole enclosure is filled with hot fluid (xi ~ 0) is obtained as 
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Since only the lower part of the sloping wall contributes to the heat transfer at any 

given time, it is apparent from (5.2) that the instantaneous global Nusselt number, Nu at 

the heating up stage is,  
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L
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Applying (5.15) and (5.16) in (5.17), we have 
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5.3 Scaling analysis for ramp heating 
For the case with the ramp heating temperature boundary condition, a set of scaling 

results has been produced in Chapter 3 for an inclined thermal boundary layer. As soon 

as the heating boundary condition applied on the inclined wall, a thermal boundary 

layer starts to develop with the scale κ1/2 1/2t . The transient velocity scale inside the 

boundary layer is given from (3.13) by  
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This scale is valid until the quasi-steady time if the ramp time is larger than the quasi-

steady time or until the ramp is finished if the ramp time is shorter than the steady state 

time.  

 It is found in Chapter 3 for the case of inclined flat plate that the steady state 

scales for the ramp heating boundary condition of time, velocity and the boundary layer 

thickness are exactly the same as those for the sudden heating boundary condition if the 

ramp time is shorter than the steady state time. However, if the ramp time is longer than 

the quasi-steady time, then the quasi-steady time, the thermal layer thickness and 

velocity scales from (3.15), (3.17) and (3.18) are given respectively by 

( ) ( ) ,
/

11~
23/1

23/13/2

3/123/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
κκ
h

h
t

PrRaA
APrt p

1/3sr  (5.20)

( ) ( )
( )

,
/

11~
6/1

26/13/1

6/126/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
κ

δ
h

t

PrRaA
APrh p

Tr  (5.21)
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 After the quasi-steady time the thermal boundary layer develops according to 

the scale in the quasi-steady mode (from 3.20) 
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and the velocity grows according to the scale from (3.21) 
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These two scales are valid until the ramp is finished. After the ramp is finished the 

boundary layer does not know that it comes from a ramp function. Note that the details 

of the development of these scales are described in Chapter 3.   

  In addition of those, for the attic space, a heat transfer scaling at different times 

of boundary layer development in a form of a Nusselt number has been developed as 

follows:   

5.3.1 Heat transfer scaling for ramp heating 
Since initially the temperature on the inclined wall is changing with time, the 

temperature difference between the wall and the interior is also changing with time up 

to the time when the ramp is finished. Therefore, the temperature difference is constant 

(maximum) after the ramp is finished. We may consider the maximum temperature 

difference or the transient temperature difference in the Nusselt number definition. 

Firstly, if we consider the temperature difference, ΔT as the maximum then the local 

Nusselt number on the inclined surface during the boundary-layer development stage is 
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Using (3.15), the average quasi-steady state Nusselt for the whole boundary layer is 

given by 
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After the quasi-steady state time, the boundary layer does not grow as κ1/2t1/2. It grows 

according to the scale (3.20). Therefore, the Nusselt number at the quasi-steady state 

mode is 
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However, if we consider the instantaneous temperature difference then the local 

Nusselt number on the inclined surface during the boundary-layer development stage is 
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At the quasi-steady state time predicted by (3.15), the local Nusselt number is  
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Similarly to (5.27), we may derive the Nusselt number at the quasi-steady state mode as 
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5.3.2 Heating up scale of the entire cavity 
Similar to the sudden heating case, once the boundary layer is fully developed by the 

ramp heating boundary condition, the fluid in the enclosure is gradually stratified by the 

hot fluid ejected from the boundary layer, starting from the top of the cavity, and this 

heating up stage continues until the whole body of fluid has the same temperature as 

that imposed on the incline walls of the attic space. The appropriate parameters 

characterizing this heating up stage are the time, tf for the fluid to be fully heated up and 

the average Nusselt number on the heating wall. 

Let us consider an arbitrary moment t during the heating up stage. At that 

moment, the fluid inside the enclosure is assumed to consist of two layers with the 

location x = xi as the interface. The bottom layer is at the original temperature, Tc, 

whereas the top layer is at the wall temperature T .  h

A′ 

B′ 
C 

D E xi 

L-xi 

hi

h-hi 

l

x1 

 
Figure 5.5 Schematic of heating-up process for ramp heating. 

 

The total volume of the enclosure A′B′C is (Figure 5.5)  
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lhV
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During the transient time the volume filled by the hot fluid is  
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The ratio of the above two volumes is 
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The maximum ratio of the volume filled with hot fluid at the transient stage  to 

the total volume of the cavity is less than 0.08 for the ranges of Ra, A and other 

parameters considered here. Therefore, the quasi-steady time can be ignored for the 

calculation of the filling box time. 

Suppose the ramp is finished when the interface is at x = x1 measured from A, 

for the case when the ramp time is longer than the quasi-steady time (t  > tp sr). Let us 

calculate the volume of the hot portion filled by the time t = tp. The volume of the 

heated portion is  
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The flux at the time t = t  is  p
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Therefore, the volume, V  is filled up with hot fluid by the time t = tp1 . The rest 

of the volume will be filled up after the ramp is finished. At t = tp the thermal boundary 

layer thickness and the velocity scales from (5.23) and (5.24) respectively are  
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The rest of the volume after ramp is finished is  
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Again from the mass conservation law we have 
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Applying (5.38) and (5.39) we have, 
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Recognizing that for t = tr, xi = 0, therefore,  
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where L = (h/A)(1+A2)1/2

However, if the enclosure is heated up before the ramp is finished then  
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Applying (5.22) and (5.21) we have, 
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And the heating-up time is then given by 
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It is apparent from (5.26) that the instantaneous Nusselt number, Nu at the heating up 

stage is 
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Using (5.42) and (5.43), we have 
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 is the Nusselt number at the time, t = twhere Nup p
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In the following sections, the above scaling relations are validated against the 

numerical simulation. However grid and the time step dependence tests must first be 

performed to ensure the accuracy of the numerical results. Two-dimensional numerical 

simulations have been carried out in this study. For this purpose, an isosceles triangular 

domain is considered, and a Cartesian coordinate system is adopted, which is shown in 

Figure 5.1.    

 

5.4 Grid and time step dependence test  
An accurate and reliable numerical result depends on the resolution and distribution of 

the meshes inside the computational domain. In some regions in the domain we may 

need to distribute a significant number of meshes in order to resolve true physical flow 

features (e.g boundary layers). The results may be inaccurate if the mesh is not 

distributed properly or the number of mesh nodes inside the domain is insufficient. 

Unfortunately, it is difficult to accurately determine the locations of significance before 

the calculation is actually carried out, however we may use our previous knowledge to 

locate the regions of large flow gradients. Although an increase in the grid resolution 

will generally increase the numerical accuracy, it also increases the usage of computing 

resources for both calculation and post-processing. Therefore, it is necessary to 

compromise between the numerical accuracy and computing efficiency when 

considering the grid used for the simulations. 

 Since the thermal boundary layer develops adjacent to the inclined heated walls 

of the attic space and the gradients of all parameters are very strong near the two 

bottom tips, finer meshes need to be distributed near the walls and two bottom tips 

compared to other regions. An expansion factor may be adopted to distribute the non 
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uniform mesh. However, the expanding factor of grid is usually limited in order to 

ensure that the solution is not degraded. A factor of up to 10% may be used according 

to Patterson and Armfield (1990).     

Figure 5.6 A sample mesh showing the major features of the non-uniform symmetric 

meshes adopted in this study. 

   

The distribution of mesh has been shown for three different aspect ratios in 

Tables 5.1, 5.2 and 5.3. We divide the whole domain into two by the symmetry line. 

Then both left and right portions of the domain are again divided horizontally into three 

equal portions. The middle portion of the three sub region is mapped uniformly in the 

horizontal direction (see Figure 5.6), and the other two sub-regions are mapped non-

uniformly in the horizontal direction. The symmetry line is mapped non-uniformly in 

the vertical direction with finer meshes near the bottom and apex. However, a uniform 

mesh has been distributed vertically on two bottom tips (tips are cut by 5%). A 

schematic of grid distribution has been shown in Figure 5.6.   

The initial and boundary conditions for the numerical simulations are also 

specified as the air in the enclosure is initially motionless and isothermal with a 

uniform temperature of Tc. All the interior surfaces of the enclosure are assumed rigid 

and no slip. 

Table 5.1 Grid distribution for aspect ratio 1.0. 

In the horizontal direction  In the vertical direction  
Grid  Time 

step 
bottom 

tip  

symmetry 

line (EF)  
(H× L)  left(EF)  middle right(EF) 

180 × 60  28(1.030)  34 28(1.02) 60  40(1.030)  0.004 

270 × 90  42(1.025)  51 42(1.02) 90  60(1.025)  0.003 

360 × 120 56(1.020)  68 56(1.02) 120  80(1.020)  0.002 

540 × 180 84(1.016)  102 84(1.02) 180 120(1.016) 0.0015

  EF: Expansion factor; H: horizontal grid; L: vertical grid 
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Table 5.2 Grid distribution for aspect ratio 0.5. 

In the horizontal direction In the vertical direction 
Grid  Time bottom 

tip  

symmetry line 

(EF)  
(H× L)  step left(EF)  middle right(EF) 

160 × 40 25(1.030) 30 25(1.02) 40 40(1.030) 0.004 

240 × 60 38(1.025) 44 38(1.02) 60 60(1.025) 0.003 

320 × 80 50(1.020) 60 50(1.02) 80 80(1.020) 0.002 

480 × 120 75(1.016) 90 75(1.02) 120 120(1.016) 0.0015 

 

Table 5.3 Grid distribution for aspect ratio 0.2. 

In the horizontal direction In the vertical direction  
Grid Time 

step (H× L) 
left(EF)  middle  right(EF) bottom 

tip  

symmetry 

line (EF)  

180 × 45  30(1.030)  30 30(1.02) 45  45(1.030)  0.004 

280 × 70  45(1.025)  50 45(1.02) 70  70(1.025)  0.003 

360 × 90  60(1.020)  60 60(1.02) 90  90(1.020)  0.002 

560 × 140  95(1.016)  90 95(1.02) 140  140(1.016) 0.0015 

  

 Grid and time step dependence tests have been conducted for the numerical 

procedures described earlier for the highest Rayleigh number case for both boundary 

conditions (sudden heating and ramp heating). It is expected that the mesh selected for 

the highest Rayleigh number will also be applicable for all lower Rayleigh numbers. 

The time steps have been chosen in such a way that the CFL (Courant-Freidrich-Lewy) 

number remains the same for all meshes.   

Four different meshes for each aspect ratio, i.e. 180×60, 270×90, 360×120 and 

540×180 for A = 1.0, 160×40, 240×60, 320×90 and 480×120 for A = 0.5 and 180×45, 

280×70, 360×90 and 560×140 for A = 0.2 have been tested for the case of sudden 

heating boundary condition. 

The time histories of the calculated maximum velocity parallel to the sloping 

wall for different slopes with the four different meshes are plotted in Figure 5.7 for the 

case of the sudden heating boundary condition. It is seen in the figure that all solutions 

indicate three stages of the flow development, an initial growth stage, a transitional 
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stage and a steady state stage. In the initial and steady state stage, the four solutions 

follow each other closely (except for the solution with the coarsest mesh 160×40 for A 

= 0.5, which deviates slightly from the other three meshes in Figure 5.7(b). The 

transitional stage is characterized by a single overshoot. The time to reach the steady 

state is around 2.0s, 1.3s and 6.5s for A = 1.0, 0.5 and 0.1 respectively. The maximum 

variation of the velocity between the coarsest and finest meshes for A = 0.5 is 5.35%. 

However, the maximum variation among the other three finer meshes is only 1.18%. 

The maximum variations of the velocity between the coarsest and finest meshes for A = 

1.0 and 0.2 are 0.66% and 1.07% respectively. Accordingly, the mesh 320 × 90 for A = 

0.5 and 360× 120 and 360× 90 for aspect ratios A = 1.0 and 0.2 respectively are adopted 

for the present simulations. 

Mesh and time step dependence tests have also been conducted for the ramp 

heating boundary condition to ensure the accuracy of the numerical solutions. The same 

meshes as the sudden heating boundary condition have been considered here for three 

different aspect ratios. 

Figure 5.7 Maximum velocity parallel to the left inclined wall at its mid point of four 

different meshes for each A = 1.0, 0.5 and 0.2 and Pr = 0.72 for sudden heating. 
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Figure 5.8 Maximum velocity parallel to the left inclined wall at its mid point of four 

different meshes for each A  = 1.0, 0.5 and 0.2 and Pr = 0.72 for ramp heating. 

 

Figure 5.8 shows the time series of the maximum velocity parallel to the 

inclined surface calculated on the line normal to the surface at the mid point for three 

different aspect ratios under the ramp heating boundary condition for Pr = 0.72. These 

velocities are calculated with four different meshes for each aspect ratio. The ramp time 

has been set to 5s for all the cases. As is mentioned in the scaling analysis, the ramp 

time may be either longer or shorter than the steady state time for the boundary layer. If 

the ramp time is longer than the quasi-steady time, then after the quasi-steady time the 

velocity continues to increase as the inclined wall is still being heated. However, the 

growth rate of the velocity is smaller than the velocity during the earlier phase. It is 

seen in this figure that at about 1.8s, 2.75s and 3.8s for A = 1.0, 0.5 and 0.2 

respectively, the boundary layer becomes quasi-steady. However, the velocity still 

increases as the temperature on the wall is still increasing. At t = 5s, the ramp finishes 

and the boundary layer becomes completely steady. This scenario can be seen clearly 

for the inclined flat plate described in Chapter 3 (see Figure 3.4). However, as it is a 
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closed triangular domain, a return flow from the top breaks down the boundary layer as 

time passes.  

The maximum variation of the velocity between the coarsest and finest meshes 

for A = 1.0 is 1.78%. The maximum variations of the velocity between the coarsest and 

finest meshes for A = 0.5 and 0.2 are 5.78% and 2.55% respectively. However, the 

maximum variations among the three fine meshes are 1.29% and 0.75% for A=0.5 and 

0.2 respectively. Accordingly, the mesh size 360×120, 320×90 and 360×90 are adopted 

for A = 1.0, 0.5 and 0.2 respectively for the whole range of simulations. 

Four different time steps have been tested along with the four different meshes 

for each aspect ratio (see Table 5.1, 5.2 and 5.3). The time step size 0.002s has been 

adopted for simulation for both sudden heating and ramp heating boundary condition. 

With the selected meshes and time steps, the maximum CFL numbers are 0.013, 0.14 

and 0.14 for A = 0.2, 0.5 and 1.0 respectively at the steady stage.  

 

5.5 Flow development in different regime for 
sudden heating 

5.5.1 Conduction regime  
The numerical results for a low Rayleigh number have been shown in Figure 5.9 with 

Pr = 0.72, Ra = 10 and A = 0.5 for the regime Ra < (1+Pr)(1+A2)/(A2Pr). The 

temperature contours and streamlines at t/ts = 0.156 are plotted in Figures 5.9(a) and 

5.9(b), respectively. In this regime the thermal boundary layer expands to the entire 

domain. The minimum temperature in the domain is 298.94K. However, the initial 

temperature inside the domain was set to 295K. Therefore, the entire flow domain has 

been heated up and the thermal boundary layer is not distinct in this regime. Moreover, 

there is no steady state of the flow inside the cavity as it continues to be heated up as 

time passes and may become isothermal. There are two cells in the streamlines on both 

sides of the center line of the attic where the direction of the left cell is clockwise and 

the right cell is anti-clockwise. 
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Figure 5.9 (a) temperature contours and (b) streamlines with Pr = 0.72, Ra = 10 and 

A = 0.5. 

5.5.2 Convection regime 
The numerical results of a relatively high Rayleigh number for this regime with Pr = 

0.72, Ra = 3.0 × 106 and A = 0.5 at t/ts = 7.0 are given in Figure 5.10 for the regime Ra 

> (1+Pr)(1+A2)/(A2Pr). The temperature contours are presented in Figure 5.10(a) and 

the streamlines are presented in Figure 5.10(b). We notice that the convection increases 

significantly in this regime as the Rayleigh number increases. The steady state thermal 

boundary layers are distinct. The hot fluid travels through the boundary layers adjacent 

to both inclined walls and meet near the apex. The flow then has no other choice but to 

come downwards. However the interior temperature is lower than the temperature in 

the downward flow. Therefore, the hot fluid on top and the cold fluid in the interior 

form a horizontal stratification. This stratification process eventually heats up the entire 

cavity. 

 

 
Figure 5.10 (a) temperature contours and (b) streamlines with Pr =0.72, Ra = 3.0× 106 

and A = 0.5. 
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5.6 Flow development in different regime for 
ramp heating 

5.6.1 Ramp time shorter than steady time 
Figure 5.11 shows the temperature contours and the streamlines for Pr = 0.72, Ra = 5.0 

and A = 0.5 at time t/ts = 0.147 for the regime Ra < (1+Pr)(1+A2)h4/[A2Prκ2tp
2]. The 

ramp time for this case is tp/tsr = 3.68×10-3. Figures 5.11(a) presents the temperature 

contours and Figure 5.11(b) presents the corresponding streamlines. As soon as the 

heating starts the boundary layer develops and expands from the heated walls and 

reaches to the bottom surface. Two circular cells are seen in the streamlines (Figure 

5.11b) with a clockwise circulation at the left side and an anti-clockwise circulation at 

the right side. 

 
Figure 5.11 (a) temperature contours and (b) streamlines with Pr = 0.72, Ra = 5.0 and A 

= 0.5. 

5.6.2 Ramp time longer than steady time 
A representative Rayleigh number for this flow regime (Ra > 

(1+Pr)(1+A2)h4/[A2Prκ2 2t ]) has been chosen as Ra = 6.0×106
p .  The temperature 

contours and the stream lines have been shown in Figure 5.12 at different times of the 

boundary layer development for aspect ratio A = 0.5. The ramp time, selected for this 

problem, is t /t  = 1.57.  p sr
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Figure 5.12 Temperature contours (a, c, e, g) and streamlines (b, d, f, h) with Pr =0.72, 

Ra = 6.0× 106 and A = 0.5 at different times. 

 

The isotherms and stream lines of Figures 5.12(a, b) are at t/tsr = 0.628, which is 

the time before the flow becomes quasi-steady; Figures 5.12(c, d) are at t/tsr = 1.256, 

when the flow is in quasi-steady mode; Figures 5.12(e, f) are at the time when the ramp 

just finishes (t/tsr = 1.57); and Figures 5.12(g, h) are at time after the ramp is finished 

(t/tsr = 3.14). It is seen clearly from these figures that initially the boundary layer 

develops adjacent to the inclined walls of the cavity and moves upwards. However, as 

time passes, the top of the cavity gradually fills with hot fluid and becomes stratified, 

where the top portion fluid is hotter than the bottom portion. At the end the entire cavity 

has been heated up. It is noted that the typical situation of quasi-steady state and the 

finishing time of ramp can not be identified from these set of isotherms and streamlines.  
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5.7 Validation of selected scales 
The flow features discussed theoretically above are verified on the basis of a complete 

series of numerical simulations. It is assumed that the fluid contained in the attic space 

is originally motionless and of a uniform temperature Tc. The cavity is heated from the 

top by means of sudden and ramp heating boundary conditions of the sloping wall. 

Throughout this simulation, the horizontal bottom wall is assumed to be adiabatic. The 

above scales have been developed with an assumption that the flow is symmetric along 

the symmetry center line of the cavity. Previous studies of attic space have revealed that 

the flow is indeed symmetric along the center line for the case of heating on the sloping 

walls.      

 The detailed validation of the boundary layer development has been discussed 

in chapter 3 (e.g. velocity scale, thickness scale etc). For brevity, those results are not 

repeated here. However, heat transfer scales together with steady state time scales have 

been verified in this chapter. Moreover, the heating-up time scale and the subsequent 

heat transfer scale at that time have also been verified.    

   

5.7.1 Sudden heating  
The heating-up time is determined by the heat flux through the natural convection 

boundary layer. The hot fluid moves upward along the boundary layers of both inclined 

walls and meets under the apex of the enclosure. Then it has no choice but to move 

downward right below the tip, forming a horizontal stratification. This stratified hot 

fluid fills the enclosure, ultimately reaching the bottom surface at which time the whole 

enclosure is filled with hot fluid.  

Table 5.4 Values of A and Ra for six runs for sudden heating. 

A Ra Runs  

1 0.5 1.5×107

2 0.5 3.0×106

3 0.5 1.5×106

4 0.5 6.0×105

5 0.2 3.0×106

6 1.0 3.0×106
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In Table 5.4, Runs 1-4 with Ra = 1.5×107, 3.0×106, 1.5×106 5 and 6.0×10  while 

keeping A = 0.5 and Pr = 0.72 unchanged have been carried out to show the 

dependence of the scaling relations on the Rayleigh number, Ra; Runs 5-6 and 2 with A 

= 0.2, 1.0 and 0.5 respectively while keeping Ra = 3.0×106 and Pr = 0.72 unchanged 

have been carried out to show the dependence on the slope of the inclination of the 

plate. All Rayleigh numbers considered here are in the convection regime. 

 

Figure 5.13 Time series of the average Nusselt number calculated on the left inclined 

wall. (a) Plot of raw data; (b) Nusselt number versus normalized time; and (c) 

Normalized Nusselt number versus normalized time. 

 

The numerical results showing the dependence of the instantaneous average 

Nusselt number Nu on Ra, and A at the boundary-layer development stage and at the 

heating-up stage are respectively presented in Figure 5.13 and Figure 5.14. Figure 

5.13(a) shows the raw data of the time series of the Nusselt number which have been 

calculated from the left inclined wall of the cavity for different Rayleigh numbers and 

aspect ratios. It is found that the Nusselt number depends strongly on Ra and A. In 
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Figure 5.13(b), the time has been normalized with respect to the steady state time of the 

boundary layer development. We notice that the steady state of the Nusselt numbers fall 

on a vertical line (long dashed line), which validates the steady state time scale of the 

boundary layer development (5.2). The normalised Nusselt number with respect to its 

steady state value is plotted against normalized time with respect to the steady state 

time scale in Figure 5.13(c). As anticipated, all lines collapse together in one line which 

confirms the scaling relation (5.6) at the boundary-layer development stage. 

The Nusselt number at the heating up time has been plotted in Figure 5.14. 

Again all lines collapse on a single line which validates the scaling relation (5.18) at the 

heating up stage. Note that the x-axis is on a log scale.  

 
Figure 5.14 Time series of Nusselt number on the left inclined wall for heating-up 

stage for sudden heating for six runs. 

  
To verify the heating-up time scale, the temperature has been recorded at the 

mid point of the bottom surface, which is shown in Figure 5.15. Raw data of the time 

series of the temperature for different Rayleigh numbers and aspect ratios are plotted in 

Figure 5.15(a). It is anticipated that initially there is no response of the temperature at 

the middle point of the bottom surface. As soon as the hot fluid comes from the top and 

reaches the bottom, the temperature starts to increase. However, this response time is 

different for different Ra and A. In Figure 5.15(b), the time is normalised with respect 

to the heating-up time (5.16) and the temperature has been normalised by the 

temperature difference. We see that the temperature series response at the same time for 

different flow parameters. This confirms that the heating-up time scale (5.16) is 

accurate.      
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Figure 5.15 Time series of temperature recorded on the mid point of the bottom surface. 

(a) Plot of raw data; (b) Normalized temperature versus normalized time for sudden 

heating for six runs. 

 

5.7.2 Ramp heating  
Similarly to the sudden heating case, the heating-up time is also determined by the heat 

flux through the natural convection boundary layer for the ramp temperature boundary 

condition. Table 5.5 shows the full sets of flow cases considered for the numerical 

simulation. All Rayleigh numbers considered here are in the regime where the ramp 

time is longer than the quasi-steady time. 

 

Table 5.5 Values of A and Ra for the six runs for ramp heating. 

A Ra Runs  

1 0.5 3.0×107

2 0.5 1.5×107

3 0.5 6.0×106

4 0.5 3.0×106

5 1.0 3.0×107

6 0.2 3.0×107
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To demonstrate the dependency of the heat flux on time at various stages of 

boundary development stage, the time series of total heat flux on the left inclined 

surface of the attic space is plotted in Figure 5.16. It is seen in Figure 5.16(a) that heat 

flux increases with time and becomes quasi-steady state at about 2s. Since the surface is 

still receiving heat from the ramp temperature boundary condition, the heat flux 

increases until the ramp is finished. After the ramp finishes the heat flux suddenly drops 

and decreases as time increases. We have seen that the Nusselt number scale at the 

initial stage is the order of O(t1/2) (see 5.14). Therefore, in Figure 5.16(b) the heat flux 

is plotted against  and shows an initial linear growth. However, the Nusselt number 

scale after the quasi-steady state is of the order O(t

21 /t
5/4) (see 5.16). To verify this scale, 

the heat flux in Figure 5.16(c) is plotted against t5/4. The figure shows that after the 

quasi-steady state the heat flux show a linear growth until the ramp is finished.  

 

Figure 5.16 Time series of total heat flux on the left inclined surface for Ra = 4.0×107, 

A = 0.5 and Pr = 0.72. 
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 The numerical results showing the dependence of the average Nusselt number, 

Nu on Ra, and A  at the boundary-layer development stage are presented in Figures 5.17 

and 5.18. The Nusselt number has been calculated in two different ways; one with 

reference to the maximum temperature difference (see 5.26) and the other with 

reference to the instantaneous temperature difference (see 5.29). Figure 5.17(a) shows 

the raw data of the time series of the Nusselt number which has been calculated from 

the left inclined wall of the cavity using the maximum temperature difference (ΔT) for 

different Rayleigh numbers and aspect ratios. It is found the Nusselt number depends 

strongly on Ra and A. In Figure 5.17(b), the time has been normalized with respect to 

the quasi-steady time (5.20) and Nusselt number has been normalised by the scaling 

value (5.26). It is clear that all lines collapse together until the ramp is finished which 

validates the quasi-steady time (3.15) and Nusselt number (5.26) scales of the 

boundary-layer development stage. 

 

Figure 5.17 Time series of the average Nusselt number calculated on the left inclined 

wall. (a) Plot of raw data; (b) Normalized Nusselt number versus normalized time for 

ramp heating for six runs. 

  

In Figure 5.18, the Nusselt number has been calculated using the instantaneous 

temperature difference (ΔTt/t  for t ≤ tp p). Raw data of the time series of the Nusselt 

number is plotted in Figure 5.18(a). It is seen that initially the Nusselt number 

approaches infinity and decreases sharply until the quasi-steady state time. After the 

quasi-steady state it increases very slowly until the ramp is finished. After the ramp 

finishes, the Nusselt number again decreases very fast. In Figure 5.18(b), the time has 
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been normalised by (5.20) and the Nusselt number by (5.29). Again all lines lie together 

until the ramp is finished, which confirms the scaling relation (5.20) and (5.29). 

 

Figure 5.18 Time series of the average Nusselt number calculated on the left inclined 

wall. (a) Plot of raw data; (b) Normalized Nusselt number versus normalized time for 

ramp heating for six runs. 

 

The Nusselt number at the heating-up time is plotted in Figure 5.19. Again all lines fall 

together in a line which validates the scaling relation (5.48) at the heating up stage. 

Note that the x-axis is on a log scale.  

 

 
Figure 5.19 Normalized time series of Nusselt number at the heating up stage on the 

left inclined wall of the cavity for ramp heating for six runs. 

  
To verify the heating-up time scale, the temperature has been recorded at the 

middle point of the bottom surface and plotted in Figure 5.20. Raw data of the time 

series of the temperature for different Rayleigh numbers and aspect ratios has been 
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shown in Figure 5.20(a). It is anticipated that initially there is no response of the 

temperature at the middle point of the bottom surface. As soon as the hot fluid comes 

from the top and reaches the bottom, the temperature starts to increase. However, this 

response time is different for different values of Ra and A. In Figure 5.20(b), the time is 

normalised with respect to the heating-up time (5.43) and the temperature has been 

normalised by the temperature difference. We see that the temperature starts to rise at 

the same time for different flow parameters. This confirms that the heating-up time 

scale (5.43) is accurate.      

 

Figure 5.20 Time series of temperature recorded on the mid point of the bottom surface. 

(a) Plot of raw data; (b) Normalized temperature versus normalized time for ramp 

heating for six runs.   

 

5.8 Summary 
Natural convection adjacent to heated inclined walls of an attic space is examined by 

scaling analysis and the scales verified by numerical simulation for air (Pr = 0.72). It is 

found that the flow is mainly dominated by four distinct stages for the sudden heating 

boundary condition, i.e. start-up stage, transitional stage, steady state stage and heating-

up stage. The scaling relations are formed based on the established characteristic flow 

parameters of the maximum velocity inside the boundary layer (us), the time for the 

boundary layer to reach the steady state (ts), the thermal (δT ) and viscous (δν) boundary 

layer thicknesses, Nusselt number scale (Nus), the heating up time (tf) and the Nusselt 

number at the heating-up time. Moreover, some important regimes based on the 
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Rayleigh number have been established in this chapter. The scaling results agree very 

well with the numerical simulations.  

Furthermore, a temperature boundary condition of a ramp function applied to 

the inclined walls has also been investigated. The boundary layer flow for this 

boundary condition depends on the comparison of the time at which the ramp heating is 

completed with the time at which the boundary layer completes its growth. If the ramp 

time is long compared with the steady state time, the thermal boundary layer reaches a 

quasi-steady mode in which the growth of the layer is governed by the thermal balance 

between convection and conduction. On the other hand, if the ramp is completed before 

the thermal boundary layer becomes steady, the subsequent growth is governed by the 

balance between buoyancy and inertia, as for the case of instantaneous heating. Several 

scaling relations have been established in this study, which include the maximum 

velocity parallel to the inclined plate inside the boundary layer (us), the time for the 

boundary layer to reach the quasi-steady state (tsr) and the thermal and viscous 

boundary layer thicknesses (δ  and δTr ν), Nusselt number scale (Nusr and Nuins), the 

heating up time (tf) and the Nusselt number at the heating-up time. Like the sudden 

heating case, some important flow regimes have been established for the ramp heating 

boundary condition. The scaling results agree very well with the numerical simulations. 

The comparisons between the scaling relationships and the numerical simulations 

demonstrate that the scaling results agree very well with the numerical simulations.  
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6 Natural convection in attics 
subject to sudden and ramp cooling 
boundary conditions 

 

In this chapter, the transient natural convection flow in an attic space subject to cooling 

at the inclined surfaces is examined based on a scaling analysis. The transient 

phenomenon begins with either sudden or ramp cooling of the upper sloping walls. It is 

shown that thermal and viscous layers develop adjacent to both walls whose 

thicknesses increase towards steady-state values. However, these boundary layers are 

potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds 

certain critical Rayleigh value. Once the flow becomes unstable the scaling analysis can 

not be carried further except for providing a prediction of the onset of instability. For a 

Rayleigh number lower than the critical Rayleigh number, the scaling prediction is 

similar to that of the heating case.  

Scaling analysis for an attic space subject to cooling at the inclined walls has 

been carried out by Poulikakos and Bejan (1983a). In that study, the working fluid in 

the attic space was assumed to be water (Pr > 1). The authors also assumed that the 

slope of the inclined wall was very small (A → 0). However, in a practical situation, the 

aspect ratio of buildings varies roughly from 0.1 to 1.0. Moreover, numerical 

verification of the scaling prediction is absent in their work. Scaling analysis for the 

flow in a wedge with surface cooling has also been investigated by Lei and Patterson 

(2005) for a reservoir problem, in which case the cooled surface is horizontal. They 

identified several different regimes of flow development by scaling analysis.  

The present chapter consists of two parts concerning an attic space subject to 

two types of boundary conditions: (i) a sudden cooling boundary condition and (ii) a 

ramp cooling boundary condition. In both cases the bottom boundary is kept adiabatic 

and the fluid inside the enclosure is initially isothermal and stationary. The flow 

response to the sudden and ramp cooling is investigated through combined scaling and 

numerical procedures. A series of numerical calculations has been carried out for a 

122 



Chapter 6 

range of parameter values to verify the scaling prediction. Details of the numerical 

procedures can be found in Chapter 2. 
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Figure 6.1 The schematic of the geometry and the coordinate system.  

 

Under consideration is the flow behaviour resulting from the cooling of a 

Newtonian fluid with Pr < 1 in a two-dimensional triangular enclosure by unsteady 

natural convection due to an imposed sudden and ramp cooling temperature on the 

inclined walls. The physical system sketched in figure 6.1 consists of an enclosure 

which is filled with fluid having an initial temperature Th. The height of the enclosure is 

h and the length of the half base is l. Therefore, the aspect ratio of the enclosure is A = 

h/l. The length of one sloping wall is L (=(h/A)(1+A2)1/2). At the time t = 0, the plate is 

cooled to Tc suddenly for the first case and over a ramp time, tp for the second case and 

thereafter maintained at this temperature. 

 

6.1 Scaling analysis for sudden cooling 
Similarly to the heating case described in Chapter 5, the flow for the cooling case is 

also dominated by two distinct stages of development, i.e. a boundary-layer 

development stage and a cooling-down stage. The boundary layer development stage is 

the early stage of the flow development and the cooling-down stage is the stage when 

the whole cavity is filled with the cold fluid discharged from the boundary layer.  
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The detailed development of the scaling of the boundary layer for the sudden 

cooling boundary condition has been discussed in Chapter 4. Initially the thermal 

boundary layer adjacent to the sloping wall developed according to δT ~κ1/2 1/2t . We see 

in Chapter 4 for the case of sudden cooling boundary condition on the inclined flat 

plate, the transient velocity scale inside the boundary layer is given by (4.1) as 
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and the steady state time, thickness and velocity scales from (4.2), (4.3) and (4.4) are 

respectively given by  
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The scaling results for heat transfer from the inclined wall of the attic space, measured 

by a Nusselt number, have been developed as follows. 

 

6.1.1 Heat transfer scales 
The instantaneous local Nusselt number on the inclined wall during the 

boundary layer development stage is given by 
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This scale is valid until the steady state of the boundary layer is reached. Once the 

boundary layer becomes steady then using (6.2), the average steady-state Nusselt 

number of the boundary layer adjacent to the cold inclined wall is given by 
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These scales are valid if the boundary layer remains stable. 
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6.1.2 Cooling down stage 
As soon as the cooled temperature boundary condition is applied on the sloping wall, a 

cold boundary layer starts to develop adjacent to the wall. The cooled fluid inside the 

boundary layer then moves down the sloping wall with the velocity (6.1) and reaches 

the bottom tip of the cavity. After that the flow does not have any choice but to move 

horizontally adjacent to the bottom surface. As a result the interior of the enclosure is 

gradually filled by the cold fluid ejected from the boundary layer, starting from the 

bottom of the cavity, and this cooling-down stage continues until the whole cavity is 

filled with cold fluid. The appropriate parameters to characterize this cooling-down 

stage are the time tfc for the enclosure to be filled with cooled fluid and the average 

Nusselt number calculated on the slopping wall. 

Let us consider an arbitrary moment, t, during the cooling-down stage. At that 

moment, the fluid inside the enclosure can be assumed to consist of two layers with the 

location x = xi as the interface (see figure 6.2). The top fluid layer is at the initial 

temperature, T  whereas the bottom layer has the wall temperature Th c.  

 A′ 

B′ 
C 

D E 

xi 

L-xi 
h-hi 

hi 

l  
Figure 6.2 Schematic of cooling down process for sudden cooling. 

 

From ΔA′B′C and ΔA′DE in figure 6.2, we have, 
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It is observed in Chapter 5, for the case of sudden heating boundary condition 

that the maximum ratio of the volume filled with heated fluid until the steady state time 

to the total volume is less than 0.095 for the range of Ra, A and other parameters 

considered. The same result can be found here for the sudden cooling boundary 

condition. Therefore, the filling volume at the transient stage is insignificant compared 

to the total volume. 

From the mass conservation law 
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Applying (6.3) and (6.4) in (6.10) we have, 
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The time when the whole enclosure is filled up with cold fluid from bottom (xi ~ 0) is 

obtained as 
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Since only the upper part of the sloping wall contributes to the heat transfer 

during the filling up (or cooling down) process, it is apparent from (6.6) that the 

instantaneous Nusselt number, Nu at the cooling-down stage is 
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Using (6.11) in (6.13), we have 
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6.2 Scaling analysis for ramp cooling 
For the case with the ramp cooling temperature boundary condition, a set of scaling 

results has also been produced in Chapter 4 for an inclined flat plate. As soon as the 

cooling boundary condition is applied on the inclined wall, a thermal boundary layer 

starts to develop according to the scale κ1/2t1/2. The transient velocity scale inside the 

boundary layer is given from (4.15) by  
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This scale is valid until the quasi-steady time if the ramp time is larger than the quasi-

steady state time or until the ramp is finished if the ramp time is shorter than the steady 

state time.  

 It is found in Chapter 4 that, for the case of an inclined flat plate, the steady 

state scales of time, velocity and boundary layer thickness are exactly the same as those 

for the sudden cooling boundary condition if the ramp time is shorter than the steady 

state time. However, if the ramp time is longer than the quasi-steady time, then the 

quasi-steady time, the thermal layer thickness and velocity scales from (4.16), (4.17) 

and (4.18) are given respectively by 
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 After the quasi-steady time the thermal boundary layer develops according to 

the scale in the quasi-steady mode (from 4.19)  
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and the velocity scale from (4.20) is 
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These two scales are valid until the ramp is finished. After the ramp is finished the 

boundary layer does not know whether it comes from a ramp function or not. Note that 

the details of the development of these scales have been described in Chapter 4.   

  In addition to those scales described in Chapter 4, for the attic space, a heat 

transfer scaling at different times of the boundary layer development in a form of a 

Nusselt number has been developed in the following section.   

 

6.2.1 Heat transfer scale 
Initially the temperature on the inclined wall decreases with time whereas the 

temperature inside the cavity is fixed (Th). Therefore, the temperature difference 

between the wall and the interior increases with time (ΔTt/tp) until the ramp is finished. 

However, the temperature on the wall becomes constant when the ramp is finished and 

at that time the temperature difference is the maximum. Based on these instantaneous 

temperature differences we may define the local Nusselt number on the inclined surface 

during the boundary-layer development stage as; 

.~~~~ 2/1

2/1
0

ppTpT

y
X t

ht
t

ht
T
h

t
Tt

h
T

y
T

Nu
κδδ Δ

×
Δ

Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= (6.21)  

This Nusselt number scale is valid until the quasi-steady time if the ramp time is longer 

than the quasi-steady time or until the ramp is finished if the ramp time is shorter than 

the steady state time. For the first situation, when the ramp time is longer than the 

quasi-steady time, using (6.16) the average quasi-steady Nusselt number on the sloping 

boundary layer is given by 
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After the quasi-steady state the thermal layer thickness does not grow according to 

κ1/2 1/2t . Instead, it grows according to the scale (6.19). Therefore, the Nusselt number in 

the quasi-steady mode is  
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For the situation when the ramp time is shorter than the steady state time, the 

thermal boundary layer grows according to κ1/2 1/2t  before the steady state time and the 

Nusselt number scale at the steady state time is the same as (6.2) which is the Nusselt 

number for the case of instantaneous temperature boundary condition. These scales are 

valid so long as the boundary layer remains stable.  

 

6.2.2 Cooling down stage 
Similar to the sudden cooling case, once the boundary layer is fully developed by the 

ramp cooling boundary condition, the fluid in the enclosure is gradually stratified by 

the cold fluid ejected from the boundary layer, starting from the bottom of the cavity, 

and this cooling-down stage continues until the whole body of fluid has the same 

temperature as that imposed on the inclined walls of the attic space. The appropriate 

parameters characterizing this cooling-down stage include the time, tfr for the fluid to 

be fully cooled down and the average Nusselt number on the cooled wall. 
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Figure 6.3 Schematic of cooling down process for ramp cooling. 

 

Let us consider any specific moment t during the cooling-down stage when the 

fluid inside the container can be assumed to consist of two layers with the location x = 

xi as the interface (see figure 6.3). The top layer is at the initial temperature, Th, whereas 

the bottom layer has the wall temperature Tc.  

As it is discussed in Chapter 5 that the maximum ratio of the volume filled with 

heated fluid during the quasi-steady time to the total volume is less than 0.08 for the 

range of Ra, A and other parameters considered. The same result can be obtained for the 
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case of ramp cooling boundary condition. Therefore, the volume filled by the cold fluid 

during the transient stage may be ignored when calculating the filling box time.  

Suppose the ramp is finished when the interface is at x = x  (x1 1 measured from 

B′), for the case when the ramp time is longer than the quasi-steady time (t  > tp sr). Let 

us calculate the volume (V1) of the cooled portion filled by the time t = tp. Therefore, 

the volume of the cooled portion is  
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  The flux at time t = t  is  p
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Therefore, the volume of the enclosure filled with cold fluid is V1. The rest of 

the volume will be filled-up after the ramp is finished. At t = tp the thermal boundary 

layer thickness and the velocity scales from (6.19) and (6.20) respectively are  
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The rest of the volume after ramp is finished is  
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Again from the mass conservation law we have 
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Applying (6.27) and (6.28) we have, 
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Recognizing that for t = tfr, xi = 0, therefore,  
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where L = (h/A)(1+A2)1/2

If tp > h2/[κA1/2 1/4Ra (1+A2)1/4] (see 6.26) the cavity will be filled up with cold 

fluid discharged from the boundary layer before the end of the ramp. Therefore, using 

the velocity and the thermal layer thickness scale from the quasi-steady mode the mass 

conservation law is 
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Using (6.19) and (6.20), the cooling-down time is  
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For the case when the ramp time is shorter than the steady state time, the filling 

box time is the same as that obtained for sudden cooling boundary condition.  

Since only the upper part of the sloping wall contributes to the heat transfer at 

any given time, it is apparent from (6.22) that the Nusselt number, Nu at the cooling-

down stage is 
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Using (6.31), we have 
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 is the Nusselt number at the time, t = twhere Nu , and p p
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If the cooling down time is less than the ramp time but greater than the quasi-steady 

time then the Nusselt number is given by 
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In the following section, mesh and time step dependence tests will be carried to 

ensure the accuracy of the numerical simulations. The numerical results will be used to 

verify the scaling relations derived above.   

 

 

6.3 Grid and time step dependence test  
The distribution of the computational mesh in the enclosure for three different 

aspect ratios has been shown in Chapter 5. Mesh and time step dependence tests for 

sudden and ramp cooling boundary conditions have been conducted here. Two different 

mesh sizes, 180×60 and 270×90 for A = 1.0, three different mesh sizes, 160×40, 

240×60 and 320×80, for A = 0.5 and three different meshes sizes, 180×45, 280×70 and 

360×90, for A = 0.2, have been tested for each case of sudden and ramp cooling 

boundary conditions. 
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Figure 6.4 Time series of temperature at the mid point of the symmetry center line for 

different grids for sudden cooling boundary condition. 

 

Figures 6.4 and 6.5 plot the time series of the temperature at the middle point of 

the symmetry centre line for the case of sudden and ramp cooling boundary conditions 

respectively. It is seen from both figures that the calculated numerical results are not 

grid sensitive. The maximum variation is less than 2% for all cases considered here. 

Therefore, even the coarsest mesh will be able to provide the basic flow features for 

three different aspect ratios. However, 270×90, 320×80 and 360×90 meshes have been 

adopted for A = 1.0, 0.5 and 0.2 respectively with a time step 0.002 for all aspect ratios.   
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Figure 6.5 Time series of temperature at the mid point of the symmetry center line for 

different grids for ramp cooling boundary condition. 

 

6.4 Flow development in different regimes 
for sudden cooling  
Several possible flow regimes based on the Rayleigh number have been established in 

Chapter 4 for the case of sudden cooling boundary condition on the inclined flat plate. 

The same flow regimes can also be identified for the attic space problem. A brief 

discussion of those flow regimes with numerical results are presented as follows:  

6.4.1 Conduction regime 
Figure 6.6 presents the numerical results for the low-Rayleigh number regime, 

Ra < (1+Pr)(1+A2)/(A2Pr) with Pr = 0.72, Ra = 50 and A = 0.5. The temperature 

contours and streamlines are plotted in figures 6.6(a) and 6.6(b), respectively at time t/ts 
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= 0.25. In this regime the cold thermal boundary layer is stable and expands to the 

entire domain. The maximum temperature in the domain is 299K. However, the initial 

temperature inside the domain was set to 305K. The temperature profile has been 

extracted along a line perpendicular to the inclined wall at the mid point and shown in 

Figure 6.6(c). It is seen in figure 6.6 (c) that the thickness of the thermal boundary layer 

is larger than the perpendicular distance from the mid point of the left inclined wall to 

the bottom surface. Therefore, the flow is dominated by conduction in this regime. 

Moreover, there is no steady state of the flow inside the cavity as it continues to be 

cooled-down as time progresses. There are two symmetric cells in the streamlines 

where the direction of the left cell is anti-clockwise and the right cell is clockwise. 

 

 
Figure 6.6 (a) temperature contours and (b) streamlines (c) temperature profile along 

the line perpendicular to the inclined wall at mid point with Pr = 0.72, Ra = 50 and A 

= 0.5. 
 

6.4.2 Stable convection regime 
Figure 6.7 presents the numerical results of a representative case in this flow regime, 

(1+Pr)(1+A2)/(A2Pr) < Ra < (Pr3A6Rac
4)(1+Pr)− −3(1+A2 3 with Pr = 0.72, Ra = 3.6×104)  

and A = 0.5 at t/ts = 1.6. Temperature contours are presented in Figures 6.7(a) and 

streamlines are in Figure 6.7(b). The stable boundary layer becomes steady before the 

whole cavity is cooled down. The cold fluid travels through the boundary layers 
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adjacent to both inclined walls and meets the bottom adiabatic surface. The flow then 

has no other choice but to move to the interior of the cavity along the bottom surface. 

 

 
Figure 6.7 (a) temperature contours and (b) streamlines with Pr = 0.72, Ra = 3.6×104  

and A = 0.5. 

 

6.4.3 Unstable convection regime 
This flow regime, Ra > (Pr3A6Rac

4)(1+Pr)−3(1+A2)−3 is characterized by the 

presence of convective instability in a form of sinking plumes. Figure 6.8 represents the 

isotherms and the streamlines for Pr = 0.72, Ra = 7.2×106 and A = 0.2 at t/ts = 1.5 to 

demonstrate the features of this flow regime. The plumes are formed in the cooling 

boundary layer. The cold fluid inside the boundary layer travels adjacent to the inclined 

wall and reaches the bottom tip. Then it changes its direction and moves to the interior 

of the cavity along the adiabatic bottom surface. Three convective cells on both sides of 

the symmetry line are observed in the streamlines at this particular time (Figure 6.8b).         

 
Figure 6.8 (a) temperature contours and (b) streamlines with Pr = 0.72, Ra = 7.2×106 

and A = 0.2 at t/ts = 1.5. 
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6.5 Flow development in different regimes 
for ramp cooling 
As it is discussed in Chapter 4 there are six possible flow regimes of the boundary layer 

development for ramp cooling boundary condition, it is also possible here to describe 

those regimes for the attic space problem. However, for brevity, only two main flow 

regimes have been explained in the following subsection. 

   

6.5.1 Ramp time shorter than steady state time 
Figure 6.9 shows the temperature contours and the streamlines for Pr = 0.72, Ra = 

7.2×104 and A = 0.5 at t/ts = 4.4 for the regime Ra < (1+Pr)(1+A2)h4/[A2Prκ2 2tp ]. The 

ramp time has been set to 10s. In this regime the steady state time is longer than the 

ramp time. Therefore, the boundary layer grows according to the scale κ1/2 1/2t  even after 

the ramp is finished. The thermal boundary layer becomes unstable or remains stable 

depending on the Rayleigh numbers. For the typical Rayleigh number considered here, 

the boundary layer is stable to the Rayleigh-Bénard instability. Figure 6.9(a) presents 

the temperature contours and Figure 6.9(b) presents the corresponding streamlines. A 

cold boundary layer develops adjacent to the sloping wall, reaches the bottom tip and 

moves to the interior of the cavity along the bottom adiabatic surface. Two intrusion 

boundary layers from two sides of the symmetry line meet at the mid point of the 

bottom surface and move upward.  The corresponding streamlines show two symmetric 

convective cells.    

 
4Figure 6.9 (a) Temperature contours and (b) streamlines for Ra = 7.2×10 , Pr = 0.72 

and A = 0.5. 
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6.5.2 Ramp time longer than the steady state time 
6A representative Rayleigh case for this flow regime has been chosen as Ra = 3.6×10 , 

and Pr = 0.72 with A = 0.2. The temperature contours and streamlines are shown in 

Figure 6.10 for this case at t/tsr = 1.2. The ramp time is 10s. In this regime the flow may 

be stable and reaches the quasi-steady mode. Since the plate is still cooling in the quasi-

steady mode, the boundary layer may become unstable before the ramp is finished. On 

the other hand, the instability may set in before the flow becomes quasi-steady. For this 

typical Rayleigh number (Ra = 3.6×106) the boundary layer becomes unstable before it 

reaches quasi-steady state. A number of sinking plumes appeared in the cold boundary 

layer adjacent to the sloping walls. The corresponding streamlines shows a number of 

convective cells on both sides of the symmetry line.  

 

 
6Figure 6.10 (a) Temperature contours and (b) streamlines for Ra = 3.6×10 , Pr = 0.72 

and A = 0.2. 

 

6.6 Validation of selected scales 
The flow features discussed above are verified on the basis of a series of numerical 

simulations. The above scales have been developed with an assumption that the flow is 

symmetric along the symmetry center line of the cavity.     

 The detailed validation of the boundary layer development has been discussed 

in Chapter 4 (e.g. velocity scale, thickness scale, onset of instability etc). For brevity, 

those results are not repeated here. However, the heat transfer scales together with 

steady state time scale have been verified in this chapter. Moreover, the cooling-down 

138 



Chapter 6 

time scale and the subsequent heat transfer scale at that time have also been verified for 

both boundary conditions below.      
 

6.6.1 Sudden cooling 
The cooling-down time is determined by the heat flux through the natural convection 

boundary layer. The cold fluid moves downward through the boundary layer of both 

inclined walls. When the cold fluid reaches to the bottom tips then it has no choice but 

to move horizontally adjacent to the bottom surface. Once the boundary layer is fully 

developed, the fluid in the container is gradually stratified by the cold fluid ejected 

from the boundary layers, starting from the bottom of the container, and this cooling-

down stage continues until the whole body of fluid becomes cold. However, for higher 

Rayleigh numbers the boundary layer may become unstable.  

 

Table 6.1 Values of A and Ra for six runs for sudden cooling. 

A Ra Runs  
51 0.5 7.2×10
52 0.5 3.6×10
53 0.5 2.2×10
44 0.5 7.2×10
55 0.2 3.6×10
56 1.0 3.6×10

 

In Table 6.1, Runs 1-4 with Ra = 7.2×105, 3.6×105, 2.2×105 4 and 7.2×10  while 

keeping A = 0.5 and Pr = 0.72 unchanged have been carried out to show the 

dependence of the scaling relations on the Rayleigh number; Runs 5-6 and 2 with A = 

0.2, 1.0 and 0.5 respectively while keeping Ra = 3.6×105 and Pr = 0.72 unchanged have 

been carried out to show the dependence on the slope of the inclination of the sloping 

walls. All Rayleigh numbers considered here are in the unstable convection regime. 

 The numerical results showing the dependence of the instantaneous average 

Nusselt number Nu on Ra and A at the boundary-layer development stage and at the 

cooling-down stage are presented in Figure 6.11. Figure 6.11(a) shows the raw data of 

the time series of the Nusselt number which have been calculated from the left inclined 
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wall of the cavity for different Rayleigh numbers and aspect ratios. It is found that the 

Nusselt number depends significantly on Ra and A. In Figure 6.11(b), the time has been 

normalized with respect to the steady-state time (6.2) of the boundary layer 

development and the Nusselt number has been normalized with respect to its steady-

state value (6.6). As anticipated, all lines collapse together in one line which confirms 

the scaling relations of (6.2) and (6.6) at the boundary-layer development stage. The 

Nusselt number for the cooling-down stage has been plotted in Figure 6.11(c). Again all 

lines fall together in a line which validates the scaling relation (6.14) at the cooling-

down stage. Note that the x-axis is plotted on a log scale.  

 
Figure 6.11 Time series of the Nusselt number calculated on the left inclined wall. (a) 

Plot of raw data; (b) Normalized Nusselt number versus normalized time; (c) Nusselt 

number at the cooling-down stage for six runs for sudden cooling. 

 

To verify the cooling-down time scale, the average temperature inside the 

enclosure has been calculated with time. Figure 6.12 shows the time series of the 
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average temperature inside the cavity. Raw data of the time series of the average 

temperature for different Rayleigh numbers and aspect ratios have been plotted in 

Figure 6.12(a). It is anticipated that the variation of the temperature inside the enclosure 

depends significantly on the Rayleigh number and aspect ratio. The average 

temperature decreases with time for all parameters considered here. In Figure 6.12(b), 

the time is normalized with respect to the cooling-down time scale (6.12) and the 

temperature has been normalized by the temperature difference between the wall and 

the interior. We see that all curves of the temperature time series collapse at a single 

curve for different flow parameters. This confirms that the cooling-down time scale 

(6.12) is accurate.     

 

 
Figure 6.12 Time series of the average temperature inside the enclosure. (a) Plot of 

raw data; (b) Normalized temperature versus normalized time at the cooling-down 

stage for six runs for sudden cooling. 

 

6.6.2 Ramp cooling  
Similar to the sudden cooling case, the cooling-down time is also determined by the 

heat flux through the natural convection boundary layer for the ramp temperature 

boundary condition.  

Table 6.2 shows the full sets of parameters used for the numerical simulation to 

verify the scaling prediction. Runs 1-6 are in the regime in which the quasi-steady time 

is shorter than the ramp time and the flow is unstable; and runs 7-10 are in the regime 

in which the steady state time is longer than the ramp time and the boundary layer is in 

a stable condition. 
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Table 6.2 Values of A and Ra for 10 runs for ramp cooling. 

A Ra Runs  
61 0.5 7.2×10
62 0.5 5.8×10
63 0.5 3.6×10
54 0.5 7.2×10
55 1.0 7.2×10
56 0.2 7.2×10
57 0.5 1.0×10
48 0.5 6.0×10
49 0.5 3.0×10
410 0.5 1.0×10

 

 

 
Figure 6.13 Time series of the Nusselt number calculated on the left inclined wall. (a) 

Plot of raw data; (b) Normalized Nusselt number versus normalized time; (c) Nusselt 

number at the cooling-down stage for six runs for ramp cooling. 
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 The numerical results showing the dependence of the average Nusselt number, 

Nu on Ra and A at the boundary-layer development stage are presented in Figure 6.13. 

Figure 6.13(a) shows the raw data of the time series of the Nusselt number which has 

been calculated on the left inclined wall of the cavity. It is seen that initially the Nusselt 

number approaches infinity and decreases sharply until the quasi-steady state is 

reached. After the quasi-steady state time it increases very slowly until the ramp is 

finished. After the ramp finishes, the Nusselt number again decreases and approaches 

zero. We also see some oscillations in the Nusselt number plots. It is due to the unstable 

condition of the boundary layer. In Figure 6.13(b), the time has been normalized by the 

quasi-steady time (6.16) and the Nusselt number by the quasi-steady Nusselt number 

(6.22). We see that all lines lie together until the ramp is finished, which confirms the 

scaling relations (6.16) and (6.22). 

The Nusselt number at the cooling-down time has been plotted in Figure 

6.13(c). Again all lines fall together in a line for different flow parameters considered 

here which validates the scaling relation (6.36).  

 
Figure 6.14 Time series of the average temperature inside the enclosure. (a) Plot of 

raw data; (b) Normalized temperature versus normalized time at the cooling-down 

stage for six runs for ramp cooling.  

 

The raw data of the time series of the average temperature inside the enclosure 

has been plotted in Figure 6.14(a) for different Rayleigh numbers and aspect ratios. 

These parameters are in the flow regime in which the quasi-steady time is shorter than 

the ramp time. It is seen in this figure that the average temperature variation inside the 
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cavity depends strongly on the Rayleigh number and the aspect ratio. In Figure 6.14(b), 

the time is normalized with respect to the cooling-down time scale (6.32) and the 

temperature has been normalized by the temperature difference between the wall and 

inside the enclosure. We see that all temperature series fall onto a single curve for 

different flow parameters. This confirms that the cooling-down time scale (6.32) is 

accurate. 

 

 
Figure 6.15 Time series of the average temperature inside the enclosure. (a) Plot of 

raw data; (b) Normalized temperature versus normalized time at the cooling-down 

stage for four runs for ramp cooling.  

 

For the case in which the steady state time is longer than the ramp time, the 

cooling-down time scale is the same as that for the case of instantaneous cooling 

boundary condition. To verify the scaling relation (6.12), four different Rayleigh 

numbers have been chosen for the above regime. The raw data of the average 

temperature inside the enclosure has been depicted in Figure 6.15(a). In Figure 6.15(b), 

the time is normalized with respect to the cooling-down time scale (6.12) and the 

temperature is normalized with temperature difference. All curves for different 

Rayleigh numbers fall almost onto a single curve which confirms that the scaling 

relation (6.12) is accurate for the ramp boundary condition when the steady state time 

for the boundary layer is longer than the ramp time.        
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6.7 Summary 
A set of scaling results have been developed for natural convection in an attic space and 

are verified by the numerical simulation for a fluid with a fixed Prandtl number (Pr = 

0.72). The scaling relations of transient and steady state values of the velocity (us) and 

the thermal layer thickness (δT ) and the steady state time scale (ts) were established in 

Chapter 4. Those scaling results have been used directly to develop some further 

scaling (heat transfer, filling box time) for the attic space problem. A Nusselt number 

scale (Nus) during the boundary layer development stage is developed. The cooling-

down time scale (tfc) and the Nusselt number scale at the cooling-down stage are also 

achieved. Several possible flow regimes which were established in Chapter 4 are also 

discussed in this chapter with numerical results.  

Furthermore, a temperature boundary condition of a ramp function applied to 

the inclined walls of the attic space is also investigated in this chapter. The boundary 

layer flow for this boundary condition depends on the comparison of the time at which 

the ramp cooling is completed with the time at which the boundary layer completes its 

growth. If the ramp time is long compared with the steady state time, the thermal 

boundary layer reaches a quasi-steady mode in which the growth of the layer is 

governed by the thermal balance between convection and conduction. On the other 

hand, if the ramp is completed before the thermal boundary layer becomes steady-state, 

the subsequent growth is governed by the balance between buoyancy and inertia, as for 

the case of instantaneous cooling. However, if the Rayleigh number exceeds the critical 

Rayleigh number then flow inside the boundary layer becomes unstable. The scaling 

results of the boundary layer development have been derived and discussed in Chapter 

4. The scaling of heat transfer through the boundary layer into the enclosure and the 

cooling-down time scale for the enclosure have been developed in this chapter. The 

heat transfer scale at the cooling-down stage is also derived. Moreover, a discussion has 

been made regarding some important flow regimes developed in Chapter 4 with 

numerical results. The comparisons between the scaling predictions and the numerical 

simulations demonstrate that the scaling results agree very well with the numerical 

simulations
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7. Natural convection in attics 
subject to periodic thermal forcing 
From the literature review (see Chapter 1) it is seen that for the attic space problem 

previous research has been conducted for either the sudden heating or sudden cooling 

boundary condition on the sloping boundaries. Ramp heating and cooling temperature 

boundary conditions have been considered in the previous chapters (Chapter 5 and 6). 

In real situations, however, the attic space of buildings is subject to alternative heating 

and cooling over a diurnal cycle (see Figure 7.1). Therefore, the flow response and heat 

transfer in the attic space subject to a periodic thermal forcing are yet to be unveiled.   
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Figure 7.1 Temperature boundary condition on the incline walls of the enclosure. 

 

In this chapter, numerical simulations of natural convection in an attic space 

subject to diurnal temperature condition on the sloping wall have been carried out. The 

effects of the aspect ratio and Rayleigh number on the fluid flow and heat transfer have 

been discussed in details as well as the formation of a pitchfork bifurcation of the flow 

at the symmetric line of the enclosure. Details of the numerical procedure can be found 

in chapter 2. However, grid and time step dependence tests for this periodic case are 

described in this chapter. 

The physical system is sketched in Figure 7.2, which is an air-filled isosceles 

triangular cavity of variable aspect ratios. Here 2l is the length of the base or ceiling, T  0
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is the temperature applied on the base, TA is the amplitude of temperature fluctuation on 

the inclined surfaces, h is the height of the enclosure and P is the period of the thermal 

forcing. 
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Figure 7.2 A schematic of the geometry and boundary conditions of the enclosure. 

 
 
 The boundary conditions for the present numerical simulations are also shown 

in Figure 7.2. Here, the temperature of the bottom wall of the cavity is fixed at T = T0. 

A periodic temperature boundary condition is applied to the two inclined walls. The 

Rayleigh number for the periodic boundary condition has been defined based on the 

maximum temperature difference between the inclined surface and the bottom over a 

cycle.   

κν
β 32~ hTgRa A . 

6, 7.2×105Three aspect ratios 0.2, 0.5 and 1.0, four Rayleigh numbers, 1.5×10 , 

1.5×104 3, and 1.5×10 , and a fixed Prandtl number 0.72 are considered in the present 

investigation. Based on the experimental observations of Flack (1980), which reported 

the critical Rayleigh number for the flow to become turbulent, we have chosen the 

maximum Rayleigh number, Ra = 1.5×106 so that the flow stays in the laminar regime. 

It is understood that in real situations the Rayleigh number may be much higher than 

this and an appropriate turbulence model should be applied. This is beyond the scope of 

this study. In order to avoid the singularities at the tips in the numerical simulation, the 

tips are cut off by 5% and at the cutting points (refer to Figure 7.2) rigid non-slip and 

adiabatic vertical walls are assumed. We anticipate that this modification of the 

geometry will not alter the overall flow development significantly. 
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7.1 Selection of the physical period 
The period is determined in consideration of the scaling predictions of Chapters 3, 4, 5 

and 6 which have demonstrated that the time for the adjustment of the temperature in 

the thermal boundary layer is by far shorter than the thermal forcing period of 24 hours 

in field situations.  

For sudden heating/cooling boundary conditions the steady state time scale for 

the boundary layer development from (5.2) is 

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
κ

2

2/12/1

2/122/1 11~ h
PrARa

APrts , (7.1) 

and the heating-up or cooling-down time scale for the enclosure to be filled with hot or 

cold fluid under the same boundary conditions from (5.12) is  
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On the other hand, the quasi-steady time scale for ramp heating/cooling boundary 

condition of the boundary layer development for the case when the ramp time is longer 

than the quasi-steady time from (5.16) is 
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and the heating-up or cooling-down time scale of the enclosure under the same 

boundary conditions from (6.32) is 
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where x  is given by (6.26) as 1
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However, if the cavity is filled with cold fluid before the ramp is finished then the 

filling up time is given by (6.34) as 
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. (7.6) 
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Table 7.1 Steady state and quasi-steady times for sudden and ramp boundary conditions 

respectively for different A and Ra.  

Quasi-steady time (tSteady state time (ts) for  sr) for  
ramp heating/cooling (tsudden heating/cooling p = 1000s) Aspect 

ratio 6 3 6 3Ra = 7.2×10 Ra = 1.5×10 Ra = 7.2×10Ra = 1.5×10
A=0.2 8.15s - 40.51s - 
A=0.5 2.54s 35.76s 18.62s 108.53s 
A=1.0 2.26s - 17.23s - 

 

Table 7.1 presents the scaling values of the steady and quasi-steady times for 

sudden and ramp heating/cooling boundary conditions respectively for different A and 

Ra. The highest Rayleigh number considered here for three different aspect ratio is Ra 

= 1.5×106. It is noticed that the steady state times for the boundary layer for this 

Rayleigh number of A = 0.2, 0.5 and 1.0 are 8.1s, 2.54s and 2.26s respectively. 

However, for the lowest Rayleigh number, Ra = 7.2×103 the steady state time for A = 

0.5 is 35.76s. On the other hand, the quasi-steady time for the ramp temperature 

boundary condition depends on the length of the ramp. If we assume the ramp time to 

be 1000s then the quasi-steady times for these aspect ratios are 40.51s, 18.62s and 

17.23s respectively and for the lowest Rayleigh number, Ra = 7.2×103 the quasi-steady 

time for the aspect ratio A= 0.5 is 108.53s which is much shorter than the ramp time 

(1000s). If the ramp time is 200s the quasi-steady time of A = 0.5 for the lowest 

Rayleigh number considered here is 63.47s. Still the quasi-steady time is about half of 

the ramp time. Therefore, what happened between the quasi-steady time and the ramp 

time is, once the quasi-steady state time tsr is reached, the boundary layer stops growing 

according to κ1/ 1/2 2t  which is only valid for conductive boundary layers. The thermal 

boundary layer is in a quasi-steady mode with convection balancing conduction. 

Further increase of the heat input simply accelerates the flow to maintain the proper 

thermal balance. The thickness and the velocity scales during this quasi-steady mode is    
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respectively. When the hot fluid travels through the boundary layer and reaches the top 

tip of the cavity then it has no choice but to move downward along the symmetry line 

of the cavity. In this way the cavity is filled up with hot fluid with a horizontal 

stratification of the thermal field.  

 However, during the cooling phase, the boundary layer is not stable for the 

Rayleigh numbers considered here. In that case initially a cold boundary layer develops 

adjacent to the inclined wall which is potentially unstable to the Rayleigh Bénard 

instability, which may manifest in a form of sinking plumes. These plumes mix up the 

cold fluid with the hot fluid inside the cavity until the end of the cooling phase.   

 

Table 7.2 Heating-up/cooling-down times for sudden and ramp boundary conditions 

respectively for different A and Ra.  

Filling-up time (tFilling-up time (tf) for  ) for  fr

ramp heating/cooling (tsudden heating/cooling p = 1000s) Aspect 
ratio 6 3 6 3Ra = 7.2×10 Ra = 1.5×10 Ra = 7.2×10Ra = 1.5×10

A=0.2 83.24s - 213.32s - 
A=0.5 42.39s 159.01s 145.07s 308.77s 
A=1.0 31.61s - 122.67s - 

 

Moreover, Table 7.2 shows the scaling values of the filling-up times for sudden 

and ramp heating/cooling boundary conditions for different A and Ra. It is seen that the 

heating-up or cooling-down times for the sudden heating/cooling boundary condition 

for A = 0.5 and Ra = 1.5×106 3 is 42.39s and for Ra = 7.2×10  and the same aspect ratio 

is 159.01s. For aspect ratios 0.2 and 1.0 the filling-up times are 83.24s and 31.61s 

respectively when Ra = 1.5×106. The filling-up times for ramp heating/cooling 

boundary conditions for A = 0.5 are 145.07s and 308.77s when Ra = 1.5×106 and 

7.2×103 respectively and tp = 1000s. For two other aspect ratios, A = 0.2 and 1.0, the 

filling-up times are 213.32s and 122.67s respectively for Ra = 1.5×106. However, the 

filling-up time for ramp boundary conditions depends on the length of the ramp time. If 

the ramp time is 200s then the filling-up time for the lowest Rayleigh number 

considered here is 154.90s for A = 0.5. These times are very short when compared to 

the thermal forcing period of 24 hours in field situations. Therefore, the period of the 

thermal cycle may be considered as 400s or more based on the above discussions for 

the following numerical simulations. However, for a better understanding of the flow at 
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in the quasi-steady mode, we have chosen a thermal forcing period of 2000s for all the 

simulations. 
     

7.2 Grid and time step dependence tests 
Mesh and time step dependence tests have been carried out with three different meshes 

and three different time steps for each aspect ratio of A = 0.2, 0.5 and 1.0. The results of 

the mesh and time-step dependence tests are shown in Tables 7.3, 7.4 and 7.5, which 

show the temperature at three different positions in the cavity at specific times t = 0.75P 

when the flow is the most unstable.  

 

Table 7.3 Parameters and results of mesh and time-step dependence test at t = 0.75P for 

A = 0.2 and Ra = 1.5×106. 

Temperature at different points in the cavity (K) 
Mesh Size Time Step(s) O N M 
180 × 45 1.00 292.4748  292.6010  293.6372  
280 × 70 0.75  292.4953  292.6086  293.6773  
360 × 90 0.50  292.4987  292.61137  293.7017  

 

It is seen in Tables 7.3, 7.4 and 7.5 that the variation of the calculated 

temperature among the three meshes with respect to TA is very small (<1%). Based on 

these tests, any of the tested meshes would be sufficiently fine for resolving the flow. 

Therefore, mesh sizes of 360 × 90, 320 × 80 and 270 × 90 for A = 0.2, 0.5 and 1.0 

respectively have been selected for the numerical simulations. The time step for the 

aspect ratios 0.2 and 0.5 is adopted as 0.5s and for the aspect ratio 1.0 is 0.75s.  
 

Table 7.4 Parameters and results of mesh and time-step dependence test at t = 0.75P for 

A = 0.5 and Ra = 1.5×106. 

Temperature at different points in the cavity (K) 
Mesh Size Time Step(s) O N M 
160 × 40 1.00  292.2819  292.3355  293.2779  
240 × 60 0.75  292.3174  292.3501  293.2979  
320 × 80 0.50  292.3346  292.3580  293.3059  
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Table 7.5 Parameters and results of mesh and time-step dependence test at t = 0.75P for 

A = 1.0 and Ra = 1.5×106. 

Temperature at different points in the cavity (K) 
Mesh Size Time Step(s) O N M 
180 × 60 1.00  292.4279 292.4077 292.4598 
270 × 90 0.75  292.2491 292.8421 292.2961 
360 × 120 0.50  292.2521 292.8747 292.2925 

 

7.3 Flow response to the periodic boundary 
condition 
In this section, the flow response to the periodic thermal forcing and the heat transfer 

through the sloping boundary are discussed for the case with A = 0.5, Pr = 0.72 and Ra 

= 1.5×106. 

7.3.1 General flow response to diurnal heating and 
cooling 
Since the initial flow is assumed to be isothermal and motionless, there is a start-up 

process of the flow response. In order to minimize the start-up effect, three full thermal 

forcing cycles are calculated in the numerical simulation before consideration of the 

flow. It is found that the start-up effect for the present case is almost negligible, and the 

flow response in the third cycle is identical to that in the previous cycle. In the 

following discussion, the results of the third cycle are presented.  

Figure 7.3 shows snapshots of streamlines and the corresponding isotherms at 

different stages of the cycle. The flow and temperature structures, shown in Figure 7.3 

at t = 2.00P, represent those at the beginning of the daytime heating process in the third 

thermal forcing cycle. At this time, the inclined surfaces and the bottom surface of the 

enclosure have the same temperature, but the temperature inside the enclosure is lower 

than the temperature on the boundaries due to the cooling effect in the previous thermal 

cycle. The residual temperature structure, which is formed in the previous cooling 

phase, is still present at t = 2.00P. The corresponding streamline contours at the same 

time show two circulating cells, and the temperature contours indicate stratification in 

the upper and lower section of the enclosure with two cold regions in the centre. 
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Figure 7.3 A series of snapshots of stream function and temperature contours of the third 

cycle at different times for A = 0.5 and Ra = 1.5×106. Left: streamlines; right: isotherms. 

 

As the upper surface temperature increases further, a distinct temperature 

stratification is established throughout the enclosure by the time t = 2.05P (see Figure 
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7.3). The streamlines at this stage indicate that the centers of the two circulating cells 

have shifted closer to the inclined surfaces, indicating a strong conduction effect near 

those boundaries. This phenomenon has been reported previously in Akinsete and 

Coleman (1982) and Asan and Namli (2000) for the daytime condition with constant 

heating at the upper surface or constant cooling at the bottom surface. 

At t = 2.25P, the temperature on the inclined surfaces peaks. Subsequently, the 

temperature drops, representing a decreasing heating effect. Since the interior flow is 

stably stratified prior to t = 2.25P, the decrease of the temperature at the inclined 

surface results in a cooling event, appearing first at the top corner and expanding 

downwards as the surface temperature drops further. At t = 2.45P, two additional 

circulating cells have formed in the upper region of the enclosure, and the newly 

formed cells push the existing cells downwards. The corresponding temperature 

contours show two distinct regions, an expanding upper region responding to the 

cooling effect, and a shrinking lower region with stratification responding to the 

decreasing heating effect. By the time t = 2.50P, the daytime heating ceases; the lower 

stratified flow region has disappeared completely and the flow in the enclosure is 

dominated by the cooling effect. At this time, the top and the bottom surfaces again 

have the same temperature, but the interior temperature is higher than that on the 

boundaries.  

As the upper inclined surface temperature drops below the bottom surface 

temperature (t = 2.70P, Figure 7.3), the cold-air layer under the inclined surfaces 

becomes unstable. At the same time, the hot-air layer above the bottom surface also 

becomes unstable. As a consequence, sinking cold-air plumes and rising hot-air plumes 

are visible in the isotherm contours and a cellular flow pattern is formed in the 

corresponding stream function contours. It is also noticeable that the flow is symmetric 

about the geometric symmetry plane at this time. However, as time increases the flow 

becomes asymmetric about the symmetric line (see isotherms at t = 2.95P). The large 

cell from the right hand side of the centreline, which is still growing, pushes the cell on 

the left of it towards the left tip. At the same time this large cell also changes its 

position and attempts to cross the centreline of the cavity and a small cell next to it 

moves into its position and grows.  

At t = 2.975P, the large cell in the stream lines has crossed the centerline and 

the cell on the right of it grows and becomes as large as it is after a short time (for 

brevity figures not included). The flow is also asymmetric at this time. However, it 
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returns to a symmetric flow at the time t = 3.00P which is the same as that at t = 2.00P, 

and similar temperature and flow structures to those at the beginning of the forcing 

cycle are formed. The above described flow development is repeated in the next cycle. 
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Figure7.4 Horizontal velocity profile (left) and temperature profile (right) along DE for A 

= 0.5 with Ra =  1.5×106. 

 

The horizontal velocity profiles (velocity parallel to the bottom surface) and the 

corresponding temperature profiles evaluated along the line DE shown in Figure 7.2 at 

different time instances of the third thermal forcing cycle are depicted in Figure 7.4. At 

the beginning of the cycle (t = 2.00P) the velocity is the highest near the roof of the 

attic (see Figure 7.4a), which is the surface driving the flow. At the same time, the body 

of fluid residing outside the top wall layer moves fast toward the bottom tips to fill up 
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the gap. As time progresses the vertical velocity increases and the horizontal 

temperature decreases (see t = 2.05P). A three layer structure in the velocity field is 

found at t = 2.45P. At this time the top portion of the cavity is locally cooled and the 

bottom portion is still hot (see Figure 7.3). After that time the flow completely reverses 

at t = 2.50P. It is noted that at this time the horizontal velocity is lower than that at the 

beginning of the cycle despite that the temperatures on the sloping boundary and the 

ceiling are the same at both times (see Figure 7.4b). This is due to the fact that at the 

beginning of the cycle the flow is mainly dominated by convection as a result of the 

cooling effect in the second half of the previous thermal cycle. However, the flow is 

dominated by conduction at t = 2.50P as a result of the heating effect in the first half of 

the current thermal cycle.  

As mentioned above, at the beginning of the cycle (t = 2.00P) the temperatures 

on the horizontal and inclined surfaces are the same as shown in Figure 7.4(b). 

However the temperature near the mid point of the profile line is lower than that at the 

surfaces by approximately 0.5K, which is consistent with the previous discussion of the 

flow field. Subsequently the temperature of the top surface increases (t = 2.05P) while 

the bottom surface temperature remains the same. It is noteworthy that the top surface 

reaches its peak temperature at t = 2.25P (for brevity the profile is not included). After 

this time the top surface temperature starts to decrease which can be seen at time t = 

2.40P. By comparing the temperature profiles at t = 2.05P and t = 2.45P shown in 

Figure 7.4(b), it is clear that the temperatures at both the top and bottom surfaces are 

the same for these two time instances. However, different temperature structures are 

seen in the interior region. The same phenomenon has been found at the times t = 2.50P 

and t = 2.00P.  

In Figure 7.4(c), the velocity profiles at the same location during the night-time 

cooling phase are displayed. In this phase the flow structure is more complicated. At t = 

2.55P the velocity near the bottom surface is slightly higher than that near the top. 

Again a three layer structure of the velocity field appeared which is seen at t = 2.65P, 

2.75P and 2.85P. The maximum velocity near the ceiling occurs at t = 2.75P when the 

cooling is at its maximum. After that it decreases and the flow reverses completely at t 

= 3.0P. The corresponding temperature profiles for the night-time condition are shown 

in Figure 7.4(d). It is seen that the temperature lines are not as smooth as those 

observed for the daytime condition. At t = 2.55P, the temperature near the bottom 

surface decreases first and then increases slowly with the height and again decreases 
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near the incline surface. This behaviour near the bottom surface is due to the presence 

of a rising plume. Similar behaviour has been seen for t = 2.75P and 2.85P. However, 

at t = 2.65P it decreases slowly after rapidly decreasing near the bottom surface. At t = 

3.00P again the bottom and top surface temperatures are the same with a lower 

temperature in the interior region.  

 

7.3.2 Heat transfer through the attic 
The Nusselt number, which has practical significance, is calculated as follows: 

k
hh

Nu eff= , (7.9) 

where the heat transfer coefficient heff is defined by 

AT
qh =eff . (7.10)

Here q is the convective heat flux through a boundary. Since the bottom surface 

temperature is fixed at 295K and the sloping wall surface temperature cycles between 

290K and 300K (refer to Figure 7.1), a zero temperature difference between the 

surfaces occurs twice in a cycle. Therefore, the amplitude of the temperature fluctuation 

(TA) is chosen for calculating the heat transfer coefficient instead of a changing 

temperature difference, which would give an undefined value of the heat transfer 

coefficient at particular times. 

  Figure 7.5 shows the calculated average Nusselt number on the inclined and 

bottom surfaces of the cavity. The time histories of the calculated Nusselt number on 

the inclined surfaces exhibit certain significant features. Firstly, it shows a periodic 

behaviour in response to the periodic thermal forcing. Secondly within each cycle of 

the flow response, there is a time period with weak heat transfer and a period with 

intensive heat transfer. The weak heat transfer corresponds to the daytime condition 

when the flow is mainly dominated by conduction and the strong heat transfer 

corresponds to the night-time condition. At night, the boundary layers adjacent to the 

inclined walls and the bottom are unstable. Therefore, sinking and rising plumes are 

formed in the inclined and horizontal boundary layers. These plumes dominate the heat 

transfer through the sloping walls of the cavity. Finally the calculated maximum 

Nusselt number on sloping surfaces is 8.72, occurring during the night-time period, 
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whereas the maximum value during the day time is only 3.48, for the selected Rayleigh 

number and aspect ratio.  

 The corresponding Nusselt number calculated on the bottom surface shows 

similar behavior as that of top surfaces. Note that the Nusselt number calculated using 

(7.9) is based on the total heat flux across the surfaces. Since the surface area of the top 

surface is larger (0.595m2) than the bottom surface (0.532m2), therefore the total surface 

heat flux on the top surfaces will be lower than that of the bottom surface. However, the 

integral of the heat transfer rate for a cycle on both surfaces has been calculated and it 

is found that both are the same.    

 

 
Figure 7.5 Average Nusselt number on the top and bottom surfaces of the cavity for 

three full cycles where Ra = 1.5 ×106 and A = 0.5, Pr = 0.72. 

 

7.3.3 Effect of the aspect ratio on the flow response 
The flow responses to the periodic thermal forcing for the other two aspect ratios are 

shown in Figure 7.6 and 7.7, which are compared with the flow response for A = 0.5 

shown in Figure 7.3. It is found that the aspect ratio of the enclosure has a great 

influence on the flow response as well as heat transfer. The residual effect of the 

previous cycle on the current cycle has been found similar for all aspect ratios (see at t 

=2.0P in Figures 7.3, 7.6 and 7.7) and the flow and temperature structures during the 

heating process is qualitatively the same for A = 1.0 and A = 0.2 as those for A = 0.5 for 

Ra = 1.5×106. However, during the cooling phase there are significant changes of flow 

and heat transfer among these aspect ratios. For the night-time the high velocity area of 
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these three aspect ratios exists between the two cells where the stream function gradient 

is higher. Therefore, the buoyancy drives the warm air upwards from the bottom of the 

geometry and at the same time the gravitational force acts on the cold air downwards 

from the top. This upward and downward movement can be seen in the temperature 

contours as a form of rising and sinking plumes. 

  

 
Figure 7.6 A series of snapshots of stream function and temperature contours of the 

third cycle at different times for A = 1.0 and Ra = 1.5×106. Left: streamlines; right: 

isotherms. 

 

It has been revealed that the flow remains symmetric about the geometrical 

centreline throughout the cycle for aspect ratio A = 0.2, whereas, it is asymmetric 

during the cooling phase for the other two aspect ratios for Ra = 1.5×106. It is also 
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anticipated that the asymmetric solution is one of two possible mirror images of the 

solutions. Another noticeable variation with different aspect ratios is the formation of a 

circulation cell near the top of the enclosure. It is seen for A = 1.0 that there is an extra 

vortex (Figure 7.6 at t = 2.95P) on the top of the cavity, which is completely absent for 

A = 0.5 and A = 0.2. The flow and temperature fields for the smallest aspect ratio A = 

0.2 are more complex, with several circulation cells on either side of the central line 

and many plumes alternately rising and falling throughout the domain, as seen in Figure 

7.7. These cells and plumes are the result of flow instability described earlier.    

  

 
Figure 7.7 A series of snapshots of stream function and temperature contours of the third 

cycle at different times for A = 0.2 and Ra = 1.5×106. Left: streamlines; right: isotherms. 

 

Figure 7.8 illustrates the horizontal velocity and temperature profiles for aspect 

ratio A = 1.0 along the line DE as shown in Figure 7.2 for Ra = 1.50×106. Since the 

flow is stable and stratified during the day (the heating phase), the structures of the 

velocity and temperature profiles are qualitatively the same as those for other aspect 

ratios.            
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Figure 7.8 Horizontal velocity profile (left) and temperature profile (right) along DE for 

A = 1.0 with Ra = 1.50 6×10 .

 

At the night-time the velocity and temperature profiles for A = 1.0 are more 

complicated than that for A = 0.5. As seen in Figure 7.8, at time t = 2.55P when the 

upper surface temperature is lower than the bottom surface, the velocity near the 

bottom surface is slightly higher than that near the inclined surfaces. After that the 

velocity increases near both the surfaces until t = 2.75P. Since a plume-type instability 

dominates the flow during the cooling phase and the flow has an asymmetric behaviour 

for a certain period of time, the horizontal velocity is in the same direction near both 

surfaces and is in an opposite direction in the middle (see t = 2.8875P). As the flow 

transits into the next thermal cycle, it becomes very weak. The corresponding 

temperature contours are plotted in Figure 7.8(b). It is seen that the temperature profiles 

near the bottom surface show a wave shaped for almost the whole cooling phase due to 

the rising plumes (see Figure 7.3). At the time t = 2.8875P, when three layers of the 

velocity structure is seen, the corresponding temperature profile also shows a wave 

structure.      
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Figure 7.9 Comparison of the average Nusselt number of three aspect ratios for Ra = 

1.5×106 and Pr =0.72. 

    

Figure 7.9 shows the calculated average Nusselt number on the inclined 

surfaces of the cavity for three different aspect ratios. The time histories of the 

calculated Nusselt number exhibit certain common features. Within each cycle of the 

flow response, there is a time period with weak heat transfer and a period with intensive 

heat transfer for each aspect ratio. The weak heat transfer corresponds to the day time 

condition when the heat transfer is dominated by conduction and the strong heat 

transfer corresponds to the night-time condition when convection dominates the flows 

and the instabilities occur in the form of rising and sinking plumes. During the day time 

the heat transfer rate is almost the same for all three aspect ratios. However, at the night 

time the heat transfer rate for A =1.0 is much smaller than that for the other two aspect 

ratios, and there is a fluctuation of the Nusselt number for a certain period of time. This 

fluctuation is absent in the other two aspect ratios. This may be due to the fact that less 

convective cells are present in the streamlines for A = 1.0 than those for the other two 

aspect ratios. Moreover, the movement of the dominating cell for A = 1.0 is faster than 

those for other two. In addition to this, an extra cell appears on the top of the cavity for 

the aspect ratio A = 1.0. It is also noticed that there is not much difference in heat 

transfer for the aspect ratios A = 0.5 and 0.2. The highest average Nusselt numbers for 

A = 1.0, 0.5 and 0.2 are 6.55, 8.72 and 8.76 respectively. 

162 



Chapter 7 

7.3.4 Dependence of flow response and heat transfer 
on the Rayleigh number  
 

Figure 7.10 shows snapshots of stream function and temperature contours for the aspect 

ratio 0.5 with three different Rayleigh numbers, Ra = 1.5×106, 7.2×104 3 and 7.2×10 . 

The contours for Ra = 7.2×105 6 are qualitatively the same as for Ra = 1.5×10 . It is 

found that in the heating phase (i.e. when the upper wall temperature is higher than the 

temperature of the bottom) the flow structures are qualitatively similar for different 

Rayleigh numbers. However, in the cooling phase the flow behaviour is strongly 

dependent on the Rayleigh number. Stream function and temperature contours are 

presented at two different times, t = 2.70P and 2.95P for each Rayleigh number in 

Figure 7.10. In the isotherms, rising and sinking plumes are visible for Ra = 1.5×106 

and 7.2×104 at both times. A cellular flow pattern is seen in the corresponding stream 

function contours for Ra = 1.5×106. However, only two convective cells are present for 

Ra = 7.2×104 3. If the Rayleigh number is decreased further (Ra = 7.2×10 ), the flow 

becomes weaker. Only two cells are seen in the stream function contours and the 

temperature field is horizontally stratified (see the corresponding isotherms). At t = 

2.95P, the flow seems to be asymmetric along the centre line for Ra = 1.5×106. 

However, for the lower Rayleigh numbers the asymmetric behaviour is not visible.      
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Figure 7.10 Snapshots of stream function contours (left) and isotherms (right) of the 

third cycle at different times and different Rayleigh numbers with fixed A = 0.5.  

 

Figure 7.11 shows the comparison of the Nusselt number among four Rayleigh 

numbers for a fixed aspect ratio 0.5. It is seen clearly that during the heating phase the 

heat transfer rate is weaker, whereas it is much stronger in the cooling phase. With the 

increase of the Rayleigh number, the Nusselt number increases throughout the thermal 

cycle, but the rate of increase is much higher in the cooling phase compared to that in 

the heating phase. The maximum Nusselt number in the cooling phase for Ra = 1.5×106 

is about 2.5 times of the maximum Nusselt number during the heating phase. It is 
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noticeable that for the lowest Rayleigh number Ra = 1.5×103, the heat transfer rate 

during the heating and cooling phases are almost the same. The maximum Nusselt 

number for the four different Rayleigh numbers, Ra = 1.5×106, 7.2×105, 7.2×104 and 

7.2×103 for the aspect ratio 0.5 are 8.65, 7.34, 4.26 and 3.11 respectively.   
 

 
Figure 7.11 Comparison of the average Nusselt number of four Rayleigh numbers for A 

= 0.5 and Pr = 0.72 
 

7.3.5 Transition between symmetric and asymmetric 
flows 
The highest Rayleigh number considered in this study for the three aspect ratios is 

1.5×106. Except for A = 0.2, the flow in the cavity for the other two aspect ratios is 

observed to undergo a supercritical pitchfork bifurcation for this Rayleigh number, in 

which case one of two possible mirror image asymmetric solutions is obtained. This 

asymmetric behaviour was first reported numerically and experimentally by Holtzman 

et al. (2000) in their study of the case of a sudden cooling boundary condition. If the 

flow is asymmetric, the horizontal velocity along the midplane of the isosceles triangle 

would be nonzero. Based on this hypothesis, Figure 7.12 illustrates the absolute value 

of maximum horizontal velocity along the geometric center line for A = 1.0 and 0.5. It 

is seen in this figure that, for both aspect ratios, the maximum horizontal velocity is 

zero up to approximately t = 0.70P in each cycle, suggesting that the flow is symmetric 

during this time. However, after this time the maximum horizontal velocity starts to 
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increase, indicating that the flow becomes asymmetric. The asymmetry remains until 

shortly before the end of each cycle when the flow returns to symmetric again. The 

same asymmetric behaviour of the flow is seen for the Rayleigh number 7.2×105 for the 

aspect ratios 0.5 and 1.0.  
 

Figure 7.12 The maximum horizontal velocity along the symmetry line for (a) A = 1.0 

and (b) A = 0.5 with Ra = 1.5×106. 
 

The same results have been found when the average Nusselt numbers obtained 

for both inclined surfaces are compared for the aspect ratios 1.0 and 0.5, which are 

shown in Figures 7.13 (a) and (b) respectively. It is seen that at about t = 0.70P, the 

calculated Nusselt numbers at the left and right inclined surfaces start to diverge, but 

later they meet again before the end of each cycle.  
 

  
Figure 7.13 Comparison of the average Nusselt number on two inclined surfaces of 

the enclosure for (a) A = 1.0 and (b) A = 0.5 with Ra = 1.5×106
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7.4 Summary 
Natural convection in an attic space subject to periodic thermal forcing has been 

described in this study based on numerical simulations. Three aspect ratios of A = 1.0, 

0.5 and 0.2 with four Rayleigh numbers of Ra = 1.5×106 5, 7.2×10 , 7.2×104 3and 7.2×10  

for each aspect ratio have been considered here. Many important features are revealed 

from the present numerical simulations. It is found that the flow response to the 

temperature variation on the external surface is fast, and thus the start-up effect is 

almost negligible. The occurrence of sinking cold-air plumes and rising hot-air plumes 

in the isotherm contours and the formation of cellular flow patterns in the stream 

function contours confirm the presence of the Rayleigh-Bénard type instability. It is 

also observed that the flow undergoes a transition between symmetry and asymmetry 

about the geometric symmetry plane over a diurnal cycle for the aspect ratios of A = 1.0 

and 0.5 with the Rayleigh numbers 1.5×106 and 7.2×105. For all other cases the flow 

remains symmetric. A three-layer velocity structure has been found along the line at DE 

as shown in Figure 7.2 in both the daytime heating phase (due to local cooling effect in 

the upper sections of the inclined walls) and night-time cooling phase when the flow 

becomes asymmetric. Furthermore, the flow response in the daytime heating phase is 

weak, whereas the flow response in the night-time cooling phase, which is dominated 

by convection, is intensive. At lower Rayleigh numbers the flow becomes weaker for 

all aspect ratios, and no asymmetric flow behaviour has been noticed. 
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8. Conclusions 
In this thesis, scaling and numerical analyses are employed to investigate transient 

natural convection in the boundary layer adjacent to an inclined flat plate and in an attic 

space under various forms of thermal forcing. Extensive scaling relations of the flow 

parameters have been derived for sudden and ramp heating/cooling boundary 

conditions and verified by numerical simulations. The major findings from the present 

study are summarized in this chapter and recommendations for future investigations are 

also made at the end of this chapter.  

8.1 Summary of the research 

8.1.1 Natural convection adjacent to an inclined plate 
Natural convection adjacent to a heated inclined flat plate is examined by scaling 

analysis and verified by numerical simulations for air (Pr = 0.72) in Chapter 3. It is 

found that the flow development is mainly dominated by three distinct stages for the 

sudden heating boundary condition, i.e. the start-up stage, the transitional stage and the 

steady stage. The scaling relations are formed based on the established characteristic 

flow parameters of the maximum velocity inside the boundary layer (us), the time for 

the boundary layer to reach the steady state (ts) and the thermal (δT) and viscous (δν) 

boundary layer thicknesses. Through comparisons of those scaling assumptions with 

the numerical simulations, it is found that the scaling results agree very well with the 

numerical simulations.  

A temperature boundary condition of a ramp function which is applied on the 

inclined plate has also been investigated for the same problem. The boundary layer 

flow for this boundary condition depends on the comparison of the time at which the 

ramp heating is completed with the time at which the boundary layer completes its 

growth. If the ramp time is long compared with the steady state time, the thermal 

boundary layer reaches a quasi-steady mode in which the growth of the layer is 

governed by the thermal balance between convection and conduction. On the other 

hand, if the ramp is completed before the thermal boundary layer becomes steady, the 

subsequent growth is governed by the balance between buoyancy and inertia, as for the 

case of sudden heating. Several scaling relations have been established in this study, 
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which include the maximum velocity parallel to the inclined plate inside the boundary 

layer (u) at the transient stage and at the quasi-steady mode, the time for the boundary 

layer to reach the quasi-steady state (tsr) and the thermal and viscous boundary layer 

thicknesses (δT and δν) at the transient stage and quasi-steady mode. The comparisons 

between the scaling relations and the numerical simulations demonstrate that the 

scaling results agree very well with the numerical simulations.  

Natural convection adjacent to a cooled inclined flat plate is also examined by 

scaling analysis with numerical verification in Chapter 4. Two types of cooling 

boundary condition are considered: sudden cooling and ramp cooling. It is noticed that 

for sudden cooling, as soon as the cold temperature is applied to the inclined plate, a 

cold boundary layer is formed. This boundary layer is potentially unstable to Rayleigh-

Bénard instability if the Rayleigh number exceeds a certain critical value. A prediction 

of the onset of instability has been achieved through scaling analysis. Different flow 

regimes for sudden cooling based on the Rayleigh number are developed and discussed 

with numerical results in this chapter. It is found that the scaling results agree very well 

with the numerical results.  

Similarly to the sudden cooling case, the cooling boundary layer for the ramp 

cooling boundary condition is also unstable to the Rayleigh-Bénard instability if the 

Rayleigh number exceeds a certain critical value. The instability, which is governed by 

a local Rayleigh number across the boundary layer, may occur in different flow regimes 

classified based on the global Rayleigh number. The instability may set in before the 

quasi-steady time, after the quasi-steady time or after the ramp is finished if the ramp 

time is shorter than the steady state time. Several scaling relations have been 

established in this case including the onset time of instability for different flow regimes. 

The comparisons between the scaling relations and the numerical simulations also 

demonstrate that the scaling results agree very well with the numerical simulations.  

 

8.1.2 Natural convection in an attic space 
Natural convection in an attic space subject to heating on the inclined surfaces is 

examined by scaling analysis and verified by numerical simulations in Chapter 5. It is 

found that the flow is mainly dominated by four distinct stages for the sudden heating 

boundary condition, i.e. start-up stage, transitional stage, steady state stage of the 

boundary layer and heating-up stage of the entire cavity. A heat transfer scale, in the 
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form of a surface Nusselt number (Nus), at the boundary layer development stage is 

developed. The heating-up time (tf) scale and the Nusselt number scale at the heating-

up stage are also developed. The scaling results agree very well with the numerical 

simulations.  

Furthermore, natural convection in an attic space subject to heating with a 

temperature boundary condition of a ramp function on the inclined walls has also been 

investigated in Chapter 5. Similarly to the sudden heating case, a heat transfer scale in 

the form of a Nusselt number (Nu and Nusr ins), the heating-up time scale (tfr) and the 

Nusselt number scale at the heating-up stage are also established. The comparisons 

between the scaling relations and the numerical simulations demonstrate that the 

scaling results agree very well with the numerical simulations.  

A set of scaling results have also been developed for natural convection in an 

attic space subject to cooling on the inclined surfaces and are verified by numerical 

simulations in Chapter 6. The heat transfer through the sloping walls has been 

calculated in the form of a scaling relation during the boundary layer development. A 

time scale (tfc) is established when the entire cavity is filled with cold fluid. The Nusselt 

number scale at the cooling-down time is also obtained. The scaling results agree very 

well with the numerical simulations.  

In addition, cooling with a ramp temperature boundary condition applied to the 

inclined walls has also been investigated in this chapter. Like sudden cooling case, the 

scaling of heat transfer through the inclined surfaces and the cooling-down time scale 

for the enclosure have been developed in this chapter. The heat transfer scale at the 

cooling down stage is also derived. The comparisons between the scaling predictions 

and the numerical simulations demonstrate that the scaling results agree very well with 

the numerical simulations.  

Natural convection in an attic space subject to periodic thermal forcing has been 

described in Chapter 7 based on numerical simulations. Three aspect ratios of A = 1.0, 

0.5 and 0.2 with four Rayleigh numbers of Ra = 1.5×106 5, 7.2×10 , 7.2×104 3and 7.2×10  

are considered. Many important features are revealed from the present numerical 

simulations. It is found that the flow response to the temperature variation on the 

external surface is fast, and thus the start-up effect is almost negligible. The occurrence 

of sinking cold-air plumes and rising hot-air plumes observed in the isotherms and the 

formation of cellular flow patterns in the stream function contours confirm the presence 

170 



Chapter 8 

of the Rayleigh-Bénard type instability. It is also observed that the flow undergoes a 

transition between symmetry and asymmetry about the geometric symmetry plane over 

a diurnal cycle for the aspect ratios of A = 1.0 and 0.5 with Rayleigh numbers 1.5×106 

and 7.2×105. For all other cases the flow remains symmetric. A three-layer velocity 

structure has been found in the enclosure in both the daytime heating phase and night-

time cooling phase. Furthermore, the daytime responding flow is weak, whereas the 

night-time responding flow, which is dominated by convection, is intensive. For lower 

Rayleigh numbers the flow becomes weaker for these three aspect ratios and no 

asymmetric flow behaviour has been noticed. 

 

8.2 Future studies 
Significant progress regarding the transient natural convection boundary layer adjacent 

to an inclined flat plate and in an attic space has been achieved in this study. However, 

some new areas related to attic space are worth investigating in future studies. 

 In the attic space problem we assumed that the flow is two dimensional in this 

thesis. However, in real situation the flow may have some three dimensional effect 

which is worth further studying. Moreover, we used a sine function of the temperature 

to define the day-night temperature effect on the roof which is applicable for the east 

faces or west faces of buildings. But in reality, buildings are built with different faces. 

Therefore, the sun rays do not project at the same angle on the entire roof. A complex 

and more realistic temperature boundary condition may be defined for further studies. 

In addition, radiation effects need to be considered in future investigations.  

 Since the focus of this study was the attic space problem, we chose a single 

Prandtl number (0.72) for the verification of the scaling relation. We may extend this 

study by considering a wide range of Prandtl numbers which are less than or greater 

than unity. Moreover, scaling analysis has been performed for the sudden 

heating/cooling and ramp heating/cooling boundary conditions on the sloping walls of 

the attic space. A further investigation of the scaling analysis may include the diurnal 

(periodic) temperature boundary condition. 
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