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Abstract

We consider the problem of how to construct robust designs for Poisson regression

models. An analytical expression is derived for robust designs for first-order Poisson

regression models where uncertainty exists in the prior parameter estimates. Given cer-

tain constraints in the methodology, it may be necessary to extend the robust designs for

implementation in practical experiments. With these extensions, our methodology con-

structs designs which perform similarly, in terms of estimation, to current techniques,

and offers the solution in a more timely manner. We further apply this analytic result to

cases where uncertainty exists in the linear predictor. The application of this method-

ology to practical design problems such as screening experiments is explored. Given the

1Author to whom correspondence should be addressed.
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minimal prior knowledge that is usually available when conducting such experiments,

it is recommended to derive designs robust across a variety of systems. However, in-

corporating such uncertainty into the design process can be a computationally intense

exercise. Hence, our analytic approach is explored as an alternative.

Key words: Analytical solution; Canonical form; Compromise design; Average model;

Poisson regression; Robust design.
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1 Introduction

Optimal design for generalized linear models (GLMs) is complicated by the dependence

of designs upon the model and parameter values, both of which are usually unknown a

priori. This has been a major stumbling block for the development of optimal design

for GLMs. However, recently there have been substantial advances in developing algo-

rithmic approaches to generate robust designs which provide a means of addressing this

complication. These advances have come from Woods, Lewis, Eccleston and Russell

(2006), Dror and Steinberg (2006) and Gotwalt, Jones and Steinberg (2009). In order

to apply these methods, uncertainty is described in the form of a probability distribu-

tion (or prior), and the objective is to then find a design that performs well over this

uncertainty. These recent advances are applicable to GLMs in general with relatively

complex linear predictor models with many covariates.

This paper is focussed on the robust design for Poisson models, and there has been

some research into these specific models. Recent research by Russell, Woods, Lewis

and Eccleston (2009), Rodriguez-Torreblanca and Rodriguez-Diaz (2007) and Wang,

Myers, Smith and Ye (2006) are of particular interest. Wang, Myers, Smith and Ye

(2006) investigate one and two variable cases with interactions and quadratic terms.

They show how D-optimal designs depend on ratios of certain parameters, and derive

upper bounds for these ratios. In addition, the performance of some ‘standard’ designs

that appeal to practitioners was assessed. Their work (including previous papers) is

concerned with applications to toxicology. Rodriguez-Torreblanca and Rodriguez-Diaz

(2007) derived analytical solutions forD- and c-optimal designs for Poisson and negative

binomial regression models. It was shown that for the Poisson case, D-optimal designs

are invariant to the choice of intercept. Similarly, analytical results were derived for

certain c-optimal designs. Russell, Woods, Lewis and Eccleston (2009) derived an
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analytic solution for D-optimal designs for main effects Poisson models. This result

generally eliminates the need to undertake computational and/or search algorithms

to derive an optimal design. However, to produce designs robust with respect to the

uncertainty in model parameters, an algorithmic approach was necessary.

Here we present an analytic result for the derivation of designs robust across a prior

distribution on the parameter space meaning that computational and time expensive

methods typically associated with robust designs are unnecessary. No such result has

been presented in optimal design research for Poisson regression models, and as such

this presents a substantial contribution to the design methodology. Our method may

also prove useful for screening experiments where Poisson data arises, and we demon-

strate the application of our analytical result through a practical example from Wu

and Hamada (2000), see pages 563-573. The direct application of our methodology

to practical design problems requires necessary conditions in order for our theoretical

results to hold. We consider these conditions, and show how our methods can be easily

extended for implementation in practice. Woods, Lewis, Eccleston and Russell (2006)

introduced the idea of a compromise design, which is a robust design found by opti-

mizing across many parameter sets simultaneously through the implementation of a

compound criterion. In what follows, we define an ‘average’ model and show how it

can be used to find an analytical solution for robust designs. The notion of compound

or multiple objective criteria has been foreshadowed in other work. For further reading

in this area, see Cook and Wong (1994), Clyde and Chaloner (1996), Huang and Wong

(1998) and McGree, Eccleston and Duffull (2008).

The paper is outlined as follows. Initially methods are presented for deriving optimal

and robust designs for Poisson models. A theorem is given which provides an analytical

result for robust (saturated) designs for main effects models. It is shown by scaling up
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the saturated design, our methods derive designs that have similar properties to those

found via computational methods. An approach for the application of this methodology

is proposed for cases where uncertainty also exists in the inclusion of covariates and

therefore is directly applicable to screening experiments. Examples follow including

the design of a seven-factor screening experiment from Wu and Hamada (2000) which

demonstrates how to apply our methods in practice. Other examples are considered to

compare computational approaches from the literature (Woods, Lewis, Eccleston and

Russell (2006) and Gotwalt, Jones and Steinberg (2009)) with our simpler and more

efficient techniques.

2 Background

Consider an experiment in which the ith observation on a response variable, yi, has

a Poisson distribution with rate λi dependent on p independent covariates x1, . . . , xp

through the log-linear model:

ln(λi) = ηi = f(xi)
Tβ = β0 +

p
∑

j=1

βjxji, i = 1, . . . , n, (1)

where xi = (x1i, . . . , xpi)
T, f(xi) = (1,xi

T)T, β0, . . . , βp are unknown constants, and

βj 6= 0 for j > 0. For further details, see McCullagh and Nelder (1989).

Our aim is to design an experiment for the precise estimation of β = (β0, . . . , βp)
T.

As is well-known, design for nonlinear models is based on initial or prior estimates of

parameters of interest. Different estimates can lead to different designs and, as such,

an optimal design for a given set of parameters is termed locally optimal. In practice,

little may be known about the parameters (as this is generally the primary reason for
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conducting the experiment). Initial or prior estimates are usually formed via expert

opinion and/or based on any previous data collected. In any event, it would be wise

to incorporate uncertainty about the parameters at the planning stage. Bayesian D-

optimal methods have been suggested for dealing with the dependence of designs on

initial parameter estimates. Unfortunately, this requires the evaluation of a generally

intractable integral across some prior density. Chaloner and Larntz (1989), Woods,

Lewis, Eccleston and Russell (2006) and Gotwalt, Jones and Steinberg (2009) have

presented numerical methods for this evaluation/approximation. Another approach to

form robust designs has come from Dror and Steinberg (2006) who apply clustering

methods to local D-optimal designs. Russell, Woods, Lewis and Eccleston (2009) used

this clustering idea, in conjunction with an analytical result, to yield robust designs.

2.1 Design

In general, a design is a collection/selection of points from a design space and is com-

monly expressed in one of two ways; as an approximate design or an exact design.

Approximate designs are usually considered for theoretical development while actual

experimentation requires an exact design. An approximate design ξ ∈ Ξ in design space

X with finite support is represented as

ξ =















x1 x2 . . . xs

ν1 ν2 . . . νs















,

where xi ∈ X , X is a compact subset of Rs, and the νi > 0 are design weights that

satisfy
∑s

i=1 νi = 1 and represent the amount of experimental effort placed on the ith

support point, xi. Exact designs are a special class of approximate designs. They have s
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distinct sites, n runs and ni runs at site i which defines an equivalent approximate design

with weights ni/n, for i = 1, . . . , s. Russell, Woods, Lewis and Eccleston (2009) present

a theorem for local approximate D-optimal designs for first-order Poisson regression

models, and we summarize this result in the next section. The developed methodology

in our paper is an extension of the work given by Russell, Woods, Lewis and Eccleston

(2009) but focuses on exact designs.

2.2 Optimality

Under a Poisson regression model with linear predictor (1) and log link, the information

matrix for ξ is

M(ξ,β) =
s

∑

i=1

νiw(xi)f(xi)f(xi)
T

= XTWX ,

where w(xi) = exp(ηi), X = (f(x1), . . . , f(xs))
T and W = diag {νiw(xi)}

s
i=1.

A locally D-optimal design, ξ∗, for a particular β is defined by

|M(ξ∗,β)|1/(p+1) = max
ξ∈Ξ

|M(ξ,β)|1/(p+1) ,

where the D-value of a given design ξ is |M (ξ,β)|1/(p+1) and p + 1 is the number of

parameters to be estimated.

The efficiency of a design ξ is then measured relative to ξ∗ by
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{|M (ξ,β)|/|M (ξ∗,β)|}1/(p+1). (2)

In order to suppress the dependence of the design problem on β, we follow Ford, Torsney

and Wu (1992) and apply a linear transformation to f(xi) to obtain

f(zi) = Bf(xi), i = 1, . . . , s, (3)

where zi = (z1i, . . . , zpi)
T belongs to the induced design space Z,

B =









B11 0

0 B22









, B11 =









1 0

β0 β1









,

B22 = diag{β2, . . . , βp} and βj 6= 0 (j = 1, . . . , p). It follows from equation (1) that

ηi =
(

B−1f(zi)
)T

β =
∑p

j=1 zji. Let ψ ∈ Ψ be a design measure over Z. Then

ψ =















z1 z2 . . . zs

ν1 ν2 . . . νs















.

Let ej denote the p × 1 vector with ith element 1 if i = j, and 0 otherwise (i, j =

1, . . . , p).

Russell, Woods, Lewis and Eccleston (2009) derived the analytical result which states

that a locally D-optimal design for the canonical first-order Poisson regression model

with ηi = (B−1f(zi))
T β =

∑p
j=1 zji, where aj ≤ zji ≤ bj, for aj, bj constants, and

bj − aj ≥ 2 (j = 1, . . . , p), is given by:
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ψ∗ =















z1
∗ z2

∗ . . . zp+1
∗

1/(p+ 1) 1/(p+ 1) . . . 1/(p+ 1)















.

where zj
∗ = b − 2ej, j = 1, . . . , p and zp+1

∗ = b, for b = (b1, . . . , bp)
T .

This shows an analytical result to find a D-optimal design for first-order Poisson regres-

sion models for a fixed set of covariates and β. It also shows that saturated designs,

designs where the number of support points equals the number of parameters to be

estimated, are D-optimal across the class of all designs.

There are implications when using this optimality result in practice. Firstly, the design

is anchored at the point zp+1
∗, in which all factors are set at the level that will give

maximal expected response. To use this result, the experimenter needs to have a clear

prior idea of which factors will increase and which will decrease the expected response.

The second implication is that the design has a one-factor-at-a-time structure, with each

factor moved ‘in’ from the anchor by an amount that reduces the expected response by

a fixed amount. The design will not be able to estimate interactions or higher-order

terms. Lastly, each factor must have a strong enough effect to achieve the required

difference in the expected response. Later, this optimality result is extended to the

derivation of robust designs, and again these implications require careful thought.

In order to find robust designs, computational approaches are generally needed. Russell,

Woods, Lewis and Eccleston (2009) showed how this analytic result can be used with

the clustering method of Dror and Steinberg (2006) to derive robust designs. Another

approach has come from Woods, Lewis, Eccleston and Russell (2006), and we outline

their approach next.
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2.3 Compromise design

Following terminology given by Woods, Lewis, Eccleston and Russell (2006), a compro-

mise D-optimal design over m alternative models is one which maximizes the following

criterion:

φ = |XTW1X|α1/(p+1) × |XTW2X|α2/(p+1) × . . .× |XTWmX|αm/(p+1), (4)

where αk is the weight given to the kth alternative model and is such that
∑m

k=1 αk = 1.

Here the alternative models could represent a sample of prior estimates for β, different

link functions and/or different linear predictors. Woods, Lewis, Eccleston and Russell

(2006) employed simulated annealing, a computationally intense and time consuming

search algorithm (see Corana et al. (1987)), to maximize the above criterion. As an

alternative to this and other computational methods, in the next section we present an

analytic result for deriving such designs.

3 Robust design for Poisson regression models

The analytical result of Russell, Woods, Lewis and Eccleston (2009) is quite powerful.

However, it only relates to a single model (a single vector β). Here we derive an

analytical result similar to that of Russell, Woods, Lewis and Eccleston (2009) but

applicable to multiple sets of βs from which we can obtain robust designs across multiple

models very quickly. Although this new methodology is for n = p + 1, it is readily

adaptable for deriving robust designs for n > p+ 1. This is illustrated in the examples
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that follow in Section 4. We also address the constraint of bj − aj ≥ 2, as given by

Russell, Woods, Lewis and Eccleston (2009).

3.1 Robust design with regard to initial parameter estimates

To set the scene, consider the case of m first-order alternative models, each with p

covariates x1, x2, . . . ,xp. The models can be expressed as:

ln(λ1) = η1 = XTβ1

ln(λ2) = η2 = XTβ2

...

ln(λm) = ηm = XTβm.

Suppose that the kth model has a pre-defined weighting αk such that
∑m

k=1 αk = 1,

corresponding to which initial estimates of β are believed to be more likely. We define

an ‘average’ model, ln(λC), to be

ln(λC) =
m

∑

k=1

αkηk

= XTθ, (5)

where θ represents the prior parameter estimates for the average model.

The locally D-optimal design for the model in equation (5) has a design matrix X

which maximizes
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φθ = |XTWθX|1/(p+1), (6)

where

Wθ = diag(exp(XTθ)).

This leads to the following theorem. Given m alternative main effect models each

having p+ 1 parameters, define a saturated design as one with n = p+ 1 experimental

runs, then

Theorem 1 The locally D-optimal saturated design for the average model is also the

D-optimal saturated compromise design over the m models.

Proof 1 A saturated design means that n = p+ 1 = q, then X is a q × q matrix with

rank q; the number of parameters in each model (including the average model). Given

this and the fact that
∑m

k=1 αk = 1, the criterion in equation (4) can be re-expressed as:

φ = |XT|1/q × |W1|
α1/q × |W2|

α2/q × . . .× |Wm|αm/q × |X|1/q

= (|XT| × |Wc| × |X|)1/q,

where
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Wc = diag
{

(exp(XTβ1))
α1 × . . .× (exp(XTβm))αm

}

= diag
{

(exp(XTα1β1)) × . . .× (exp(XTαmβm))
}

= Wθ. ♦

Therefore, the consideration of the average model allows for the derivation for the

compromise design. Given the average model is first order, results from Russell, Woods,

Lewis and Eccleston (2009) can be applied directly to find the compromise design

(analytically).

Numerical results from Dror and Steinberg (2006) and Woods, Lewis, Eccleston and

Russell (2006) support the idea of optimizing an average (or centroid) model to form a

robust design. Their work provided empirical evidence that the locally optimal design

for the prior mean model of β (centroid or average model) is robust with respect to

variations of β about the prior mean. Theorem 1 shows that this approach is optimal

for saturated designs for first-order Poisson regression models.

3.2 Robust design with regard to initial parameter estimates

and linear predictor

In this section, we conjecture that applying the average model approach will form effi-

cient robust designs, not only when uncertainty exists in the initial parameter estimates,

but also in the inclusion of covariates in the linear predictor. The reasoning behind this

conjecture can be understood by first noting that the specific levels of each covariate

for a (locally) D-optimal design are independent of the inclusion (and/or exclusion)
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of other covariates in a main effects Poisson regression model. This can be seen by

considering the locally D-optimal designs for the following two models.

ln y1 = 2.5 + 2.5x1

ln y2 = 2.5 + 2.5x1 + 2.5x2,

where xji ∈ [−1, 1], for j = 1, 2 and i = 1, . . . , n.

The locally D-optimal designs for both models (respectively) are given below.

ξ∗1 =









0.2

1









, ξ∗2 =

















0.2 1

1 0.2

1 1

















.

Notice that the specific levels of x1 are not affected by the presence of the other covariate

in this main effects model. This is not specific to this example. Now, suppose we are

interested in estimating parameters in the model which only has covariate x1, based on

each of the D-optimal designs. In order to put each design on an equal footing, ξ∗1 is

replicated twice, and (column one of) ξ∗2 is replicated once. After this replication has

occurred, the following two designs would (in each case) be used for the estimation of

the model with only x1 present
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ξ1 =









































0.2

1

0.2

1

0.2

1









































, ξ2 =









































0.2

1

1

0.2

1

1









































.

We see that the design which was originally found for the model with only x1 present

is balanced, while the other design is not. With more covariates in the model, this lack

of balance becomes more of an issue. However, given that the specific covariate levels

remain unchanged, this led to the conjecture that the average model approach will yield

efficient designs when uncertainty exists in the linear predictor.

The difficulty in proving this conjecture in the same manner as Theorem 1 was proved

is that the compromise design will have a column for every covariate while the design

for an alternative model may not, and hence the respective design matrix may not be

square in parts of the criterion.

The following examples explore the estimation properties of designs found using Theo-

rem 1 and the above conjecture.

4 Examples

In the examples that follow, the application of Theorem 1 and the conjecture to practical

design problems is demonstrated. This application is not straightforward as we must
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derive robust designs which have n > p+ 1 experimental runs. To avoid computation,

we propose replicating the saturated design as an approach to deal with this issue.

However, one could consider computational approaches for deriving optimal choices for

the remaining n− (p+1) design points, conditional upon the p+1 support points given

by the average model approach, see Waterhouse et al. (2009) for examples.

In the following, the first example considers the case where all models have the same

covariates (Theorem 1). The second example extends this by allowing a different num-

ber of covariates in each alternative model so the conjecture can be explored. The

final example compares our design approach with some of the computational methods

previously referenced in this paper.

4.1 Example 1: Robustness in initial parameter estimates

Russell, Woods, Lewis and Eccleston (2009) considered a first order Poisson regression

model and log link, where a robust design was required across the following parameter

space, where xji ∈ [−1, 1] for i = 1, . . . , n and j = 1, . . . , p:

βj =















[1, 1 + κ] for j = 1, 3, 5, 7, 9,

[−1 − κ,−1] for j = 2, 4, 6, 8, 10.

The robust design in Russell, Woods, Lewis and Eccleston (2009) was found by clus-

tering local D-optimal design points based on the work of Dror and Steinberg (2006).

For this example, the saturated design contains 11 support points with equal weighting,

but Russell, Woods, Lewis and Eccleston (2009) suggest the robust design should have

21 support points. Hence, Theorem 1 cannot be directly applied. To proceed, 10
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support points from the saturated design need to be replicated. This will put our robust

design on an equal footing with the one used in Russell, Woods, Lewis and Eccleston

(2009). The choice of which 10 points to replicate can be made by considering the

following theorem.

Theorem 2 Given an exact design for a Poisson main effects model, taking an ad-

ditional run of a support point will increase the determinant of the expected Fisher

information by a factor of (1 + 1/r), where r is the current number of design points at

this site.

Proof 2 Let Xn denote a design matrix with n support points for a Poisson main

effects model with n = p+ 1 parameters. Suppose the additional run is taken at the ith

support point f(xi), denote the design matrix with n+ 1 runs as Xn+1. Adopt similar

notation for the weight matrix W where wii = ri exp(f(xi)
Tβ), for i = 1, . . . , n, where

ri is the number of runs at the ith support point. Consider the following.

XT
n+1W n+1Xn+1 = (XT

n , f(xi))









W n 0

0 exp(ηi)

















Xn

f(xi)
T









= XT
nW nXn + f(xi) exp(ηi)f(xi)

T

|XT
n+1W n+1Xn+1| = |XT

nW nXn + f(xi) exp(ηi)f(xi)
T|.

Consider the matrix
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XT
nW nXn −f(xi)

exp(ηi)f(xi)
T 1









,

and the following result for partitioned matrices

det









A B

C D









= |A||D − CA−1B|

= |D||A − BD−1C|,

provided A and D are nonsingular matrices.

From above, we have

|XT
nW nXn+f(xi) exp(ηi)f(xi)

T| = |XT
nW nXn||1+f(xi)

T exp(ηi)(X
′

nW nXn)−1f(xi)|.

(7)

Now (XT
nW nXn)−1 = X−1

n W−1
n (XT

n )−1, and given that f(xi) is a row of Xn, it

follows that

f(xi)
T exp(ηi)(X

T
nW nXn)−1f(xi) = 1/ri.

Therefore,
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|XT
n+1W n+1Xn+1| = (1 + 1/ri)|X

T
nW nXn|. ♦

Note that a similar expression to equation (7) has been used as an updating formula for

design search algorithms, see Atkinson, Donev and Tobias (2007) (pg: 174) and Woods

(2010).

The above result says to maximize the determinant of the expected Fisher information

matrix, the replication should be kept as even as possible amongst all support points.

That is, if all support points of a given design have been replicated the same number

of times, then the choice for replicating the next support point is arbitrary. However,

if the number of replicates of each support point for a given design are not equal, then

one should replicate a support point with the least runs.

Now returning to the example, 1000 simulations of the vector β were generated by

selecting each parameter value from the relevant uniform distribution, and the robust

design was found by giving each β a weight of αk = 1/1000, for k = 1, . . . ,m. The

efficiencies of this design relative to the 1000 D-optimal designs (where n = 21) for the

various values of β were calculated. Table 1 provides a summary of the results.

Table 1: Comparison between the analytical solution and the clustering algorithm used
in Russell, Woods, Lewis and Eccleston (2009).

Method Statistic κ = 1 κ = 2 κ = 3
Russell, Woods, Lewis and Eccleston (2009) Median D-eff. 0.936 0.877 0.748

Minimum D-eff. 0.895 0.803 0.633
Average model approach (Theorem 1) Median D-eff. 0.966 0.923 0.887

Minimum D-eff. 0.928 0.840 0.756
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From Table 1, the analytical solution provides larger median and minimumD-efficiencies

than the clustering method for each value of κ, and is obviously quicker. This shows

the benefits for considering our methodology when constructing robust designs.

For the case when n > p+1, the choice of n is unclear. In this example, Russell, Woods,

Lewis and Eccleston (2009) used the Bayesian Information Criterion (see Fraley and

Raftery (2002)) to determine n = 21. Dror and Steinberg (2006) constructed examples

which show how the minimum and median D-efficiencies of robust designs may be

significantly increased by the inclusion of more (than p+1) design points. Indeed, they

suggest a method for determining an appropriate choice of n. Their approach can be

used in conjunction with Theorem 1 to quickly construct robust designs.

4.2 Example 2: Uncertainty in initial parameter estimates and

linear predictor

Wu and Hamada (2000) consider a screening experiment which yields count data. There

are seven covariates (xji ∈ [−1, 1]) in consideration and it is unknown whether some or

all of them are influential in explaining the response. We assume that expert opinion can

advise whether the covariates act positively or negatively on the response (if influential)

but also allow for the case where the initial parameter estimate could be zero. Therefore,

there exists uncertainty in the linear predictor and the initial parameter estimates. The

uncertainty in the linear predictor is significant. Given that some or all covariates could

be influential, there exists the full main effects model, 7 one and six factor models, 21

two and five factor models and 35 three and four factor models. That is, a total of 127

(equally weighted) alternative models with uncertainty in parameter estimates needs to

be considered. The prior parameter ranges (uniformly distributed) for all alternative



4.2 Example 2: Uncertainty in initial parameter estimates and linear predictor 21

models are given below where the sign was taken from the analysis given in Wu and

Hamada (2000).

β ∈









0 0 −5 0 −5 −5 −5 −5

5 5 0 5 0 0 0 0









.

For this example, we evaluate the performance of three designs; a compromise design

found using the methods of Woods, Lewis, Eccleston and Russell (2006), our average

model approach and a 27−3
IV fractional factorial design (which has 16 support points)

given in Wu and Hamada (2000).

To search for a compromise design, a random sample of twenty β values was drawn from

the above parameter ranges. Simulated annealing was used to find the robust design

(with n = 16 runs) which maximized the sum of the logarithm of D-values given under

each alternative model with each random β. Each of the 127 alternative models will

have different linear predictors representing the uncertainty around which covariate/s

should appear in the model. The sum of the logarithm of D-values was used instead of

the product ofD-values to avoid numerical problems (very large criterion values). Given

there are 127 alternative (structural) models and uncertainty in the βs represented by

a sample of twenty, calculating the criterion value for a given design requires adding up

2540 log determinants. Therefore, maximizing this criterion with respect to the choice

of design using, for example, simulated annealing, is therefore computationally intense.

To find a robust design using our average model approach, the weighted mean of each

parameter was calculated over the prior parameter space and each alternative model

(centroid of the parameter space for the full model). Given there exists uncertainty in

the linear predictor, not all parameters may appear in each rival model. When this
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occurs, the prior estimate for the parameter is calculated by ignoring the corresponding

prior model weights α, and re-scaling the remaining αs such that they sum to one. This

forms the average model, and, in this example, the model will have 8 parameters. The

D-optimal saturated design for this model will therefore have 8 support points, and

hence all are replicated to yield a 16 run design. The computation involved here is

minimal.

The performance of the three above designs were evaluated by randomly and uniformly

drawing 1000 parameter vectors from the above intervals and calculating D-efficiencies

of all three designs with respect to the actual D-optimal design under all 127 alternative

models. Figure 1 shows the median and minimumD-efficiencies for this evaluation (over

1000 parameter sets).

The superiority of the compromise design and the average model approach over the

fractional factorial is obvious. This is highlighted by the median and minimum D-

efficiencies generally being greater than those given by the fractional factorial. We also

see that the compromise design and average model approach have different estimation

properties. The D-efficiencies of the compromise design seem to decrease as the number

of factors in the models increases. This is the opposite for the design found using an

average model approach withD-efficiencies increasing with more factors. This difference

may be attributed to the poor balance of designs for models with a small number of

factors (as discussed in Section 3.2). If we consider the compromise design as the

benchmark, the average model approach performs well across all models and provides

support to the conjecture that our analytic result can be used to find efficient robust

designs for screening type experiments.

We highlight that this example shows how to deal with uncertainty in initial parameter

estimates containing a value of zero. The condition that bj−aj ≥ 2 from Russell, Woods,
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Figure 1: Median and minimum D-efficiencies for each of the 127 alternative models
(ordered from one factor models to the seven factor main effects model) for the (a)
compromise D-optimal design (b) D-optimal design for the average model and (c)
orthogonal design from Wu and Hamada (2000).

Lewis and Eccleston (2009) is placed on the average model, not the alternative/rival

models. Hence, uncertainty in this form can be accounted for.

4.3 Example 3: Simulation study

Both of the previous examples have been selected and constructed such that the con-

dition bj − aj ≥ 2 from Theorem 1 holds. The question remains, what do to when

this condition does not hold for the average model? For such cases, we advise still

forming the average model, and then searching for the (locally) optimal design for this

specific model. We note that this requires an optimization algorithm, but will be as

fast as a search for a single local optimal design providing significant savings in regard

to computing times. Through this example then, we aim to provide empirical evidence

to support the 1.) implementation of the average model approach and 2.) use of repli-

cation as efficient methods of designing experiments described by Poisson regression

models. Let us suppose there are four independent variables each with xji ∈ [−1, 1]

(j = 1, . . . , p, i = 1, . . . , n) that are thought to affect the response/distribution of a

Poisson random variable. Consider prior knowledge about the models to be defined by
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the different parameter ranges found in Table 2.

Three approaches for the derivation of robust optimal designs are compared. The

first approach is described in Woods, Lewis, Eccleston and Russell (2006). Again, a

random sample of parameters is drawn, and simulated annealing was employed to find

a compromise design. The second approach was given by Gotwalt, Jones and Steinberg

(2009) who gave an algorithm to find robust designs quickly. The algorithm can be

found in JMP, version 8 and this package was used to find the robust designs here.

The last approach, as described in this paper, forms the average model, and simply

constructs designs given these point estimates of parameters.

The parameter ranges B1−B3 were considered in Woods, Lewis, Eccleston and Russell

(2006), and are such that Theorem 1 is not directly applicable. Therefore, for these

parameter spaces, the D-optimal criterion for the average model was optimized using

simulated annealing. Ranges B4−B6 were arbitrarily defined, and notably allow for the

direct application of Theorem 1. As such, the optimal design for the average model was

derived analytically, and replicated appropriately. Hence, we aim to compare (fully)

computational approaches with the methods proposed in this paper.

Table 2: Ranges for each model parameter for the parameter spaces Bk, for k = 1, . . . , 6.

Parameter space
Parameter B1 B2 B3 B4 B5 B6

β0 [−3, 3] [−1, 1] [−3, 3] [0, 3] [−1, 4] [−3, 0]
β1 [−2, 4] [0, 2] [4, 10] [−2, 4] [0, 2] [4, 10]
β2 [−3, 3] [−1, 1] [5, 11] [1, 3] [−1, 3] [5, 11]
β3 [0, 6] [2, 4] [−6, 0] [1, 6] [2, 4] [−6, 0]
β4 [−2.5, 3.5] [−0.5, 1.5] [−2.5, 3.5] [−2.5,−3.5] [−5.5, 1.5] [0, 3.5]

Before designs can be derived, a decision about the number of experimental runs needs

to be made. Approaches from the literature are available (Bayesian Information Cri-
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terion or a clustering approach), but we simply chose two arbitrarily, one small value

(n = 6) and one large value (n = 24). After each design was found, a comparison

study was performed. This involved randomly generating 20,000 models from each

parameter space, and evaluating the D-values for each of the three robust designs for

both choices of n. Relative D-efficiencies were calculated and shown in the form of

(empirical) cumulative density plots, see Figures 2 and 3 for n = 6 and 24, respectively.

Relative D-efficiencies were calculated for robust designs found by the methods of

Woods et al. (2006) and Gotwalt et al. (2009) compared with designs derived from our

average model approach. Therefore, relative D-efficiencies less than one indicate the

average model approach is performing ‘better’ than the two computational approaches

(and the reverse is true for relative D-efficiencies greater than one). Upon inspecting

Figure 2, we see that all plots (except one) cross the line of unity at 0.5 or higher,

indicating that for the majority of simulations, the average model approach produced

a more efficient design. The only exception can be seen in Figure 2e where the plot

crosses just below 0.5 indicating that the approach of Gotwalt et al. (2009) produced a

more efficient design in this case. In Figure 2b, only the plot relating to the approach

of Gotwalt et al. (2009) is visible. This is because the design derived via methods from

Woods et al. (2006) has a near identical performance to the robust design given by the

average model approach. With reference to Figure 3, the average model approach again

performs well. This is particularly noticeable for Figure 3f where both plots cross the

line of unity at 0.6 or higher. There are parameter spaces where the average model

approach does not perform as well as the two computational methods. This shows that

our approach is not optimal (for n > p + 1 and bj − aj < 2), but shows how efficient

robust designs can be formed with minimal computation.
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Figure 2: Empirical cumulative density plots for the relative D-efficiencies of designs
found via the approach of Woods et al. (2006) and Gotwalt et al. (2009) compared with
the average model approach for parameter spaces B1 −B6 where n = 6.
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Figure 3: Empirical cumulative density plots for the relative D-efficiencies of designs
found via the approach of Woods et al. (2006) and Gotwalt et al. (2009) compared with
the average model approach for parameter spaces B1 −B6 where n = 24.
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5 Conclusion

The results presented in this paper provide methods to derive robust designs for Poisson

regression models with respect to uncertainty in the parameter vector β and the inclu-

sion of covariates. They are applicable to many experimental situations and, generally

being analytical, they naturally require minimal computation. Although Theorem 1

imposes the restriction that n = p+ 1, as demonstrated, cases where n > p+ 1 can be

easily dealt with via replication. In general, little may be known about the regression

coefficients and the presence or absence of a covariate in a model, and therefore it is

important to consider such uncertainty in the design process. An example of this is in

screening experiments, where our methods would be very applicable and useful.

Our methodology suggests that replication is beneficial in forming robust designs for

Poisson regression models. The results from Examples 1 and 3 support this. Despite

robust designs found via optimization algorithms yielding more than p + 1 support

points, evaluations of these designs revealed either higher D-efficiencies (Example 1) or

similar D-efficiencies (Example 3) for designs constructed via replication. We acknowl-

edge that this may be somewhat counter-intuitive for the general construction of robust

designs. One would feel that extra support points should provide greater robustness

against, for example, uncertainty in parameter estimates. We do not argue against this

point in general, but believe that this is not strictly so for robust designs for first-order

Poisson regression models.

Robust designs derived from the average model approach for first order Poisson regres-

sion models will have no ability to estimate quadratic or higher-order terms, and in fact

will only be able to estimate particular interactions via replication. If such terms are

believed to be important, then these should be considered when designing the experi-
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ment. We note that the proof of Theorem 1 does not assume any specific form of the

linear predictor. No restriction was used to enforce a main effects model. Hence, it is

of interest to investigate the performance of our methodology for models that include

interactions, quadratic terms, etc. There are many issues to address. For example, un-

like in the main effects case, there is no guarantee that the saturated D-optimal design

is actually D-optimal across the class of all designs. Moreover, the specific levels of

each covariate are likely to change with the inclusion or exclusion of high-order terms

leading to further issues surrounding model uncertainty. Computational approaches are

available for models that include higher-order terms, but may prove too time costly to

run in practice, particularly with a large number of covariates and an uncertain linear

predictor. The average model approach may prove useful.

Our approach allows robust designs to be quickly derived for complex situations with

uncertainty in the parameter space and linear predictor. The alternatives are compu-

tational approaches which may take considerable time. The benefits of such compu-

tational methods were explored here and showed minimal reward. In conclusion, our

approach should be used with caution and, as always, the performance of experimental

designs should be investigated prior to data collection.
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