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Corrections

Correction to “The Importance of Convexity in Learning
With Squared Loss”

Wee Sun Lee, Senior Member, IEEE, Peter L. Bartlett, Member, IEEE,
and Robert C. Williamson, Member, IEEE

Abstract—The paper “The Importance of Convexity in Learning with
Squared Loss” gave a lower bound on the sample complexity of learning
with quadratic loss using a nonconvex function class. The proof contains
an error. We show that the lower bound is true under a stronger condition
that holds for many cases of interest.

Index Terms—Agnostic learning, lower bound, sample complexity.

In [2, Theorem 2], it was claimed that if the closure of a function
classF under the metric induced by some probability distribution is not
convex, then the sample complexity for agnostically learning F with
squared loss (using only hypotheses in F ) is 
(ln(1=�)=�2) where 1�
� is the probability of success and � is the required accuracy. The proof
of this result—in particular, the proof of Lemma 5—is incorrect. Thus,
we only know that this theorem is true for cases where the function
class F is finite dimensional. This weakens the result. However, the
lower bound for the sample complexity for agnostic learning still holds
for many cases of interest, including any case where the closure of the
class of restrictions of functions to a finite subset of the input space
X is not convex. This is the case, for instance, for all of the examples
mentioned in [2], including the set of linear combinations of a fixed
number of linear threshold functions. (A counting argument, exploiting
the finite pseudodimension of such a class, demonstrates this.)

The following is a corrected version of [2, Lemma 5]; it differs from
that lemma by the addition of the words “finite dimensional.”

Lemma 5’: Suppose thatPX is a probability distribution onX ,H
is the corresponding Hilbert space, and Y 0 is a bounded interval in .
Let HY denote the set of functions f in H with f(x) 2 Y 0 for all x 2
X . Let F be a totally bounded finite dimensional subset ofHY . If �F is
not convex, there is a bounded interval Y in and functions c 2 HY ,
and f1; f2 2 �F satisfying kf1 � f2k 6= 0, kc� f1k = kc� f2k > 0,
and for all f 2 �F , kc � fk � kc � f1k.

While it is true that for any closed, totally bounded nonconvex subset
�F of HY there is a function c with two best approximations (see, e.g.,
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Theorem 12.6 in [1]), we do not know if there is a uniformly bounded c
with this property. However, if �F is finite dimensional, we can project
a function c with two best approximations to the subspace spanned by
functions in �F . This projection, c0, would still have two best approxi-
mations. As c0 can be represented as a finite linear combination of func-
tions in �F and every function in �F has bounded range, c0 has bounded
range as well, which proves Lemma 5’.
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Correction to “An Algebraic, Analytic, and Algorithmic
Investigation on the Capacity and Capacity-Achieving Input

Probability Distributions of Finite-Input–Finite-Output
Discrete Memoryless Channels”

Xue-Bin Liang, Member, IEEE

The following misprints were introduced in the above paper [1]. In
equation (13) of line 7 in the first column of page 1006, “� 1

2
” should

read as “< 1”. In addition, in reference [32] on page 1023, the first
author’s last name should read as “Shulman” and the page numbers
“pp. 19–27” should be “pp. 1356–1362.”
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