
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Techakesari, Onvaree & Ford, Jason J.
(2011)
Relative entropy rate based design for linear hybrid system models. In
Australian Control Conference, 10-11 November 2011, University of Mel-
bourne, Melbourne, VIC.

This file was downloaded from: http://eprints.qut.edu.au/44030/

c© Copyright 2011 [please consult the authors]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10905583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Techakesari,_Onvaree.html
http://eprints.qut.edu.au/view/person/Ford,_Jason.html
http://eprints.qut.edu.au/44030/


Relative Entropy Rate Based Design for Linear Hybrid System Models

Onvaree Techakesari and Jason J. Ford

Abstract— Hybrid system representations have been applied
to many challenging modeling situations. In these hybrid system
representations, a mixture of continuous and discrete states
is used to capture the dominating behavioural features of a
nonlinear, possible uncertain, model under approximation. Un-
fortunately, the problem of how to best design a suitable hybrid
system model has not yet been fully addressed. This paper
proposes a new joint state-measurement relative entropy rate
based approach for this design purpose. Design examples and
simulation studies are presented which highlight the benefits of
our proposed design approaches.

I. INTRODUCTION

Hybrid system models involve a mixture of continuous
(base) states and discrete (mode) states [1], [2]. Over the
past few decades, hybrid system model filters have received
a large amount of interest (see [2] for a review of hybrid
system model filtering techniques). This interest has occurred
because hybrid system model filter can be applied to a
range of important problems, for example: road networks
[3], target tracking and air traffic surveillance [4], [5], and
fault detection and isolation [6].

The successful application of hybrid system models to
nonlinear filtering problems involves both the selection of
a suitable model and the application of a filter based on
the selected model. Hence, there are two basic avenues to
improve the performance of hybrid system model filtering
approach: development of a better filtering algorithm, or
selection of a better model representation [7]. In this paper,
we consider the task of selecting a suitable hybrid system
model representation.

In recent years, three model selection approaches have
emerged [7]: the minimum-mismatch design method, the
minimum-distance design method, and the equal-distance
design method. In the minimum-mismatch method, a hybrid
system model is designed in a manner to ensure that each
mode is equally likely to be active [7], [8]. That is, the
range of possible mode values is divided into equal probable
regions of mode values, and a set of modes are selected such
that each mode is the median of each region. Alternatively,
the minimum-distance method selects a hybrid model in a
manner that minimises the expected distance metric between
the chosen set of mode values, and the underlying parameter
values [7], [9]. That is, a set of modes is selected so that
the likelihood of each mode within the chosen set matches
the likelihood of the nominal parameter values the mode
is representing. Finally, the equal-distance method proposes
that modes are equally spaced over the range of parameter
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values [7], [10]. Hence, there is equal distance between
adjacent modes. Unfortunately, none of these three design
techniques is completely suitable in problems where the
density of the model parameters is unknown.

In related work, relative entropy concepts (or the Kullback-
Leibler distance concepts) have been shown to provide
powerful tools to quantify the similarity of two model
descriptions [11], [12]. Most importantly, this work showed
that the relative entropy rate (RER) between the joint state
and measurement processes of two hidden Markov models
(HMMs) is related to the probabilistic distance between the
HMMs (suggesting a connection between RER and the filter
performance). In [12], this relationship between the RER
concepts and the probabilistic distance is exploited in the
design of HMM to approximate uncertain dynamic models
[12]. Thus, these relative entropy concepts seem suitable for
the above hybrid system model selection problem.

In this paper, we present a new joint state-measurement
relative entropy rate based hybrid system model design
approach which selects a model in a manner that minimises
the RER between the nominal system and the hybrid system
model under design. Importantly, the proposed design does
not require a priori information about density of uncertain
parameters. Several design examples and simulation studies
are presented which illustrate and highlight the benefits of
our presented design techniques.

This paper is organised as follows: Section II presents our
nominal dynamics and our linear hybrid system model used
for approximation. In Section III, relative entropy concepts
are introduced and hybrid system model design approaches
are proposed. Section IV presents some implementation
issues and performance measures. Section V provides some
design examples that illustrate the application of our design
approaches. Finally, some concluding remarks are presented
in Section VI.

II. PROBLEM FORMULATION

A. Nominal Dynamics

Consider an abstract complete probability space (Ω,F , P ).
For k > 0, we will consider a nominal state process xk ∈ Rn
and a measurement process yk ∈ Rm described by

xk = f(xk−1, vk, θk)

yk = h(xk, wk) (1)

where xk has an initial value x0 and θk ∈ Sθ ⊂ Rd is an
unknown (possibly time-varying) parameter process. Here,
vk and wk are sequences of independent and identically
distributed i.i.d. random variables with densities φv(·) and
φw(·), respectively. We assume that wk, vk and x0 are



mutually independent for all k. We will now introduce some
shorthand notation that will help with our presentation. We
will use x[a,b] to denote the process xk from k = a to
k = b, and we will define y[a,b] and θ[a,b] similarly. We
will let Sθ|[1,k] denote a set of possible parameter sequences.
Throughout this paper, we will use the notation λ0(θ[1,k]),
or simply λ0, to denote our model of the nominal state and
measurement processes xk and yk.

In this paper, we are interested in the estimation prob-
lem of determining the conditional mean state estimates
E[xk|y[1,k]] in the situation where there is uncertainty about
the system parameter θ[1,k]. We will consider a linear hybrid
system based estimation approach for this problem, and we
will focus our attention on how to best select an appropriate
hybrid system model.

B. Linear Hybrid System Models

We will now introduce a linear hybrid system model that
will serve as a possible approximation for the processes xk
and yk. This hybrid representation is understood to involve
a base state process in xk, a mode process in Xk ∈ SX , and
a measurement process in yk. The mode process describes
the way the system switches between a finite set of N
elementary dynamic behaviours that describe the evolution
of the base state. We will let ei = [0, ..., 0, 1, 0, ...0]′ ∈ RN
denote an indicator vector with 1 in the ith position and
zeros elsewhere, and let SX = {e1, ..., eN} denote the set
of allowed indicator vectors. For k > 0, let us consider the
linear hybrid system [13]:

xk = Fk (Xk−1)xk−1 +Gkv
a
k

Xk = AXk−1 + V ak

yk = Hkxk + wak (2)

where Fk(Xk) ∈ Rn×n, for all Xk ∈ SX , is a mode-
dependent base state transition matrix, Hk ∈ Mm×n is an
output mapping matrix, and Gk ∈ Rn×v is the state noise
mapping matrix. We highlight that in more general formula-
tions other model parameters (for example Hk and Gk) might
also depend on the mode process Xk. However, for simplicity
of presentation, we will consider the case where only Fk(·)
is mode-dependent in this paper. Here, the state noise process
vak ∈ Rv and the measurement noise process wak ∈ Rm are
assumed to be zero-mean Gaussian noise processes with den-
sities φav(x) = N (x; 0, Qa) and φaw(x) = N (x; 0, Ra), re-
spectively, where N (x; x̄,Φ) , |2πΦ|− 1

2 e−
1
2 (x−x̄)′Φ−1(x−x̄)

denotes the Gaussian probability density function (pdf) with
the argument x, mean x̄, and covariance Φ [1, p.51]. We
highlight that the superscript a denotes that these processes
are in the approximating model. Further, A is the time-
invariant transition probability matrix for our mode process
with ijth element Aij = P (Xk+1 = ei|Xk = ej) and we
understand V ak to be a martingale increment in the sense
that E [V ak |Xk] = 0, see [14]. To complete the description,
we assume the state process xk has initial value x0 and the
Markov chain Xk has initial probabilities described by π0

with ith element πi0 = P (X0 = ei).

Let us now introduce some model-related notation. We
will use the notation λiE = (Fk(ei), Gk, Q

a, x0) to denote
the ith elementary dynamic behaviour, and will assume that
λiE ∈ SE , where SE denotes all candidate elementary
dynamics. We will also let CE = {λ1

E , . . . , λ
N
E } denote a

collection of dynamic behaviours present in a given hybrid
model, and we will assume CE ∈ SC , where SC will denote
the set of all behaviour collections under consideration. Note
that CE does not include a characterisation of how mode
transitions occur, and hence is only a partial description of
the hybrid model. Finally, we will use the notation λ =
(Fk(·), Hk, Gk, Q

a, Ra, A, π0, x0) to denote a hybrid system
model, and will use Sλ to denote the set of all candidate
hybrid system models under consideration.

The basic idea is that a suitable hybrid system model
might lead to a more suitable filtering solution than the
complex (perhaps intractable) nonlinear filter developed from
the Duncan-Mortensen-Zakai equation [14, p. 269] applied
directly to the nonlinear dynamics described by (1) [2]. The
basic premise of this approach is that a hybrid model can be
found that provides a reasonable representation of behaviours
described by the nonlinear model being approximated.

III. RELATIVE ENTROPY CONCEPTS AND
HYBRID SYSTEM MODEL SELECTION

Let us consider the joint state and measurement probability
densities pλ

(
x[0,k], y[1,k]

)
and pλ

(
x[0,k], y[1,k]

)
correspond-

ing to two different models λ and λ, respectively. The relative
entropy, DKLk (·||·), between these densities is defined as (3)
[15], [16] where we will use the conventions that 0/0 = 1,
0 log 0 = 0, 0 × ∞ = 0, and that the relative entropy
DKLk

(
pλ
(
x[0,k], y[1,k]

)∣∣∣∣ pλ (x[0,k], y[1,k]

))
will be defined

to be infinite whenever the ratio
pλ(x[0,k],y[1,k])
pλ(x[0,k],y[1,k])

is infinite for
any feasible x[0,k], y[1,k] sequences.

When interested in dynamic systems, it is often more
useful to consider the relative entropy rate (RER),
R
(
pλ
(
x[0,∞], y[1,∞]

)∣∣∣∣ pλ (x[0,∞], y[1,∞]

))
, which is de-

fined as [15, p. 134]

R
(
pλ
(
x[0,∞], y[1,∞]

)∣∣∣∣ pλ (x[0,∞], y[1,∞]

))
, lim
k→∞

1

k
DKLk

(
pλ
(
x[0,k], y[1,k]

)∣∣∣∣ pλ (x[0,k], y[1,k]

))
.

We will use the shorthandR
(
λ||λ

)
to denote the joint state-

measurement RER between models λ and λ (induced from
their densities).

We now propose our hybrid system model design ap-
proaches that are based on the joint state-measurement RER
between the nominal model and a candidate hybrid system
model under consideration.

A. Min-Max Joint RER Hybrid System Model Design

Let us consider the problem of selecting hybrid system
model to represent the nominal process model λ0 with
unknown parameter process θ[1,∞]. We will aim to select
a hybrid model that produces reasonable filter estimates



DKLk
(
pλ
(
x[0,k], y[1,k]

)∣∣∣∣ pλ (x[0,k], y[1,k]

))
,
∫

log

(
pλ
(
x[0,k], y[1,k]

)
pλ
(
x[0,k], y[1,k]

)) pλ (x[0,k], y[0,k]

)
dx[0,k]dy[0,k] (3)

regardless of the true parameter process θ[1,∞]. For this
purpose, for a candidate hybrid system model λ ∈ Sλ, let us
define the max joint RER JM (λ) (worst-case RER) as

JM (λ) , sup
θ[1,∞]∈Sθ|[1,∞]

R
(
λ0(θ[1,∞])||λ

)
. (4)

The min-max joint RER design will be defined as the hybrid
system model λM ∈ Sλ that satisfies

JM (λM ) = inf
λ∈Sλ

JM (λ). (5)

B. Special Cases - Static Hybrid System Model
We now consider some special cases that arise when

the mode process Xk is unknown but constant for all k
corresponding to constant θk = θ, and we denote the
corresponding model as λ0(θ). Although this static model de-
scription can be solved using the general min-max joint RER
approach described by (5), this special design task can also be
approached as a simplified problem of selecting a collection
of elementary dynamic behaviours CE = {λ1

E , . . . , λ
N
E }

(rather than selection of a full hybrid system model).
We now consider two approaches for this special case: a

worst-mode design approach and a conditional-mode design
approach.

1) Worst-Mode Design: Consider design of a behaviour
collection CE for the nominal model λ0(θ) where θ is
constant but unknown. In this case, we propose to select CE
so that for every value of θ ∈ Sθ, the nominal model λ0(θ) is
close (in a joint RER sense) to at least one mode λiE ∈ CE .
For this purpose, consider the worst-mode criteria,

JW (CE) , sup
θ∈Sθ

[
min
i∈[1,N ]

R
(
λ0(θ)||λiE

)]
. (6)

Hence, the static hybrid system model selection problem can
be posed as the problem of finding the worst-mode collection
CWE ∈ SC that satisfies

JW (CWE ) = inf
CE∈SC

JW (CE). (7)

2) Conditional-Mode Design: Alternatively, when consid-
ering design of a behaviour collection CE for a nominal
model λ0(θ) where θ is constant and has a known a priori
density p(θ), then we can consider the following conditional
RER concept. Let us introduce the conditional joint state-
measurement RER, RC(λ0(θ)||λiE), which is defined as

RC
(
λ0(θ)||λiE

)
,
∫
θ∈Sθ

p(θ)R
(
λ0(θ)||λiE

)
dθ (8)

Related to this conditional joint state-measurement RER, we
introduce the following conditional–mode criteria:

JC(CE) , min
i∈[1,N ]

RC
(
λ0(θ)||λiE

)
=

∫
θ∈Sθ

p(θ) min
i∈[1,N ]

R
(
λ0(θ)||λiE

)
dθ. (9)

We can then propose the conditional–mode model collection
CCE ∈ SC as satisfying

JC(CCE ) = inf
CE∈SC

JC(CE). (10)

Remark 1: Our presented conditional-mode criteria
JC(CE) is related to the minimum-distance criteria [7].

Remark 2: We highlight that the joint state-measurement
RER is non-symmetric and that the order of RER arguments
in (4), (6), and (9) is important.

IV. SIMULATION STUDIES

In this section, we will discuss some implementation
issues and filter performance measures used in our simulation
studies.

A. Calculation of Relative Entropy Rate

We remind that our joint state-measurement RER de-
sign approaches require the calculation of the joint state-
measurement density pλ

(
x[0,k], y[1,k]

)
. For this purpose, note

that we can establish efficient recursions for calculating
pλ
(
x[0,k], y[1,k]

)
by considering a fictitious HMM in which

Xk is the state process and xk is the observation process.
Let αk(j) , pλ

(
Xk = ej , x[0,k]

)
be the probability of the

observation sequence until time k, x[0,k], and the current state
value Xk, then αk(j) can be calculated via the usual forward
recursion (or the unnormalised HMM filter), for k > 0,

αk+1(j) =

[
N∑
i=1

αk(i)Aji

]
bj(xk+1|xk), for j = 1, ..., N

(11)
with the initial value α1(i) = πi0bi(x1|x0) and the observa-
tion probability densities bi(xk|xk−1) , pλ(xk|xk−1, Xk =
ei) = N ((xk − F (ei)xk−1) ; 0, GkQ

aG′k), see [18]. We
highlight that even though the interpretation is unusual, all
these quantities are defined, and this filter exists. Using this
fictitious HMM, the joint probability law of the state and
measurement processes pλ(x[0,k], y[1,k]) can be calculated
from αk using Bayes’ rule as follows:

pλ(x[1,k], y[1,k]) = pλ(y[1,k]|x[0,k])

N∑
i=1

αk(i) (12)

where pλ(y[1,k]|x[0,k]) =
∏k
i=1N ((yi −Hixi) ; 0, Ra) and

we note that
∑N
i=1 αk(i) = pλ(x[0,k]). This fictitious

HMM allows us to marginalise out the dynamics due to
the mode process Xk and hence, provides an efficient
finite dimensional algorithm to calculate the joint state-
measurement probability densities pλ

(
x[0,k], y[1,k]

)
. The

joint state-measurement RER can then be calculated by
exploiting Monte Carlo technique [19].



B. Filter Performance Measure

In our simulation studies, we will use two root-mean-
square error (RMSE) concepts to quantitative performance:
average RMSE (ARMSE) and maximum RMSE (MRMSE).
For i = 1, . . . , L, consider a set of state processes x(i)

k which
are sampled to match the statistics provided for the nominal
system, and corresponding state estimate x̂(i)

k , then average
RMSE is defined as

ARMSE =

√√√√ 1

LN

L∑
i=1

N∑
k=1

(
x

(i)
k − x̂

(i)
k

)′ (
x

(i)
k − x̂

(i)
k

)
.

Now let us consider a new set of state processes which
are generated according to a specific θ value. Let us denote
these processes as xθ|ik . The maximum RMSE can be used
to quantify filter performance for the worst parametric value,
and is defined as

MRMSE

= max
θ∈Sθ

√√√√ 1

LN

L∑
i=1

N∑
k=1

(
x

(θ|i)
k − x̂(i)

k

)′ (
x

(θ|i)
k − x̂(i)

k

)
.

C. The Static Multiple Model Filter

In our following design examples, the static multiple
model (SMM) filter is the appropriate state estimator [2].
The SMM filter is a bank of N parallel Kalman filters where
each Kalman filters is designed on one of the possible values
of Fk(Xk) (see [1], [2] for detailed implementation and
structure of SMM filter and Kalman filter equations).

V. DESIGN EXAMPLES

We will now illustrate our hybrid system model design
techniques in aircraft target tracking problems. For all design
examples in this section, we will consider the following
coordinated turn dynamics model F̄ (·) and position-only
measurement H̄ [1], [7]:

F̄ (ω) =


1 sin(ωT )

ω 0 − 1−cos(ωT )
ω

0 cos(ωT ) 0 − sin(ωT )

0 1−cos(ωT )
ω 1 sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )

 and

H̄ =

[
1 0 0 0
0 0 1 0

]
where T = 5s is the sampling period.

We will now present two hybrid system model design
examples. In the first example, we consider the case where
the uncertain parameter is constant but unknown, and there
is no a priori information about the density of the uncertain
parameter. This lack of a priori information means that
the minimum-distance and minimum-mismatch approaches
cannot be applied to these problems. Whilst the equal-
distance design method can be applied, the method leads
to rudimentary designs. Hence, this example will illustrate
the benefits of our RER based design methods when there
is a lack of a priori information about θ. Our second
example involves a problem that can be approached using

the existing techniques. That is, the density of the uncertain
parameter is known a priori (this problem is also considered
in [7]). This example provides a comparison between our
proposed conditional-mode design method and the existing
approaches. We will show that our method selects the same
model as the minimum-distance method, and the selected
model leads to a filter with reasonable performance.

Example 1: Parameterised Linear Dynamics (Density of
Parameter Unknown), SMM Problem

For k > 0, consider a 2D maneuvering target tracking
problem described by discrete-time Cartesian state process
xk = [xck, ẋ

c
k, y

c
k, ẏ

c
k]′ with the nominal dynamics (see, [1,

pp. 467-468]),

xk = F̄ (ω0)xk−1 + vk

yk = H̄xk + wk (13)

where ω0 ∈ Rn is a constant nominal turn rate, x0 =
[1000, 100, 200, 120]′, and vk and wk are zero-mean Gaus-
sian noise processes with covariances Q = 0.01I4 and
R = 100I2, respectively. Let us assume that

∣∣ω0
∣∣ ≤ 6o/s.

In this example, we are interested in estimating position
and velocity of the target when lacking the knowledge of
the density and the true value of ω0. We construct a filter
based on a three-element (N = 3) hybrid system model
described by (2) with Fk(Xk) = F̄ (VxXk), Gk = I4,
Hk = H̄ , and A = I4, where Vx = [ωm, 0,−ωm] is the
mode mapping vector based on turn rate ωm. Here, the noise
processes vak and wak have covariances Qa = I4 and Ra = R,
respectively. We also assume that the models have uniform
initial probabilities π0 = [1/3, 1/3, 1/3]. Note that in other
application Vx could have independent elements, but this
symmetric structure makes sense in this example.

In our design, we consider a selection of behaviour
collection CE with different Vx. We will use CiE =

[λ
1|(i)
E , λ

2|(i)
E , λ

3|(i)
E ] to denote the ith candidate collection

where λj|(i)E = {F̄ (Vxej), Gk, Q
a, x0} for j = 1, 2, 3. Here,

we apply our worst-mode design to a set of five candidate
collections SC = {C1

E , C
2
E , C

3
E , C

4
E , C

5
E} with the candidate

turn rates V 1
x = [−2, 0, 2]o/s, V 2

x = [−3, 0, 3]o/s, V 3
x =

[−4, 0, 4]o/s, V 4
x = [−5, 0, 5]o/s, and V 5

x = [−6, 0, 6]o/s.
Simulation studies involving these candidate models

and corresponding filters were conducted by generating
241 samples of ω0 equally spaced on the set Sθ =
[−6,−5.5,−5, . . . , 6]o/s. For each ω0, 1000 sets of x[0,1000]

and y[1,1000] were generated according to (13). The initial
state estimate x̂0 = x0 and the initial filter covariance
P0 = 100I4 are assumed in all these candidate filters.

Table I illustrates our worst-mode criteria, JW (λ), of
different candidate hybrid system models. As shown by Table
I, the model with behaviour collection C3

E (with the turn
rate ωm = 4o/s) solves our worst-mode design problem
(7) with respect to the candidate set SC . To experimentally
validate this conclusion, we implemented SMM filters to
compare the performance of the filters corresponding to each
of the candidate hybrid system models. The simulated SMM



TABLE I
WORST-MODE CRITERIA AND SMM FILTER PERFORMANCE

Candidate Worst-Mode Simulated Simulated
Turn Rate ωm(o/s) Criteria, JW (λ) MRMSE ARMSE

2 10714 318.35 158.70

3 6036 246.94 116.16

4 2692 169.55 99.19

5 4202 211.52 114.55

6 6010 255.18 148.02

performance is also shown in Table I and the result sug-
gests that the worst-mode design C3

E outperforms the other
candidate filters under consideration. Importantly, the result
suggests that the filter performance predicted by our worst-
mode design approach corresponds well with the simulated
filter performance.

Example 2: Parameterised Linear Dynamics (Density of
Parameter Known), SMM Problem

We now consider another version of the previous example
in which the density of ω0 is known a priori. This example
will allow us to compare our proposed design technique
with the existing techniques. Consider the nominal dynamics
described by (13) but now we will assume that the nominal
turn rate ω0 is distributed by Gaussian-mixture,

p(ω0) = c0
1√

2πσ0

e
− (ω0)2

2σ20

+ c

[
1√
2πσ

e−
(ω0+ωs)

2

2σ2 +
1√
2πσ

e−
(ω0−ωs)2

2σ2

]
(14)

where c0 = 2/3, c = 1/6, σ0 = σ = 1, and ωs = 3o/s (this
problem is also considered in [7]).

The same type of hybrid system models as in the pre-
vious example were considered and our conditional-mode
design was applied to a set of five candidate collections
SC = {C1

E , C
2
E , C

3
E , C

4
E , C

5
E} with the candidate turn rates

V 1
x = [−2, 0, 2]o/s, V 2

x = [−3, 0, 3]o/s, V 3
x = [−4, 0, 4]o/s,

V 4
x = [−5, 0, 5]o/s, and V 5

x = [−2.7, 0, 2.7]o/s. We note
that the design parameter 2.7o/s is included because this is
the design identified in [7].

Similar to the previous example, 100,000 nominal state
and measurement sequences, x[0,1000] and y[1,1000], were
generated according to (13) where ω0 is selected from the
density (14). Again, we implemented SMM filters to compare
the performance of the filters corresponding to each of
the candidate hybrid system models. Here, the initial state
estimate x̂0 = x0 and the initial filter covariance P0 = 100I4
are assumed in all these candidate filters.

Table II illustrates the conditional-mode criteria (9) be-
tween the nominal model and the candidate hybrid system
model, and the simulated SMM performance. It is clear that
the candidate collection C5

E (with the turn rate 2.7o/s) solves
the conditional-model design problem. Further, the results
suggest that the filter corresponding to the conditional-
mode design collection C5

E outperforms the other candidate

TABLE II
CONDITIONAL-MODE CRITERIA AND SMM FILTER PERFORMANCE

Candidate Conditional-Mode Simulated
Turn Rate ωm(o/s) Criteria, JC(λ) ARMSE

2 592.43 287.01
3 480.48 271.50
4 692.80 328.87
5 1113.70 414.35

2.7 472.93 267.01

filters under consideration. We highlight that the model with
C5
E is the same model selected by the existing minimum-

distance design approach [7]. Hence, this design example
illustrates that our design approach is consistent with the
existing technique when the density of uncertain parameter is
available, and the filter corresponding to the designed model
outperforms other filters under consideration.

A. Summary of Simulation Studies

In these simulation studies, we illustrated the benefits of
our proposed hybrid system model design methods. Our
proposed conditional-mode design method was shown to
lead to the same hybrid system model as the minimum-
distance method when there is a priori information about the
density of the unknown parameter. When the density of the
uncertain parameter is not available, our studies suggested
that the filter resulting from our designed hybrid system
model outperformed other candidate filters. Importantly, the
filter performance predicted by our RER designs corresponds
well with the simulated filter performance. We highlight that
we are currently investigating the use of these design tools in
the design of interacting multiple model (IMM) filters (see
[1], [2] for structure and implementation process of IMM
algorithm).

VI. CONCLUSION

This paper presented a novel joint state-measurement
relative entropy rate based approach for the design of hybrid
system representations. These hybrid system descriptions are
useful in developing filters for uncertain nonlinear dynamics.
The proposed approach is superior to previous design tech-
niques which require more information about the nominal
system. A number of illustrative design examples were pre-
sented and the results were examined in simulation studies.
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