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Practical Stability with Respect to Model Mismatch of Approximate
Discrete-Time Output Feedback Control

Onvaree Techakesari and Jason J. Ford

Abstract— This paper establishes asymptotic stability results
for stochastic discrete-time output feedback control problems
involving mismatch between the exact system to be stabilised
and the approximating system used to design the controller. The
stability results established are in the sense of an asymptotic
bound on the expected error bias induced by the model
approximation. Importantly, the stability results established
here do not require the approximating system to be of the
same model type as the exact system. An example is presented
to illustrate the nature of the presented results.

I. INTRODUCTION

In most realistic situations, control design is performed
on the basis of system models that are not known with
complete certainty or a true system that is too complex to
be directly considered in the design process. Sometimes the
uncertain nature of the system description is incorporated
via robust design techniques that include explicit description
of the uncertainty [1]. However, in many other situations,
controllers are designed on the basis of a model that closely
approximates the true system in some sense. This is the
situation considered in this paper and we investigate practical
stability of output feedback controller designed on the basis
of an approximating model.

Output feedback stabilisation problems have previously
been considered by many control researchers, for example
[7]–[11]. Unfortunately, much of the previous work has
assumed that knowledge of the exact system is available for
controller design, and has not considered system stability
under approximate output feedback control.

More recently, control design problems involving mis-
match between true and design models have been investi-
gated in a number of important situations [2]–[6]. In [2],
practical stability of approximating state-feedback controller
is established for sampled-data control problem. In [5], [6],
this type of practical stability result is extended to infinite
horizon, finite horizon and receding horizon control designs.
There has also been some preliminary extension of these
results to output feedback control (but under assumptions
of neither measurement nor process noises being present)
[12]. In recent work, these deterministic practical stability
results have been extended to a stochastic setting to establish
stability results for approximate filtering approaches [19].

In this paper, we consider a more general model-mismatch
output feedback control problem by investigating practical
stability of the combined filtering and stochastic control
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dynamics with respect to modelling errors. Under mild
conditions, we establish asymptotic bounds on the expected
performance error when the true stochastic system is under
approximate output feedback control. Practical stability re-
sults are also established (in a manner similar to the approach
of [2]).

This paper is structured as follows. In Section II, our
nominal dynamics, our information state concepts, and our
modelling approximations are presented. In Section III, we
establish the asymptotically bounded error and practical sta-
bility results for stochastic output feedback control. Section
IV presents an example mismatch output feedback control
problem. Conclusions are then presented in Section V.

II. PROBLEM FORMULATION

A. Dynamics

Consider a nonlinear discrete-time system described by a
state process xk ∈ Rn and a measurement process yk ∈ Rm,
for time-step k > 0,

xk = fe(xk−1, uk−1) + vk

yk = ce(xk) + wk (1)

where x0 has a priori distribution σ0, uk ∈ U ⊂ Rd, fe(·) :
Rn × Rd → Rn, and ce(·) : Rn → Rm. Here, vk ∈ Rn
and wk ∈ Rm are sequences of independent and identically
distributed i.i.d random variables with densities φv(·) and
φw(·), respectively. We will assume that vk, wk, and x0 are
mutually independent for all k. In this paper, we will use
|xk|1 to denote 1-norm of xk. Throughout this paper, we
also use the shorthand x[`,m] to denote the state sequences
{x`, . . . , xm}. We likewise define y[`,m], v[`,m], and w[`,m].

We consider all processes to be defined on a probability
space (Ω,F , P ) where Ω is defined to consist of all infinite
sequences {x0, . . . , xk, . . . ; y1, . . . , yk, . . .} (with elements
ω ∈ Ω), F is defined to be a σ-algebra generated by these
sequences, and P will be a probability measure given by Kol-
mogorov extension theorem applied to these sequences [15].
We will let Y[`,m] denote the complete filtration generated
by the sequence y[`,m], see [13, p. 18].

B. Normalised Information State

We now introduce some information state concepts that de-
scribe our estimation operations. Consider the space L∞(Rn)
and its dual L∞∗(Rn) which includes L1(Rn) (see [14]
for an introduction into vector space concepts). We will
introduce the 〈·, ·〉 notation to denote the operation of ξ(·) ∈
L1(Rn) and ψ(·) ∈ L∞(Rn) as 〈ξ, ψ〉 ,

∫
Rn ξ(x)ψ(x)dx.



We will also introduce the L1 norm on functions ξ(·) ∈
L1(Rn) as ||ξ(·)||1 ,

∫
x∈Rn |ξ(x)|dx [14].

Let L̄1(Rn) ⊂ L1(Rn) denote functions in L1(Rn) that
have L1 norm equal to 1 in the sense that L̄1(Rn) ,{
ξ(·) : ξ(·) ∈ L1(Rn) and ||ξ(·)||1 = 1

}
. We can now de-

fine a normalised information state process σek(·) ∈ L̄1(Rn) :
Rn → R, based on the exact model, by

〈σek, ψ〉 = E
[
ψ(xk)

∣∣Y[1,k], σ0] (2)

for all k > 0, and all test functions ψ(·) ∈ L∞(Rn), where
σ0 ∈ L̄1(Rn) is the a priori distribution of x0. This definition
highlights that the normalised information state σek(·) can be
interpreted as a conditional probability distribution function
of xk given measurement sequences y[1,k] and a priori
distribution σ0. The evolution of this normalised information
state process σek is given by

σek+1 =
1

Ne
k

Σe(uk, yk+1)σek (3)

where σe0 ∈ L1(Rn) = σ0 and Σe : L∞∗(Rn) → L∞∗(Rn)
is the linear operator defined as

Σe(u, y)σe(x)=
φew(y − ce(x))

φew(y)

∫
Rn

φev(x− fe(z, u))σe(z)dz

(4)

Here, Ne
k = ||Σe(uk, yk+1)σek||1 is the normalisation factor.

Throughout this paper, we will write σek|[`,k],σ`−1
(·) to denote

the normalised information state σek(·) after evolution by
measurements y[`,k] from initial distribution σ`−1 at time
k = `− 1. Also, we define σe0|[1,0],σ0

, σ0.

C. Parameterised Class of Approximating Model
Let h > 0 parameterises a class of approximating models

(for example, h might be spatial discretisation size). For each
h, let us now consider the following approximating model
of xk and yk:

xk = fh(xk−1, uk−1) + vhk

yk = ch(xk) + whk (5)

for k > 0, where x0 has a priori distribution σh0 , uk ∈
U ⊂ Rd, fh(·) : Rn × Rd → Rn, and ch(·) : Rn → Rm.
Here, vhk ∈ Rn and whk ∈ Rm are i.i.d. random variables with
densities φhv (·) and φhw(·), respectively. The random variables
vhk , whk , and x0 are assumed to be mutually independent
for all k. Using the previously introduced sample space Ω,
with elements ω, we can use the approximating model (5)
to infer new probability distribution functions and then use
the Kolmogorov extension theorem to generate a measure Ph

corresponding to the approximating model, see [15] for more
details. This allows us to define an appropriate expectation
operation Eh[·].

Throughout this paper, we will assume that Ph is abso-
lutely continuous with respect to P , see [15, p. 413]. We will
write Ph � P to denote this absolute continuity condition.

Similar to the true system (1), we define a normalised
information state process σhk (·) ∈ L̄1(Rn) : Rn → R, for the
approximating model, as

〈σhk , ψ〉 = Eh
[
ψ(xk)

∣∣Y[1,k], σh0 ] (6)

for all k > 0, and all test function ψ(·) ∈ L∞(Rn),
where σh0 ∈ L̄1(Rn) is the a priori distribution of x0.
Likewise, the evolution of this normalised information state
process is given by σhk+1 = 1

Nh
k

Σh(uk, yk+1)σhk where σh0 ∈
L1(Rn). Here, Σh : L∞∗(Rn) → L∞∗(Rn) is the bounded
linear operator which is defined as Σh(u, y)σh(x) =
φh
w(y−ch(x))
φh
w(y)

∫
Rn φ

h
v (x− fh(z, u))σh(z)dz, and Nh

k =

||Σh(uk, yk+1)σhk ||1 is the normalisation factor. We will call
Σh(u, y) the approximating information state filter.

In the following, we will write σh
k|[`,k],σh

`−1

(·) to denote

the normalised information state σhk (·) after evolution by
measurements y[`,k] from initial distribution σh`−1 at time
k = `− 1. Also, we will define σh

0|[1,0],σh
0
, σh0 .

D. Output Feedback Control Design

In this paper, we are interested in the control problem
where the exact model (1) is unknown. We will assume that
exact system is under an output feedback control solution
designed on the basis of the approximating model (5). For
this purpose, we will define a control process, uk, associated
with an approximating information state, σhk , as

uk = gh(σhk ) (7)

where gh(·) : L̄1(Rn) → Rd is the control law designed
using the approximating system (5). We will call this the ap-
proximating output feedback controller and we will assume
that this is always based on the approximating information
state, σhk (·).

We will now introduce some notation that helps our
presentation. Let xem|[`,m]

(
x`−1, σ`−1,Σ

h, gh, v[`,m], w[`,m]

)
denote the state of the true system (1) at time m starting
from x`−1 with the initial distribution σ`−1, the approxi-
mating output feedback controller gh(·), the approximating
information state filter Σh(·), and the noise processes v[`,m]

and w[`,m] (these noise processes generate the measurement
process y[`,m]). This notation highlights that output feedback
control designed on the approximating system (5) is used for
output control of the true system model (1). In this paper,
we examine the behaviour of such a closed loop system.

To assist with our analysis, we also introduce no-
tation to describe the approximating system under a
similar output control solution. We will also write
xhm|[`,m]

(
x`−1, σ

h
`−1,Σ

h, gh, vh[`,m], w
h
[`,m]

)
to denote the

state of the approximating system (5) at time m starting
from x`−1 with the initial distribution σh`−1, the approxi-
mating output feedback controller gh(·), the approximating
information state filter Σh(·), the noise processes vh[`,m] and
wh[`,m] (for the measurement process y[`,m]).

E. Mixed State

Let X ⊂ Rn be a compact set. To help characterise the
behaviour of our closed loop dynamics, we will introduce
the following mixed description of the dynamics

Xk

(
xk, σk, σ

h
k

)
=

[
xk

σk(·)− σhk (·)

]



where xk ∈ X and σk, σ
h
k ∈ L̄1(Rn). This mixed state

describes both the state dynamics and the relative dynamics
of the true and approximating information states. We will
also let X ∈ X × L̄1(Rn) denote the set of possible mixed
state values in the sense that Xk(xk, σk, σ

h
k ) ∈ X. For this

mixed state we will define a mixed 1-norm of the mixed state
process as

∣∣Xk

(
xk, σk, σ

h
k

)∣∣
1
, |xk|1 + ||σk(·) − σhk (·)||1.

We highlight that we consider the control problems where
the control objective is regulation of |xk|1 to zero (however,
other control objectives can be considered by simple redefi-
nition of the mixed state Xk).

For the purposes of describing the behaviour
of the true system under approximate output
feedback control, we will define the mixed state
Xe
m|[`,m](x`−1, σ`−1, σ

h
`−1, v[`,m], w[`,m]) as[

xem|[`,m]

(
x`−1, σ

h
`−1,Σ

h, gh, v[`,m], w[`,m]

)
σem|[`,m],σ`−1

− σh
m|[`,m],σh

`−1

]
.

This mixed state describes the evolution of the true system
under the control of information from the approximating
system and also describes the relative dynamics of the true
and approximating information state (based on measurement
from the true model). For this reason, this mixed state
describes all the information important in understanding our
system under control.

For clarity of presentation, from this point forward, we will
suppress the dependency on the noise processes v[`,m] and
w[`,m] and write Xe

m|[`,m](x`−1, σ`−1, σ
h
`−1) as shorthand.

We likewise use the shorthand notation
Xh
m|[`,m](x`−1, σ`−1, σ

h
`−1, v

h
[`,m], w

h
[`,m]) to denote the

mixed state xhm|[`,m]

(
x`−1, σ

h
`−1,Σ

h, gh, vh[`,m], w
h
[`,m]

)
σhm|[`,m],σ`−1

− σh
m|[`,m],σh

`−1


describing the evolution of the approximating system under
approximating output feedback control (in this case, output
feedback control designed with knowledge of the system
under control). Again, we suppress the dependency of the
mixed state on the noise processes vh[`,m] and wh[`,m] and
write Xh

m|[`,m](x`−1, σ`−1, σ
h
`−1) to denote the mixed state

described above.
Finally, we write Xe

k|[k](xk−1, σk−1, σ
h
k−1) as short-

hand for Xe
k|[k,k](xk−1, σk−1, σ

h
k−1). Similarly, we write

σek|[k],σk−1, xek|[k](xk−1, σ
h
k−1,Σ

h, gh, vk, wk), and all cor-
responding quantities with h superscripts.

III. PRACTICAL STABILITY OF OUTPUT
FEEDBACK CONTROL

In this section, we establish our main results which de-
scribe under what situations both the true system controlled
by the approximating output feedback controller and the
approximating information state filter will exhibit desirable
behaviours.

We will first introduce some important definitions and
some required assumptions before we end the section by
presenting the main results of this paper.

A. Definitions of Asymptotically Bounded and Practical Sta-
bility

Let us say that a function γ(·) is of class-K if it is
continuous, strictly increasing, and γ(0) = 0. A function of
class-K is also of class-K∞ if it is unbounded. Moreover,
a function β(·, ·) is of class-K L if β(·, t) ∈ K for
each t ≥ 0 and β(s, ·) is decreasing to zero for each
s > 0 (see [18, Ch.4] for descriptions of system stability
involving such functions). We will now introduce definitions
of asymptotically bounded error and practical stability.

Definition 1: ((β,Nx, Nσ)-asymptotically bounded in a
stochastic sense) Let Nx ⊂ Rn and Nσ ⊂ R+ be open sets
containing the origin. A system (1) with the approximating
information state filter Σh(·) and the approximating output
feedback controller gh(·) (some fixed h) is said to be
(β,Nx, Nσ)-asymptotically bounded in a stochastic sense if,
there exists a β(·, ·) ∈ K L and γv(·), γx(·) ∈ K∞ such
that, for all x0 ∈ Nx, all ||σ0 − σh0 ||1 ∈ Nσ , and all k ≥ 0,
we have that

E[1,k]

[∣∣∣Xe
k+1|[1,k+1](x0, σ0, σ

h
0 )
∣∣∣
1

]
≤ β

(∣∣X0(x0, σ0, σ
h
0 )
∣∣
1
, k + 1

)
+R

+ E[1,k]

[
γv(|vk+1|1) + γx

(∣∣∣∆x̂hk|[1,k],σh
0

∣∣∣
1

)]
P -a.s.

(8)
where E[1,k][·] , E[·|x0, y[1,k+1], σ0, σ

h
0 ] is a P -measure

conditional expectation and ∆x̂h
k|[1,k],σh

0
, x̂h

k|[1,k],σh
0
−

xk, for all x ∈ Rn, is the previous estimation error.
Here, x̂h

k|[1,k],σh
0

=
∫
Rn σ

h
k|[1,k],σh

0
(x)xdx. Note that the

γx

(∣∣∣∆x̂hk|[1,k],σh
0

∣∣∣
1

)
term in (8) seems to be a natural bias

term in many problems of interest (but could be replaced
by a general expression involving the information state, if
required).

We note that the above definition of (β,Nx, Nσ)-
asymptotically bounded is related to the following definition
of Lyapunov asymptotically bounded.

Definition 2: (Lyapunov asymptotically bounded in a
stochastic sense) A system (1) with the approximating in-
formation state filter Σh(·) and the approximating output
feedback controller gh(·) (some fixed h) is said to be
Lyapunov asymptotically bounded in a stochastic sense if,
there exists a Lyapunov function V (·) : Rn × L̄1(Rn)→ R,
γv(·), γx(·) ∈ K∞, a compact set X ⊂ Rn, and finite
constants a1, a2, a3 > 0 such that, for all initial conditions
xk ∈X , all σk, σhk ∈ L̄1(Rn), and all k ≥ 0, we have that

a1
∣∣Xk(xk,σk,σ

h
k )
∣∣
1
≤V
(
Xk(xk,σk,σ

h
k )
)
≤a2

∣∣Xk(xk,σk,σ
h
k )
∣∣
1

P -a.s. (9)

and

Ek

[
V
(
Xe
k+1|[k+1](xk, σk, σ

h
k )
)
− V

(
Xk(xk, σk, σ

h
k )
)]

≤ −a3
∣∣Xk(xk, σk, σ

h
k )
∣∣
1

+R

+ Ek [γv(|vk+1|1)] + γx(
∣∣∆x̂hk∣∣1) P -a.s.. (10)



where Ek[·] , E[·|xk, yk+1, σk, σ
h
k ] is a P -measure condi-

tional expectation, and ∆x̂hk , x̂hk − xk, for all x ∈ Rn, is
the previous estimation error. Here, x̂hk =

∫
Rn σ

h
k (x)xdx.

We highlight that Lyapunov asymptotically bounded
in a stochastic sense implies that the mixed state is
attracted to the set E

[∣∣∣Xe
k+1|[1,k+1](x0, σ0, σ

h
0 )
∣∣∣
1

]
≤

1
a3

(
R+ E

[
γv(|vk+1|1) + γx

(∣∣∣∆x̂hk|[1,k],σh
0

∣∣∣
1

)])
as k →

∞. This is the type of asymptotically bounded behaviour
that we will establish in later results.

We highlight that when additional conditions hold, it
will be possible to establish practical stability. Consider the
following definition.

Definition 3: (Lyapunov practically stable in a stochastic
sense) A system (1) with the class of approximating informa-
tion state filters Σh(·) and the class of approximating output
feedback controllers gh(·) is said to be Lyapunov practically
stable in a stochastic sense if, for any R > 0, there exists a
H > 0, a Lyapunov function V (·) : Rn × L̄1(Rn) → R,
γv(·), γx(·) ∈ K∞ a compact set X ⊂ Rn, and finite
constants a1, a2, a3 > 0 such that, for all h ∈ (0, H], all
initial conditions xk ∈ X , all σk, σhk ∈ L̄1(Rn), and all
k ≥ 0, we have that (9) and (10) hold.

B. Assumptions

In the following, we will establish our asymptotically
bounded and practical stability results in a stochastic sense
for output feedback control in the presence of modelling
errors. Our results will be established using some finite error
growth properties between the true and the approximating
systems. We will now introduce these important definitions.

Definition 4: (Finite filter error over one step) An approx-
imating filter σhk|[1,k],σk−1

(·) (some fixed h) is said to have
finite error over one timestep with respect to the true filter
σek|[1,k],σk−1

(·) if, for all initial conditions σk−1 ∈ L̄1(Rn)
and all k > 0, we have that

Ek−1

[∣∣∣∣∣∣σek|[k],σk−1
− σhk|[k],σk−1

∣∣∣∣∣∣
1

]
≤ ρ P -a.s. (11)

where ρ > 0 is finite.
Definition 5: (Finite model error over one step) An ap-

proximating model (5) with the approximating information
state filter Σh(·) and the approximating output feedback
controller gh(·) (some fixed h) is said to have finite error
over one timestep with respect to the true model (1) with
the approximating information state filter Σh(·) and the
approximate output feedback controller gh(·) if, there exists
a compact set X ⊂ Rn such that, for all initial state
xk−1 ∈ X , all initial conditions σk−1 ∈ L̄1(Rn), and all
k > 0, we have that

Ek−1

[∣∣∣xek|[k](xk−1, σk−1,Σh, gh, vk, wk)

−xhk|[k](xk−1, σk−1,Σ
h, gh, vhk , w

h
k )
∣∣∣
1

]
≤ α P -a.s. (12)

where α > 0 is finite.
We will now introduce a definition on our approximating

model (5) that will be used to establish our main asymptot-
ically bounded and practical stability results.

Definition 6: (Lyapunov asymptotically stable in a
stochastic sense with respect to initial conditions) An
approximating model (5) with the approximating information
state filters Σh(·) and the approximating output feedback
controllers gh(·) (some fixed h) is said to be Lyapunov
asymptotically stable in a stochastic sense with respect
to initial conditions if, there exists a Lyapunov function
V (·) : Rn × L̄1(Rn) → R, γv(·), γx(·) ∈ K∞, a compact
set X ∈ Rn, and a finite constant a3 > 0 such that, for all
xk ∈X , all σk, σhk ∈ L̄1(Rn), and all k ≥ 0, we have that

Ek

[
V
(
Xh
k+1|[k+1](xk, σk, σ

h
k )
)
− V

(
Xk(xk, σk, σ

h
k )
)]

≤ −a3
∣∣Xk(xk, σk, σ

h
k )
∣∣
1
+Ek

[
γv(
∣∣vhk+1

∣∣
1
)
]
+γx(

∣∣∆x̂hk∣∣1)

P -a.s. (13)

and the Lyapunov function V (·) also satisfies the follow-
ing properties: there exists a1, a2 > 0 such that, for all
Xk(xk, σk, σ

h
k ) ∈ X and all k ≥ 0,

a1
∣∣Xk(xk,σk,σ

h
k )
∣∣
1
≤V
(
Xk(xk,σk,σ

h
k )
)
≤a2

∣∣Xk(xk,σk,σ
h
k )
∣∣
1

P -a.s. (14)

and there exists a L > 0 such that, for all
Xk(xk, σk, σ

h
k ), X̄k(x̄k, σ̄k, σ̄

h
k ) ∈ X and all k ≥ 0,

V (Xk(xk, σk, σ
h
k ))− V (X̄k(x̄k, σ̄k, σ̄

h
k ))

≤ L
∣∣Xk(xk, σk, σ

h
k )− X̄k(x̄k, σ̄k, σ̄

h
k )
∣∣
1
P -a.s.. (15)

We highlight that this definition relates to the behaviour
of the approximating system under output feedback control
(designed with the full knowledge of the system under
control). It seems reasonable to require the output feedback
control to (at least) stabilise the system that the controller
was designed for. Note that condition (13) is expressed under
P measure rather than using, as might be expected, the Ph

measure defined for the approximate processes (but please
see later example of how (13) can be established).

Definition 7: (Finite stochastic mismatch) Consider the
γv(·) ∈ K∞ holding in Definition 6. Let ∆γ

h|v
k+1 ,

γv(
∣∣vhk+1

∣∣
1
) − γv(|vk+1|1), be a measure of stochastic mis-

match between models. We will say there is finite stochas-
tic mismatch between true and approximate models when
Ek

[∣∣∣∆γh|vk+1

∣∣∣] ≤ ε where ε > 0 is finite.

C. Main Results

We now state an important error bound result.
Theorem 1: Consider a state process xk and a measure-

ment process yk generated by the true system (1). Also
consider an approximating system (5) with approximate
information state filter Σh(·) and approximating output feed-
back controller gh(·) (some fixed h). Assume Definitions 4,
5, 6 and 7 hold. Then the output feedback control solution
satisfies (9) and (10). That is, the true system under approx-
imating output feedback control is Lyapunov asymptotically
bounded in a stochastic sense (Definition 2), with the bound
R = L(α+ ρ) + ε.

Proof: Let X be the compact set holding in Definition
6. For all xk ∈X and all σk, σhk ∈ L̄1(Rn), and all k ≥ 0,
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consider the steps in (16). In the 2nd step of (16), we have
used that

V
(
Xe
k+1|[k+1](xk, σk, σ

h
k )
)
− V

(
Xh
k+1|[k+1](xk, σk, σ

h
k )
)

≤
∣∣∣V (Xe

k+1|[k+1](xk,σk,σ
h
k )
)
−V
(
Xh
k+1|[k+1](xk,σk,σ

h
k )
)∣∣∣ .

In the 3rd step, we have applied (13) and (15). The 4th step
follows from the definition of the mixed 1-norm. In the 2nd
last step, we have used (11) and (12). In the last step, we have
introduced ∆γ

h|v
k+1 and overbounded this term by its absolute

value. The result then holds by setting R = L(α + ρ) + ε
and considering the definition of Lyapunov asymptotically
bounded in a stochastic sense.

Theorem 2: Consider a state process xk and a measure-
ment process yk generated by the true system (1). Also
consider a class of approximating systems (5) with approxi-
mate information state filter Σh(·) and approximating output
feedback controller gh(·). Assume that, for any ρ > 0, α > 0,
and ε > 0, there exists a H > 0 such that, for all h ∈ (0, H],
Definitions 4, 5, 6 and 7 hold. Then the true system (1)
with the class of approximating information state filters Σh(·)
and the class of approximating output feedback controllers
gh(·) is Lyapunov practically stable in a stochastic sense
(Definition 3).

Proof: Under the theorem assumptions, for any selected
R, there are suitable ρ > 0, α > 0, ε > 0, and H > 0, so that
Theorem 1 can be applied for all h ∈ (0, H]. The theorem
statement then follows.

IV. EXAMPLE

In this section, we illustrate the nature of our asymptoti-
cally bounded result in an example output feedback control
problem where both the true model and the approximating
model are linear systems under control by a linear quadratic
regulator (LQR) controller.

For k > 0, consider a stable system described by a state
process xk ∈ R and measurement process yk ∈ R,

xk = 0.9xk−1 + uk−1 + vk

yk = xk + wk (17)

with the initial state value x0 = 5. Here, vk ∈ R and wk ∈ R
are zero-mean Gaussian noise processes with variances of
0.01 and 1, respectively.

We will consider approximation of the above system by
the following:

xk = 0.5xk−1 + uk−1 + vhk

yk = xk + whk . (18)

where vhk ∈ R and whk ∈ R have the same densities as vk
and wk above.

Our approximating output feedback control is designed on
the basis of an approximating Kalman filter and an infinite-
horizon LQR controller designed for the approximating
model (18) (see [16], [17] for details). The Kalman filter
assumed an initial estimate x̂0 = 10 and initial covariance
P0 = 100, and the LQR control was designed on the basis
of the cost function J =

∑∞
k=0 3x2k+u2k. The achieved LQR

controller gh(·) is

gh(σhk ) = −0.375x̂hk (19)

where x̂hk is the Kalman filter estimate. Note that the Kalman
filter mean and variance defined a probability density func-
tion that serves as our approximate information state, σhk (·),
in this example.

To show that the conditions of Theorem 1 hold, we
consider the Lyapunov function V (Xk(xk, σk, σ

h
k )) =∣∣Xk(xk, σk, σ

h
k )
∣∣
1

. For this choice of Lyapunov function, we
can then show (using Minkowski’s inequality) that Definition
4 holds with ρ = 2 (at least), and that Definition 5 holds
because both dynamics are linear (ie. finite difference over
one time step). Properties (14) and (15) of Definition 6 hold
immediately from our selected Lyapunov function. We then
note that
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−
∣∣∣∣σk − σhk ∣∣∣∣1] .

(20)



Fig. 1. Comparison of the true state under the control of true output
feedback controller and true state under the control of approximate output
feedback controller

From the exponential forgetting property of Kalman filters
[16, pp. 76-82], it can be shown that∣∣∣∣∣∣σhk+1|[k+1],σk

− σhk+1|[k+1],σh
k

∣∣∣∣∣∣
1
−
∣∣∣∣σk − σhk ∣∣∣∣1

≤ −ah3
∣∣∣∣σk − σhk ∣∣∣∣1 Ph-a.s. (21)

where ah3 > 0 is a finite constant. We can also show by
substitution in approximate dynamics (18) that∣∣∣xhk+1|[k+1](xk, σ

h
k ,Σ

h, gh, vk+1, wk+1)
∣∣∣
1
− |xk|1

≤ −0.875|xk|+ |vhk+1|+ 0.375|x̂hk − xk| Ph-a.s.. (22)

Under the assumption that Ph � P , (21) and (22)
also hold P -a.s.; hence taking the expectation operation
and applying (20) establishes that Definition 6 holds, where
γv(v) = v and γx(x) = Bx for some finite B > 0. Definition
7 holds because the stochastic error can be overbound by a
linear function of the state (eg. ∆γ

h|v
k ≤ 0.4|xk|) and the

expected value of the state is bounded. Theorem 1 can then
be applied to establish that the expected mixed-state error is
asymptotically bounded.

To illustrate the properties described by Theorem 1, we
conducted a small simulation study. Figure 1 shows a closed-
loop trajectory of the true system (17) under approximate
output feedback control (solid line). For comparison pur-
poses, this figure also shows a closed-loop trajectory of
the design system (18) under approximate output feedback
control (dashed line). This figure illustrates that that state
regulation error is asymptotically bounded in this example,
and that there is only a moderate loss in performance due to
the model approximations involved.

V. CONCLUSION

In this paper, we investigated an output feedback stabilisa-
tion problem for stochastic discrete-time nonlinear systems
when there is a mismatch between the true system and the
approximating system used to design the controller. Under
mild conditions, this paper establishes asymptotic bounds
on the expected control and filtering errors when the true

stochastic system is under approximate output feedback
control. Practical stability is also established under stronger
conditions.
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