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Abstract:  The effect of thermal radiation on a steady two-dimensional natural 

convection laminar flow of viscous incompressible optically thick fluid along a vertical 

flat plate with streamwise sinusoidal surface temperature has been investigated in this 

study. Using the appropriate variables; the basic governing equations are transformed to 

convenient form and then solved numerically employing two efficient methods, namely, 

Implicit finite difference method (IFD) together with Keller box scheme and Straight 

forward finite difference (SFFD) method. Effects of the variation of the physical 

parameters, for example, conduction-radiation parameter (Planck number), surface 

temperature parameter, and the amplitude of the surface temperature, are shown on the 

skin friction and heat transfer rate quantitatively are shown numerically. Velocity and 

temperature profiles as well as streamlines and isotherms are also presented and 

discussed for the variation of conduction-radiation parameter. It is found that both skin-

friction and rate of heat transfer are enhanced considerably by increasing the values of 

conduction radiation parameter, Rd. 
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Nomenclature 

 

Cp Specific heat at constant pressure

Cf Skin-friction coefficient 

f Dimensionless stream function 

g Acceleration due to gravity 

Gr Grashof number 

Grx Local Grashof number 

k Thermal conductivity 

l Half wavelength of the variations 

Nu Local Nusselt number 

Pr Prandtl number 

qr Radiation heat flux 

qc Conduction heat flux 

Rd Radiation-conduction parameter or Plank number 

T Temperature of the fluid in the boundary layer 

T Temperature of the ambient fluid 

Tw Mean temperature at the surface 

U Free stream velocity 

u,v Dimensionless fluid velocities in the x, y directions

v̂,û  Dimensional fluid velocities in the x̂ , ŷ  directions 

U, V Non-dimensional velocity components 

x,y Dimensionless axes in the direction along and normal to the surface 

x̂ , ŷ  Dimensional axes in the direction along and normal to the surface 

X, Y Non-dimensional axes in the direction along and normal to the surface 

Greek Symbols 

   Relative amplitude of the surface temperature variations 

r Rosseland mean absorption coefficient 

 Volumetric coefficient of thermal expansion

∆T Temperature difference 

 Stefan-Boltzmann constant 

s  Scattering coefficient 



 

 

 

1. INTRODUCTION 
 

It is known that power law surface temperature distributions give rise to self similar 

boundary layer flows [1-2]. However, Rees [3] and Roy and Hossain [4] proposed 

another form of surface temperature variation, namely, sinusoidal variations about a 

mean temperature which is held above the ambient temperature of the fluid. This type of 

surface temperature may be considered to define the periodic array of heaters behind or 

within the wall. A large number of literature exists which deals with the effects of surface 

variations. For example, the streamwise surface waviness of free and mixed convection 

were investigated by Yao [5] and Moulic and Yao [6-7] respectively. Afterwards Cheng 

and wang [8], Hossain et al. [9] and Kim [10] extended these analysis to micropolar 

fluids, magnetohydrodynamics and non-Newtonian convection, respectively. However, 

the radiation effect on free convection laminar flow along a vertical flat plate with 

streamwise sinusoidal surface temperature is still unrevealed which motivates the present 

study. 

 It is noteworthy that the thermal radiation effect on the free convection flow are 

important in many engineering applications, such as in advanced types of power plants 

for nuclear rockets, high-speed flights, re-entry vehicles and processes involving high 

temperatures. However, a little knowledge is unfolded from a vast effect of radiation on 

the boundary layer flow of radiating fluid past a body (see Ozisik [11], Ch-13). It is also 

noted that the radiative heat fluxes can be approximated by the Rosseland diffusion 

 Stream function 

w Wall shear stress  

 Fluid density 

  Dynamic viscosity of the fluid 

 Kinematic viscosity of the fluid 

 Dimensionless temperature function  

w Surface heating parameter 

η Similarity variable 



approximation [12] for an optically dense medium, which has been greatly used in many 

radiation related studies [13-22]. 

The interaction of thermal radiation with free convection heat transfer along a 

vertical flat plate was considered by Cess [13] and Cheng and Ozisic [15]. The authors 

considered the absorbing, emitting and non-scattering gas for their investigation. The 

singular perturbation technique was used to solve the set of non-linear partial differential 

equations. On the other hand, an analytical attempt was made by Arpaci [14] to 

understand the non-equilibrium interaction between the thermal radiation and the laminar 

natural convection from a heated vertical plate immersed in a radiating gas. Shwartz [16] 

studied the behavior of an emitting and absorbing gas including the entire range of optical 

thickness, from thin to thick.  

The effect of radiation using the Rosseland diffusion approximation was analyzed 

by Hossain et al. [17-18]. The authors obtained the non-similarity solution for the forced 

and free convection flow of an optically dense viscous incompressible fluid past a heated 

vertical plate with uniform free stream velocity and surface temperature. They 

incorporated a group of transformations which led the boundary layer equations to the 

local non-similarity equations validating both in the forced and free convection regimes.  

The study of the thermal radiation effect in natural convection in the cylinder also 

draws many researchers attention. For example, Novotny and Kelleher [19] investigated 

the laminar free convection of an absorbing-emitting gas in the region of the stagnation 

point of a horizontal cylinder. Hossain et al. [20-22] investigated the radiation effect on 

free convection along an isothermal vertical cylinder, elliptic cylinder and mixed 

convection from a horizontal circular cylinder. The effect of radiation on natural 

convection on the wavy surface [23-24] is also available in the literature. Very recently 

sinusoidal temperature variation with time has been studied on the inclined walls of the 

attic space by Saha et al. [25] and on the vertical plate by Roy and Hossain [26].     

In the present study, it is proposed to investigate the natural convection flow of an 

optically thick viscous incompressible fluid along a non-isothermal vertical flat plate 

considering the Rosseland diffusion approximation. The basic equations of motion are 

transformed to convenient form, and then solved numerically employing two efficient 

methods, namely (i) Implicit finite difference method or Keller box scheme [27] and (ii) 



Straight forward finite difference method. Consideration has been given to the situation 

where the buoyancy forces assist the natural convection flow for various combinations of 

the radiation-conduction parameter Rd, surface heating parameter, w and the Prandtl 

number, Pr. The numerical results allow us to predict the different behaviour that can be 

observed when the relevant parameters are varied.  

 
2. FORMULATION OF PROBLEM 

A steady two-dimensional laminar free convective flow from non-isothermal 

semi-infinite vertical flat plate, which is immersed in a viscous and incompressible 

optically thick fluid, is considered. It is assumed that the heated surface temperature of 

the plate is maintained at the steady temperature, 

    lxTTTT w /ˆsin1    (1) 

where T is the ambient temperature, Tw is the mean surface temperature with Tw > T,   

is the relative amplitude of the surface temperature variations and 2l is the wavelength of 

the variations. The physical configuration and the coordinate system considered here are 

shown in Fig. 1. 
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Fig. 1:  Physical model and coordinate system. 
 

Under the usual Bousinesq approximation, the equations governing the flow are    
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where  v̂,û  are the velocity components along the  ŷ,x̂ axes, g is the acceleration due to 

gravity,  is the fluid density, k is the thermal conductivity of the fluid,  is the 

coefficient of thermal expansion,   is the viscosity of the fluid, Cp is the specific heat at 

constant pressure, and qr on the right hand side of equation (4) represents the radiative 

heat flux in the ŷ  direction. 

The appropriate boundary conditions to solve equations (2)-(4) are  

   0ˆat/ˆsin1,0ˆˆ   ylxTTTu v , (5a)

  yTTu ˆas,0ˆ . (5b)

This radiation heat flux, qr, is simplified by the Rosseland diffusion approximation as  
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where  is the Stefan-Boltzmann constant, r is the Rosseland mean absorption 

coefficient and s is the scattering coefficient. The limitation to the use of the Rosseland 

diffusion approximation should be recognized. It is valid in the interior of a medium but 

not near the boundaries. This method is appropriate only for intensive absorption, that is, 

for an optically thick boundary layer. The approximation cannot provide a complete 

description of the physical situation near the boundaries since it does not include any 

terms for radiation from the boundary surface. However, the boundary surface effects are 

negligible in the interior of an optically thick region since the radiation from the 

boundaries is attenuated before reaching the interior. 

To obtain the non-dimensional governing equation let us introduce the following 

non-dimensional variables 
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where  (=/) is the reference kinematic viscosity and Gr is the Grashof number,  is 

the non-dimensional temperature function . 

Substituting the variables (7) into equations (2)-(5) lead to the following non-

dimensional equations 
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and the corresponding boundary conditions are 

  0atsin1,0  yxu v , (11a)

 y,u as00  , (11b)

where Rd is the radiation-conduction parameter or Plank number, w is the ratio of the 

mean surface temperature and the ambient, called the surface heating  parameter and Pr 

is the Prandtl number, which are defined respectively as  

    and      ,
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3. Numerical Methods 

 

The governing equations (8)-(10) together with the boundary conditions (11a,b) have 

been solved numerically in this present investigation. Two numerical schemes namely, 

implicit finite difference method and straight forward finite difference method have been 

employed to validate the numerical code by comparing the numerical results. Note that in 

regard to solution procedure the stream-function formulation method used in [4] and 

straight forward finite difference method used here are different. In the stream function 

formulation the stream function,  is solved from the governing equations and the 

velocity components are calculated from the . However, by using the straight forward 



method the velocity components can be solved directly. The brief description of the 

above two methods are given below. 

 

3.1 Implicit Finite Difference Method 

 

Before we employ the implicit finite difference method, we need to reduce the 

aforementioned equations to a convenient set of equations. To do that, we first, introduce 

the following transformations over the governing equation: 

    ,,,, 4/14/3 xyxxfx    (13)

where  is the non-dimensional stream function defined in the usual way as  
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Substituting (13-14) into equations (8)-(11) and after some algebraic 

manipulations, the transformed equations take the following form 
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along with the boundary conditions 

       xxxfxf  sin10,,00,0,  , (17a)

    0,,0,  xxf  . (17b)

It can be seen that near the leading edge i.e. when x  0, equations (15) and (16) 

reduce to the following ordinary differential equations 
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subject to the boundary conditions, 

      10,000  ff , (20a)

 y,f as00  . (20b)



The physical quantities of principle interest are the shearing stress and the rate of 

heat transfer in terms of the skin-friction coefficient Cf and the Nusselt number Nu 

respectively, which can be written as 
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Using the variables (6), (7), (14) and the boundary condition (17a) into equations 

(21)-(22), we get 
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Now we employ one of the implicit finite difference method (the Keller box method) in 

solving the nonlinear system of partial differential equations (15)-(16) that govern the 

flow. To employ this method, the set of equations (15)-(16) is written in terms of a 

system of first order equations in y, which are then expressed in finite difference form by 

approximating the functions and the diffusion terms by the central difference and the 

convective terms by the backward difference. Denoting the mesh points in the (x, ) 

plane by xi and j, where i = 1, 2, 3, , M and j = 1, 2, 3, , N, central difference 

approximations are made such that the equations involving x explicitly are centred at 

(xi1/2, j1/2) and the remainder at (xi, j1/2), where j1/2 = (j + j1)/2, etc. This results 

in a set of nonlinear difference equations for the unknowns at xi in terms of their values at 

xi1. These equations are then linearised by the Newton’s quasi-linearization technique 

and are solved using a block-tridiagonal algorithm, taking as the initial iteration of the 

converged solution at x = xi1. Now to initiate the process at x = 0, we first provide guess 

profiles for all five variables (arising the reduction to the first order form) and use the 

Keller box method to solve the governing ordinary differential equations. Having 

obtained the lower stagnation point solution it is possible to march step by step along the 

boundary layer. For a given value of x, the iterative procedure is stopped when the 

difference in computing the velocity and the temperature in the next iteration is less than 



105, i.e. when f i  105, where the superscript denotes the iteration number. The 

computations are performed using a non-uniform grid in the y direction which is by j = 

sinh (( j-1)/p), with j = 1, 2, , 301 and p = 100. 

 

 3.2 Straight Forward Finite Difference Method  

In order to incorporate the SFFD we introduce the following new transformations as 
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Using (25) into (8-10), we get 
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The corresponding boundary conditions are 

  0at   sin1,0  YXVU   (29a)

 Y  as0,0 U  (29b)

Now equations (26)-(28) subject to the boundary conditions (29) are discretized  for 

straight forward finite difference (SFFD) method using central-difference for diffusion 

terms and the forward-difference for the convection terms ([24]). Finally we get a system 

of tri-diagonal algebraic equations which are solved by Gaussian elimination technique. 

The computation is started at X = 0.0 and then marches downstream implicitly. Here we 

have taken X = 0.005 and Y = 0.01 for the X-and Y- grids respectively. The physical 

quantities, namely the rate of heat-transfer and the average rate of heat transfer which 

have great importance from the application point of view are defined as dimensionless 

form as follows, 
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4. RESULTS AND DISCUSSION 
 
 
 The numerical results of the natural convection adjacent to a semi-infinite vertical 

flat plate with sinusoidal streamwise surface heating have been presented in this study. 

The main objective of this study is to show the effect of radiative heat flux represented by 

Rosseland approximation on the flow field and the heat transfer of the boundary layer 

adjacent to the vertical flat plate. It is also shown the effect of the amplitude of the non 

uniform surface temperature on the flow field and the heat transfer. The results are 

discussed in terms of the skin-friction coefficient and the rate of heat transfer for different 

values of the physical parameters controlling the flow, for example, conduction-radiation 

parameter, (0  Rd  1), surface temperature parameter, (1.1  θw  1.9) and the amplitude 

of the surface temperature, (0  .  1). Velocity and temperature profiles as well as 

streamlines and isotherms are also presented for the variation of conduction-radiation 

parameter.  
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Fig. 2: Comparison with Rees [3], (a) f (x,0) and (b) (x,0) for  Rd  = 0.0  while Pr = 0.7, 
 = 1.0. 
 

Since there is no experimental data available in the literature, the obtained results have 

been compared with two methods. Moreover, without radiation effect (Rd = 0.0) the 

solution can be compared with Rees [3] which is shown in Fig. 2(a-b). It is found that 

there is a good agreement between two results.   
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Fig. 3: (a) Skin-friction coefficient and (b) Nusselt number for different values of Rd   
while Pr = 0.7,  = 0.2 and w = 1.1. 
 

 Numerical values of the skin friction, CfGrx
1/4, and the rate of heat transfer, 

NuGrx
-3/4, are shown graphically, respectively, in Figs 3(a-b) against x for the radiation-

conduction parameter, Rd = 0.0, 0.2, 0.5, 0.8 and 1.0 while keeping Pr = 0.7,  = 0.2, and 



θw = 1.1 fixed. Solutions are obtained using two different methods, implicit finite 

difference method (IFD) and the straight forward finite difference method (SFFD). Solid 

lines represent the results obtained by IFD and the dashed dot lines represent the results 

obtained by SFFD. It is anticipated that both lines merged together which conforms the 

efficiency of the numerical schemes. It is revealed from Fig. 3(a) and (b) that both skin-

friction and rate of heat transfer are enhanced considerably, owing to increase in the 

values of conduction radiation parameter, Rd. This is happened because when the 

conduction radiation parameter increases, there is an increase in the rate of energy 

transport of the fluid within the boundary layer. Finally it upraises the temperature of the 

fluid layers in the vicinity of the plate surface. The waviness of the curves shows the 

effect of the streamwise temperature condition on the surface.   
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Fig. 4: (a) Skin-friction coefficient and (b) Nusselt number for different values of  
while Pr = 0.7, Rd  = 1.0 and w = 1.1 
 
 Fig. 4 shows the variation of skin friction coefficient and rate of heat transfer 

against different values of the temperature wave amplitude on the plate for Rd = 1.0 and 

w = 1.1. It is clear from the figures that both skin friction coefficient and the Nusselt 

number are uniform all over the plate if the amplitude is zero. However, with the increase 

of the amplitude of the heating effect both parameters also increase. The overall 

behaviour of these two figures may be discussed by observing the thermal and viscous 

boundary layers. As we know that when the temperature on the surface is relatively high, 

the fluids inside the boundary layer accelerate. On the other hand, if the surface 

temperature is low the fluids in the boundary layer have the minimum velocity. 

Therefore, it is expected that the shear stress and the rate of heat transfer will be higher at 



the position where the temperature is maximum. At the same time the ambient fluids 

receive the heat from the radiation and become heated. If the ambient temperature 

exceeds the mean temperature of the surface then the temperature difference will be 

maximum at the position where the surface temperature is minimum. As a result the 

overall heat transfer will be from the fluid into the surface which can be clearly seen in 

Fig. 4(b) where the Nusselt number is shown as negative. 
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Fig. 5: (a) Skin-friction coefficient and (b) Nusselt number for different values of w 
while Pr = 0.7,  = 0.2 and Rd  = 1.0 
 
 The coefficient of skin-friction and Nusselt number for different values of the 

ratio of the mean surface temperature and the ambient, w while Pr = 0.7,  = 0.2 and Rd  

= 1.0 are fixed have been shown in figure 4. It is observed that both skin friction and the 

rate of heat transfer increases with the increasing values of w. It is also observed that the 

heat transfer rate is higher when the surface temperature is lower which can be clearly 

seen in figure 5(b).  

 Velocity and temperature profiles have been presented in figure 6 for different 

values of conduction radiation parameter, Rd for the fixed values of Pr - 0.7,  = 0.2 and 

w = 1.1 at x = 1.0.  Both viscous and thermal boundary layers increase with the increase 

of conduction radiation parameter, Rd. It is also observed that the maximum velocity also 

increases with increase of Rd. The maximum velocity for all values of Rd is at about  = 

1.8. Therefore, it can be concluded that the inner viscous layer does not increase for 

variation of radiation parameter. Only the outer layer thickness has a great influence of 

Rd. 
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Fig. 6: (a) Velocity and (b) Temperature profiles for different values of Rd  while Pr = 
0.7,  = 0.2 and w = 1.1 at x = 1.0 
 
 Figure 7 and 8 shows the streamlines and temperature contours for different 

conduction radiation parameter, Rd while  = 0.2, Pr = 0.7 and w = 1.1. It is seen in 

figure 7 that as the radiation parameter increases the velocity inside the boundary layer 

increases as it is seen in the velocity profiles in figure 6. The streamlines concentrate near 

the wall for the higher values of radiation parameter. On the other hand the thermal 

boundary layer becomes thicker as Rd increases. The flow of the fluid appears to be 

oscillating near the surface of the plate due to streamwise variations of the surface 

temperature. 
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Fig. 7: Streamlines   for (a) Rd = 0.0 (b)  Rd = 0.5 (c) Rd = 1.0 while Pr = 0.7,  = 0.2 
and w = 1.1 
 
 



0.
10.

2
0.

30.60.80.9

0 5 100

5

10

15

20

x

y

(a)

 

0.70.90.9 0.
1

0.
2

0.
30.5

0 5 100

5

10

15

20

x

y

(b)

0.
50.
80.90.9

0.1

0.
2

0.
3

0 5 100

5

10

15

20

x

y

(c)

Fig. 8: Isotherms for (a) Rd = 0.0 (b) Rd = 0.5 (c) Rd = 1.0 while Pr = 0.7,  = 0.2 and w 

= 1.1 
 
Figs. 9 and 10 show the streamlines and isotherms for the effects of the surface heating 

parameter w,  respectively while Pr = 0.7,  = 0.2 and Rd = 1.0.  It is seen that within the 

boundary layer flow flux increases owing to the increase of surface heating parameter 

which is expected, since more surface heating intensify the flow velocity. From the 

isotherm it is very much clear for higher surface heating the thickness of the thermal 

boundary layer increases. 
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Fig. 9: Streamlines for (a) w = 1.1 (b) w = 1.5 and (c) w = 1.8 while Pr = 0.7,  = 0.2 
and Rd = 1.0 
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Fig. 10: Isotherms for (a) w = 1.1 (b) w = 1.5 and (c) w = 1.8 while Pr = 0.7,  = 0.2 and Rd 
= 1.0 

 
 
 
Conclusions 
Here we have investigated the effect of thermal radiation on a steady two-dimensional 

natural convection laminar flow of viscous incompressible optically thick fluid along a 

vertical flat plate with streamwise surface temperature. There are two efficient 

methodologies, namely, Implicit finite difference method and Straight forward finite 

difference method have been used. Effects of various physical parameters arise from the 

governing equations and the boundary conditions on fluid flow and heat transfer has been 

shown. Velocity and temperature profiles as well as streamlines and isotherms are also 

presented. The outcomes of the results can be summarised as bellow: 

 Both skin-friction and rate of heat transfer are enhanced considerably, owing to 

increase in the values of conduction radiation parameter, Rd.  

 If the amplitude of the heating parameter is zero then both skin friction coefficient 

and the Nusselt number are uniform all over the plate. However, with the increase 

of the amplitude of the heating effect both parameters also increase. 



 With the increasing values of w, both skin friction and the rate of heat transfer 

increases. 

  Viscous and thermal boundary layers increase with the increase of conduction 

radiation parameter, Rd. It is also seen that the maximum velocity also increases 

with increase of Rd. 

 The streamlines concentrate near the wall for the higher values of radiation 

parameter. However, the thermal boundary layer becomes thicker as Rd increases. 

The flow of the fluid appears to be oscillating near the surface of the plate due to 

streamwise variations of the surface temperature. 
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