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Abstract Natural convection thermal boundary layer adjacent 
to an instantaneous heated inclined flat plate is investigated 
through a scaling analysis and verified by direct numerical 
simulations. It is revealed from the analysis that the development 
of the boundary layer may be characterized by three distinct 
stages, i.e. a start-up stage, a transitional stage and a steady state 
stage. These three stages can be clearly identified from the 
numerical simulations. Major scales including the flow velocity, 
flow development time, and the thermal and viscous boundary 
layer thicknesses are established to quantify the flow 
development at different stages and over a wide range of flow 
parameters. Details of the scaling analysis are described in this 
paper. 
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1. Introduction  
Natural convection adjacent to a heated or cooled flat plate 
is a common phenomenon in nature and industry, and thus 
the corresponding study is of practical significance in fluid 
mechanics and heat transfer societies. The flow 
development of a growing boundary layer may be 
quantified using scaling analysis [1], which is increasingly 
adopted by the researchers since it is a cost-effective way 
that can be applied for understanding the physical 
mechanism of the fluid flow and heat transfer. The results 
of scale analysis also play an important role in guiding 
both further experimental and numerical investigations. A 
detailed scaling analysis of the various stages of the flow 
development in a differentially heated cavity following 
sudden heating and cooling on the vertical boundaries has 
been addressed in [1].  
 The flow development in the various stages, 
including the start up of the vertical boundary layer 
adjacent to the heated sidewall, the development of the 
intrusion layer under the ceiling of the cavity and finally 
the approach of the flow in the cavity to a steady state has 
been characterized [1]. Subsequently, the scaling relations 
of the thermal boundary layer for various boundary 
conditions and geometries have been obtained, some of 
which have been verified through comparisons with 

numerical simulations over a range of forcing parameters 
[2-10]. The scaling analysis has also been applied for the 
flow development in an attic [8, 10, 11] for both heating 
and cooling roof conditions. The studies by Saha et al. [8, 
10] revisit the attic space problem for two different thermal 
forcing cases: sudden heating and cooling for a wide range 
of roof slope. 
 In this study, a new scaling for the development 
of the boundary layers adjacent to the downward facing 
inclined heated flat plate is developed. A suddenly 
imposed temperature on the plate is considered. The 
Prandtl number in this study is chosen greater than unity. 
Detailed balances of the important terms of the N-S and 
energy equations are examined. The scaling relations of 
the velocity, thermal and viscous layer thickness in the 
different stages of the boundary layer development are 
achieved, and the time scale of the transition of the flow to 
a steady state is also obtained. The numerical results agree 
well with the scaling results for all parameters considered 
here. 
 

      

 

Fig. 1: Schematic of the computational domain and 
boundary conditions. 
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2. Problem Formulation 
Under consideration is the flow resulting from an initially 
motionless and isothermal Newtonian fluid (with Pr > 1) 
adjacent to an inclined heated plate. The physical system 
sketched in Figure 1 consists of an inclined flat plate (CD 
= L). Both ends of the plate are extended by a distance 
equal to its length and form a rectangular domain, which is 
filled with an initially stationary fluid at a temperature T0. 
If the plate is considered as the hypotenuse of a right 
angled triangle then the height is h, the length of the base 
is l and the angle that the plate makes with the base is φ. 
Except for the plate (the section CD shown in Figure 1), all 
walls of the rectangular domain are assumed to be 
adiabatic, rigid and non-slip. A sudden heating temperature 
boundary condition has been applied on the plate which is 
then maintained.  
 The development of the flow under the inclined 
plate is governed by the following two-dimensional 
Navier–Stokes and energy equation with the Boussinesq 
approximation: 
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Initially the fluid is motionless and isothermal at 
temperature T0. The boundary condition is given in Fig 1. 

The flow development is determined by three governing 
parameters: the Rayleigh number (Ra), the Prandtl number 
(Pr) and the slope (A). They are defined respectively as 
follows, 
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3.  Scaling analysis 

 
First it is proposed a triple layer model for the boundary 
layer of the natural convection flow, which in particular 
suits the case Pr > 1. A schematic illustration of the 
boundary layer profile depicting this is shown in Fig. 3. 
Here, as an important difference from previous scaling 
analysis, an additional layer, layer II, is introduced, which 
is normally neglected if the fluid is assumed to be 

infinitely large Pr-number. An integral approach is used to 
derive the scaling laws.  

 
Fig. 2. A schematic of the temperature and velocity 
profiles normal to the inclined plate at its mid point. 

 
Initially the thermal boundary layer grows 

according to δT ~ κ1/2t1/2. In regions I and II, the balance is 
between viscosity and buoyancy. However, in region III 
the balance is between viscosity and inertia. In region I 
(the inner viscous layer), the balance between buoyancy 
and the viscosity gives: 
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In region II, the limit of the integral is taken between (δT - 
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Note that ∂U/∂Y|δT-δi = 0 since the velocity is maximum 
there. Additionally, we have 
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Comparing (6) and  (9), we may obtain 
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 As the buoyancy force is negligible in region III, 
the flow is driven solely by diffusion of momentum in 
which the unsteady term balances the viscous term, 
yielding 
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and further 
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Additionally, the length of the inner viscous layer (region 
I) is  
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Inserting (13) into (6), we obtain 
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(15) is the scaling for Um at the start-up stage 
  
As time increases the more heat is convected away. The 
boundary layer approaches a steady state until convection 
balances conduction. Therefore, the steady state scales of 
time, velocity, thermal layer, inner viscous layer and the 
total viscous layer are respectively as,  
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4.  Normalization of the governing equations 

and the scaling 
 

To verify the various scales, numerical solution of the full 
Navier-stokes equations and energy are obtained for a 
range of Ra, Pr and A values. For convenience, the non- 
dimensionalised forms of the governing equations are 
adopted  
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where x, y, u, v, θ, p and τ are the normalized forms of X, 
Y, U, V, T, P and t, respectively,  which are made 
normalized by the following set of expressions: 
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where U0 = κRa1/2/h . The origin of the coordinate system 
is located at the leading edge of the heated plate. 
 The scaling relations obtained above are 
normalized as follows: 
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5.  Results and discussions 
The velocity and temperature data are taken at x = 0.5, 
which is sufficiently far from the leading edge and the 
downstream end of the domain to avoid any end effects.  
The time series of the maximum velocity parallel to the 
plate (um) has also been recorded on the same line, which 
has been used to verify the velocity scaling relation. 
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Fig. 3: Velocity profiles parallel to the plate along the line 
x = 0.5 for all cases considered at steady state: (a) raw data 
and (b) u(1+Pr-1/2) plotted against yRa1/4A1/2(1+Pr -1/2)1/2/ 
(1+A2)1/4 

 The velocity profiles at τ/τs = 2.0 (when the flow 
is fully steady) are shown in Fig. 3 for different Prandtl 
numbers, Rayleigh numbers and aspect ratios. Fig. 3(a) 
shows the raw data of the velocity along the line 
perpendicular to the plate at x = 0.5. In Fig. 3(b), the 
velocity is normalized by its steady state scale 1/(1+Pr-1/2) 
and the distance normalized by its viscous boundary layer 
thickness scale (1+A2)1/4/ Ra1/4A1/2(1+Pr -1/2)1/2. Clearly, the 
scaling relations for the steady state velocity (28) and inner 
viscous boundary layer thickness (30) agree well with 
numerical results since all profiles almost overlap onto a 
single curve in the inner viscous layer (Fig. 3b). 

 

 
Fig. 4: Temperature profiles along the line x = 0.5 for all 
cases considered at steady state: (a) raw data and (b) θ 
plotted against yRa1/4A1/2/[(1+A2)1/4(1+Pr -1/2)1/2] 
 
 As the boundary-layer development approaches a 
steady state, the scaling (29) shows that the dimensionless 
thermal boundary layer thickness, δTs, is dependent on Ra, 
Pr and A. The temperature profiles calculated at x = 0.5 at 
a steady state are directly presented in Fig. 4(a). The 
distance y is scaled by (1+A2)1/4(1+Pr -1/2)1/2/ Ra1/4A1/2 (δTs 
at steady state) and the corresponding temperature profiles 
are re-plotted in Fig. 4(b). Clearly, all scaled temperature 
profiles overlap onto a single line, confirming that the 
scaling (29) is the correct scaling for δTs at the steady state. 
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Fig. 5: Time series of the maximum velocity parallel to the 
plate at x = 0.5 for all cases considered: (a) raw data and 
(b) um(1+Pr-1/2) plotted against τA/[(1+A2)1/2(1+Pr-1/2)] 

 Fig. 5 presents numerical results to validate the 
scaling relations (27) and (28). The time series of um for 
varying Ra, Pr and A are presented in figure 5(a). Fig. 5(b) 
presents the same time series in Fig. 5(a) but with um and τ 
scaled by 1/(1+Pr-1/2) and (1+A2)1/2(1+Pr-1/2)/A, 
respectively. It is clear that all scaled time series approach 
the same horizontal straight line at the steady state stage, 
confirming that 1/(1+Pr-1/2) is the correct scaling for um at 
the steady state. Additionally, Fig. 5(b) also shows that the 
peaks of all ten scaled time series occur almost at the same 
scaled time, validating the scaling relation (27).  

 

6.   Conclusions 
Natural convection under a heated inclined flat plate is 
examined by scaling analysis and verified by numerical 
simulations for various parameters considered here. The 
verification of the scaling relations includes thermal and 
viscous boundary-layer developments as well as the heat 
transfer rate predictions. Numerical results demonstrate 
that the scaling relations are able to accurately characterize 
the physical behaviour in each stage of the flow 
development, including the start-up stage, the transitional 
stage and the steady state stage. The present scaling 
analysis incorporates a detailed balance in the momentum 
equation depending on the thickness of the boundary layer 
that improves scaling predictions especially where the Pr 
variation effect is taken into account. The scaling relations 
are formed based on the established characteristic flow 
parameters of the maximum velocity in the boundary layer 
(um), the time for the boundary layer to reach the steady 
state (τs) and the thermal (δT) and viscous (δν) boundary 
layer thickness. Through comparisons of the scaling 
relations with the numerical simulations, it is found that 

the scaling results agree well with the numerical 
simulations. 
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