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Abstract A number of Game Strategies (GS) have been developed in past decades. They have been used in the 
fields of economics, engineering, computer science and biology due to their efficiency in solving design 
optimization problems. In addition, research in Multi-Objective (MO) and Multidisciplinary Design 
Optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of 
high quality solutions with low computational cost. In this paper, two optimization techniques are considered; 
the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method 
uses the combination of two game strategies; Nash-equilibrium and Pareto optimality. The paper shows how 
game strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to 
accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from 
both optimization methods are compared in terms of computational expense and model quality. The benefits of 
using Hybrid game strategies are clearly demonstrated. 

 
Keywords: Multi-Objective Evolutionary Algorithm (MOEA), Shape Optimization, Game Strategies, Hybrid-
Game, Nash-Equilibrium, Pareto front. 
 

1. Introduction 

With an ever-increasing complexity in design engineering problems, research of Multi-Objective (MO) and 
Multidisciplinary Design Optimization (MDO) focuses on developing robust and efficient optimization methods 
to produce high quality designs with low computational cost [1 -4]. In such situations, Game Strategies (GSs) 
has proposed as one of the key technologies to save CPU usage and produce high model quality due to their 
efficiency in design optimization [4, 5, 7]. In this paper, two GSs are considered and applied to two optimisation 
methods; the first optimization method employs the concept of multi-fidelity hierarchical Pareto optimality 
Evolutionary Algorithm (HAPMOEA) [6]. The second method uses a combination of the concepts of Nash-
equilibrium [7] and Pareto optimality [8] (herein named Hybrid-Game) coupled to Multi-Objective Evolutionary 
Algorithm (MOEA). HAPMOEA uses three hierarchical layers with seven populations (Pareto-games) which 
are divided by model fidelity conditions. Hybrid-Game consists of one Pareto-Player and several Nash-players 
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and can produce a Nash-equilibrium and Pareto non-dominated solutions simultaneously [9]. The reason of 
using Nash-game is to use it as pre-conditioner. It speeds up the search for a local solution which will then be 
seeded to the Pareto-Player to produce global solutions. The hybrid game is especially developed to solve 
complex design problems such as robust MO/MDO which requires high computational cost.  
The evolutionary optimization methods HAPMOEA and Hybrid Game are coupled to a Multi-Objective 
Evolutionary Algorithms (MOEA) in an asynchronous parallel computation and are implemented to solve a 
single-disciplinary multi-objective design and uncertainty based multidisciplinary design problems.  
The rest of paper is organized as followed; Section 2 describes the methodologies and presents algorithms for 
HAPMOEA and Hybrid-Game. Section 3 presents the aerodynamic analysis tools used in this work. Real world 
MO design problem is conducted in Section 4. Conclusions are presented in Section 5. 

2. Methodology 

Both methods HAPMOEA and Hybrid-Game have same feature of Multi-Objective Evolutionary Algorithms 
(MOEAs). HAPMOEA uses hierarchical multi-population Pareto-optimality while the concepts of Nash-
equilibrium and Pareto-optimality are implemented for Hybrid-Game. 
The evolutionary algorithm used in this paper is based on Covariance Matrix Adaptation Evolutionary Strategies 
(CMA-ES) [6, 10, 11]. The optimisation methods; HAPMOEA and Hybrid-Game use MOEA coupled to several 
analysis tools. The methods incorporate the concepts of Covariance Matrix Adaptation (CMA) [12, 13], 
Distance Dependent Mutation (DDM) [11], and implementation of the asynchronous parallel computation [14, 
15]. The methods couple an MOEA, analysis tools and a statistical design tool that takes uncertainty into 
account.  
 

2.1. Multi-Fidelity (Population) Hierarchical Pareto-Optimality 

The first method Multi-fidelity Hierarchical Pareto-Optimality [16] uses three layers of hierarchical Pareto 
optimal game and is shown in Figure 1. The optimiser has capabilities to handle multi-fidelity/physics models 
for the solution. There are three layers and seven different populations in HAPMOEA; the first layer (Node0: 
fine-grid population) concentrates on the refinement of solutions. The third layer (Node3 ~ Node6: four coarse-
grid populations) uses approximate model therefore these populations are entirely devoted to exploration. The 
second layer (Node1 and Node2: two intermediate-grid populations) is to compromise solutions between 
exploration (third layer) and exploitation (first layer). There is also a migration operation after predefined 
number of function evaluations; individuals migrate up and down from third to first layer and from first to third 
layer during the optimisation. As an example, if the problem considers 6 design variables (DV1 to DV6); each 
Pareto-game population at each layer evaluates the same and all fitness/objective function, and considers the 
whole design variable span (DV1 to DV6). The topology of HAPMOEA is normally fixed in the authors’ test 
cases for multi-objective and multidisciplinary designs. Details of HAPMOEA can be found in reference [6]. 
 

 
Figure 1. Topology of HAPMOEA. 
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2.2. Hybrid-Game (Hybrid-Nash) 

The Hybrid-Game uses the concepts of Nash-Game and Pareto optimality and hence it can simultaneously 
produce Nash-equilibrium and a set of Pareto non-dominated solutions [9]. The reason for hybridisation of the 
concepts of Nash-Game and Pareto optimality is to cover each other’s major drawbacks; Nash-Game has a fast 
search but only one global solution (Nash-equilibrium) while standard EAs based on Pareto optimality generally 
require a large number of function evaluations to find optimal non-dominated solutions. Nash-Game herein 
speeds up to search one of the global solutions which will be seeded to the Pareto-Game population at every 
generation or after a predefined sequential function evaluation. Each Nash-Player has its own design criteria and 
uses its own optimisation strategy. Therefore the Hybrid-Game can accelerate MOEA to find Pareto optimal 
solutions based on the elite design obtained by the Nash-Game.  
Figure 2 a) shows the hybridisation between HAPMOEA and Nash-Game, and one example of the Hybrid-
Game topology. The Hybrid-Game consists of four different populations; three Nash-Players (NP1, NP2 and 
NP3) and one Pareto-Player/Global-Player (Node0: high fidelity/resolution – precise model from HAPMOEA). 
The Hybrid-Game locates the Pareto-Player/Global-Player at the core of Nash-Game and the elite designs 
obtained by Nash-Players will be seeded to the Pareto-Player/Global-Player at every generation or after a 
predefined number of function evaluations. This optimisation mechanism allows the Pareto-Player/Global-
Player to accelerate to find Pareto non-dominated solutions or global solutions. The topology of Hybrid-Game 
represents a top view of a trigonal pyramid instead of a two dimensional hierarchical pyramid shape. The 
topology of Hybrid-Game is flexible; if there are four Nash-Players then the topology will be a quadrangular 
pyramid.  
 

 
Figure 2 a). Hybridization of MOEA and Hybrid-Game Topology. 

 

 
Figure 2 b). Design variables for Hybrid-Game. 

 
Figure 2 b) shows an example of design variables (DV1 to DV6) distribution in a Hybrid-Game. The 
distribution of design variables is as follows; Nash-Player1 (black circle) only considers black square design 
components (DV1, DV4), DV2 and DV5 are considered by Nash-Player 2 (blue hidden line circle). Nash-Player 
3 (dot line circle) considers DV3 and DV6. The Pareto-Player (center line circle) considers the complete design 
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variable span (DV1 to DV6). The elite designs (DV1 –DV6) obtained by Nash-Players (N-Player1, N-Player2 
and N-Player3) will be seeded to the population of Pareto-Player (P-Player) after each generation or after a 
predefined number of function evaluations has been reached during the optimisation. The Hybrid-Game 
decomposes one design problem into three simpler design problems for Nash-Game which consists of three 
Nash-Players (N-Player1, N-Player2 and N-Player3). The Pareto-Player (P-Player) will use elite designs (DV1 –
DV6) obtained by Nash-Game to find Pareto non-dominated solutions. Therefore, Pareto-Player can accelerate 
its searching diversity to true Pareto front or global solutions. The Hybrid-Game can be applied to non-
generational EAs such as HAPMOEA as well as to generation based approaches. 
Lee et al. [17] studied the concept of Hybrid-Game (Pareto + Nash) coupled to a well-known MOEA; Non-
dominating Sort Genetic Algorithm II (NSGA-II) [18]. Their research shows that the Hybrid-Game improves 
the NSGA-II performance by 80% when compared to the original NSGA-II. In addition, Lee et al. [19] 
hybridised NSGA-II with Nash-Game strategy to study a role of Nash-Players in Hybrid-Game by solving 
multi-objective mathematical test cases; non-uniformly distributed non-convex, discontinuous and mechanical 
design problem. Their research also shows that HAPMOEA can be also hybridised with Nash-Game to solve a 
real-world robust multidisciplinary design problem. Numerical results show that the Hybrid-Game improves 
70% of HAPMOEA performance while producing better Pareto optimal solutions.  
It should be noted that the Nash-equilibrium solution can be one of Pareto front members since the elite designs 
obtained by Nash-Players are seeded to the Pareto-Player population however the Nash-equilibrium will not be 
part of the Pareto-front if the Nash-equilibrium is dominated by Pareto-Player solutions. The validation of 
Hybrid-Game and HAPMOEA can be found in References [9, 17, 19 -21]. 

2.3. Mathematical Benchmarks 

This section illustrates the use of Hybrid-Game for two multi-objective mathematical design problems including 
non-uniformly distributed non-convex design, and discontinuous multi-objective designs. Both NSGA-II and 
Hybrid-Game applied to NSGA-II are considered. 

2.3.1. Non-Uniformly Distributed Non-Convex Design 

This problem defined in Reference [22] considers a non-uniformly distributed non-convex problem. It is an 
extended version of a non-linear problem where the objective is to minimise equations (1) and (2).  
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Random solutions are shown in Figure 3 a). Figure 3 b) compares the convergence obtained by NSGA-II and 
Hybrid-Game coupled to NSGA-II (Hybridised NSGA-II). The optimization is stopped after 50 generations 
with a population size of 100. It can be seen that the NSGA-II requires more function evaluations (marked with 
red circle) while the Hybridised NSGA-II has already capture the true Pareto front. 
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         Figure 3 a) Random solutions (100,000 pints).                    Figure 3 b) Comparison of Pareto fronts. 
 
The initial populations obtained by NSGA-II and Hybridised NSGA-II are shown in Figures 4 a) and 4 b) 
respectively where the NSGA-II has a better non-dominated solutions (9 members) distribution than the 
Hybridised NSGA-II with 7 non-dominated solutions. However, it can be seen that the Nash-Players of 
Hybridised NSGA-II found the elite solution (mark with circle) which dominates Pareto members 1 to 5 of 
Pareto-Game. This Nash elite design will be seeded to the population of Pareto-Game and will become a Pareto 
member 1 then the Pareto-Game will generate the candidates based on the Nash elite design. This is the reason 
why the Hybridised NSGA-II had faster convergence than NSGA-II.  
 

 
Figure 4 a). Non-dominated solutions (NSGA-II).   Figure 4 b). Non-dominated solutions (Hybridised NSGA-II) 
 

2.3.2. Discontinuous MO (TNK) Design  

The problem TNK proposed in Reference [23] considers minimisation of equations (3).  
 

( )1 1 1f x x=  and ( )2 2 2f x x=                                                               (5) 
Subject to 

( ) 2 2 1
1 1 2 1 2

2
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x

⎛ ⎞
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( ) ( ) ( )2 2
2 1 2 1 2, 0.5 0.5 0.5C x x x x= − + − ≤  

where 0 ≤ x1, x2 ≤ π  
 
Random solutions are shown in Figure 5 a). Figure 5 b) compares the convergence obtained by NSGA-II and the 
Hybridised NSGA-II. The optimization is stopped after 100 generations with a population size of 100. It can be 
seen that the NSGA-II need more function evaluations to find Pareto members in the Section-A while the 
Hybrid-Game converged to the true Pareto front. 
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       Figure 5 a) Random solutions (100,000 pints).              Figure 5 b) Comparison of Pareto fronts for TNK. 
 

2.4. Algorithms for HAPMOEA and Hybrid-Game 

Algorithms for HAPMOEA and Hybrid-Game are shown in Figures 6 a) and 6 b) to further illustrate the 
HAPMOEA and the Hybrid-Game concepts. It is assumed that the problem considers the fitness function f = 
min (x1, x2, x3) as an example.  

2.4.1. HAPMOEA-L3 (Figure 6 a)) 

The method has eight main steps as follows; 
Step1: Define population size and number of generation for hierarchical topology (Node0 to Node6), number of 
design variables (x1, x2, x3) and their design bounds, model quality for each layer (Layer1 (Node0): precise, 
Layer2 (Node1, Node2): intermediate, Layer3 (Node3 to Node6): least precise). 
Step2:  Initialize seven random populations for Node0 to Node6. 
while termination condition (generation or elapsed time or pre-defined fitness value) 
   Step3: Generate offspring using mutation or recombination operations. 
   Step4: Evaluate each offspring and compute fitness functions. 
   Step4-1: Evaluate offspring for each node in terms of precise, compromise, least precise. 
   Step5: Sort each population for each node based on its fitness. 
   Step6: Replace best individual into non-dominated population of each node. 
end  
Step7: Designate results for the optimisation; Pareto optimal front obtained by Node0 at first layer (precise 
model) for multi-objective design problem otherwise plot convergence of optimization based on best-so-far 
individual. 
Step8: Do post-optimization process; if problem considers aerodynamic wing design Mach sweep will be 
plotted corresponding to objective (CD, CL, L/D). 

2.4.2. Hybrid Game (Figure 6 b)) 

The method has eight main steps as follows; 
Step1: Define population size, number of generation or function evaluations for each Nash-Players (N-Player1, 
N-Player2, N-Player3) and Pareto Player (P-Player), dimension of decision variables (x1, x2, x3) and their design 
bounds. Split decision variables for each player (N-Player1: x1, N-Player2: x2, N-Player3: x3, P-Player: x1, x2, x3). 
Step2:  Initialize random population for each player. 
while termination condition (generation or elapsed time or pre-defined fitness value) 
Step3: Generate offspring using mutation or recombination operations. 
Step4: Evaluate each offspring and compute its fitness functions. 
Step4-1: Evaluate offspring in Nash-Game. 
        N-Player1: use x1 with design variables x2, x3 fixed by N-Player2 and N-Player3. 
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        N-Player2: use x2 with design variables x1, x3 fixed by N-Player1 and N-Player3. 
        N-Player3: use x3 with design variables x1, x2 fixed by N-Player1 and N-Player2. 
Step4-2: Evaluate offspring for P-Player. 
       if (the first offspring at each generation is considered) 
         P-Player: use elite design (x1*, x2*, x3*) obtained by Nash-Game at Step4-1. 
       else 
         P-Player: use x1, x2, x3 obtained by mutation or recombination operation as default. 
Step5: Sort each population for each player based on its fitness. 
Step6: Replace the non-dominated individual into best population for P-Player. 
end  
Step7: Designate results;  
P-Player: Plot Pareto optimal front for multi-objective design problem otherwise plot convergence of 
optimization based on best-so-far individual  
Nash-Game: plot Nash-equilibrium obtained by N-Player1, N-Player2, N-Player3 
Step8: Do post-optimization process; if problem considers aerodynamic wing design Mach sweep will be 
plotted corresponding to objective (CD, CL, L/D). 
 

  
Figure 6 a). Algorithm of HAPMOEA.          Figure 6 b). Algorithm of Hybrid-Game 

3. Aerodynamic Analysis Tools 

The first aerodynamic analysis tool used in this paper is a potential flow solver. The solver is used for analysing 
inviscid, isentropic, transonic shocked flow past 3D swept wing configurations [24]. The second analysis tool is 
for friction drag which is externally computed by utilising the program FRICTION code [25]. The code provides 
an estimate of the laminar and turbulent the skin friction suitable for use in aircraft preliminary design. Details 
on the validation of the potential flow solver can be found in reference [21] where it is shown that the results 
obtained by the potential flow solver are in good agreement with experimental data. 
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4. Real World Design Problem: MO Design Optimisation of UCAS 

In this section, the Hybrid Game is used to show the benefit of using Nash-game and Pareto-game 
simultaneously. To do so, the results obtained by Hybrid Game will be compared to the results obtained by 
HAPMOEA. It is shown that the Hybrid-Game has the potential to produce high quality solutions and to reduce 
computational expense. 

4.1. Formulation of Design Problem 

Unmanned (Combat) Aerial Systems (UCASs) have broad applicability for a number of civilian and military 
missions [26, 27]. The type of vehicle considered in this section is a Joint Unmanned Combat Air Vehicle (J-
UCAV) that is similar in shape to the Northrop Grumman X-47B [28]. This test case considers the design 
optimisation of the UCAV wing aerofoil sections and planform geometry. The objectives are to maximise both 
mean values of lift coefficient ( LC ) and lift to drag ratio ( /L D ) to maximise a manoeuvrability and range of 
UCAV. The baseline UCAV is shown in Figures 7 a) and 7 b). 
 

  
Figure 7 a). Baseline design (3D-view).       Figure 7 b). Baseline UCAV configuration. 

 
The wing planform shape is assumed as an arrow shape with jagged trailing edge. The aircraft maximum gross 
weight is approximately 46,396 lb (21,045 kg) and the empty weight is 37,379 lb (16,955 kg). The design 
parameters for the baseline wing configuration are illustrated in Figure 7 b) and Table 1. In this test case, the 
fuselage is assumed from 0 to 25% of the half span. The crank positions are at 46.4% and 75.5% of the half 
span. The inboard and outboard sweep angles are 55 degrees and 29 degrees. Inboard and outboard taper ratios 
are 20% and 2% of the root chord respectively.  
 

Table 1. Baseline UCAV wing configurations. 

AR  b  1R C−Λ  
1 2C C−Λ  

2C T−Λ  
1Cλ  

2Cλ  Tλ  OverallΓ  

4.377 18.9 m 55°  29°  29°  20 20 2 0°  
       Note: Taper ratio ( λ ) is %CRoot 
 
It is assumed that the baseline wing design contains three types of airfoils; the NACA 66-021 and NACA 67-
1015 are located at inboard (root and crank1) and the NACA 67-008 are located at the outboard sections (crank2 
and tip). These airfoils are shown in Figure 8. The maximum thickness at root section is 21% of the root chord 
that is about 3% thicker than X-47B to increase avionics, fuel capacity and missile payloads. 
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Figure 8. Baseline UCAV wing airfoil sections. 

 
The mission profile of UCAV considered Reconnaissance, Intelligence, Surveillance and Target Acquisition 
(RISTA) as illustrated in Figure 9. The mission profile is divided into eight Sectors: 
 

 

Figure 9. Mission profile of baseline UCAV. 

 
Where 
Sector1: T/O & Climb Sector2: Cruise Sector3: Transition dash Sector4: Ingress 
Sector5: Target strike Sector6: R-Cruise Sector7: End R-Cruise Sector8: Decent & Land 
Note: R-Cruise represents the returning cruise. 
 
Figure 10 shows the weight distribution along the mission profile (Sector1~Sector8). The weight between 
Sector4 and Sector5 is significantly reduced after 80% of ammunition weight is used for target strike. 
In this paper, flight conditions for Sector2 to Sector4 are considered for optimisation. The minimum lift 
coefficients (

MinimumLC ) are 0.296 and 0.04 for Sector2 and Sector4 respectively as shown in Figure 11. The 

baseline design produces 30% higher lift coefficient at Sector2 when compared to 
MinimumLC  while only 7% 

higher at Sector4. The aim of this optimisation is the improvement of aerodynamic performance (L/D) at 
Sector4 while maintaining aerodynamic performance at Sector2. 
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Figure 10. Weight distribution along the mission.    Figure 11. 

MinLC  for Sector 2 to Sector 4. 

4.2. Representation of Design Variables 

The problem considers design variables for wing and aerofoil design parameters. The aerofoil geometry is 
represented using Bézier curves with a combination of a mean line and thickness distribution control points. The 
upper and lower bounds for mean and thickness control points at root, crank 1, crank 2 and tip sections are as 
illustrated in Figures 12 a) –d). 
 

  

Figure 12 a) Control points at root section.       Figure 12 b) Control points at crank1 section. 

 

  

Figure 12 c) Control points at crank2 section.    Figure 12 d) Control points at tip section. 

 
The wing planform shape is parameterised by considering the variables described in Figure 13 and their design 
bounds are shown in Table 2. Three wing section areas, three sweep angles and two taper ratios are considered. 
These wing design parameters result in different span length (b) and Aspect Ratio (AR) for each candidate. One 
constraint is that the taper ratio at crank 2 should not be higher than the taper ratio at crank 1 i.e. ( 2 1C Cλ λ≤ ). 
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Figure 13. Wing planform design variables. 

 

Table 2. Wing planform design bounds. 

Variables Bounds S1 S2 S3 1R C−Λ  1 2C C−Λ  2C T−Λ  1Cλ  2Cλ  
Lower 50.46 10.09 5.05 49.5°  25°  25°  0.15 0.15 
Upper 63.92 16.82 10.09 60.5°  35°  35°  0.45 0.45 

     Note: Area (S) is in m2 and one geometrical constraint is applied 2 1C Cλ λ≤ . 

4.3. Hybrid-Game (Pareto + Nash) Setup 

In this paper, Hybrid-Game employs five Nash-Players and one Pareto-Player as shown in Table 3. The Pareto-
Player of Hybrid-Game uses all 76 design variables for the aerofoil sections and wing planform. Aerofoil 
sections at root, crank1, crank2 and tip are optimised by Nash-Players 1 to 4 (4 × 17 design variables) while 
Nash-Player 5 optimises wing planform only (8 design variables). In contrast, each node (Node0 -6) of 
HAPMOEA considers all 76 design variables for the aerofoil sections and wing planform. 
 

Table 3. Distribution of design variables for Hybrid-Game and HAPMOEA. 

Design Variables Hybrid-Game on HAPMOEA HAPMOEA N-P1 N-P2 N-P3 N-P4 N-P5 P-Player 
AerofoilRoot   (17 DVs) √     √ √ 
AerofoilCrank1 (17 DVs)  √    √ √ 
AerofoilCrank2 (17 DVs)   √   √ √ 
AerofoilTip       (17 DVs)    √  √ √ 

Wing Planform (8 DVs)     √ √ √ 
   Note: N-Pi represents ith Nash-Player and P-Player indicates the Pareto-Player. 
 

4.4. Fitness Functions 

Table 4 shows the fitness functions considered by the Pareto-Player and Nash-Players. The Pareto-Player 
considers two fitness functions to maximise mean CL and mean L/D. The five Nash-Players consider one fitness 
function to optimise aerofoil sections and wing planform shape. In practice, the Nash-Players look for their 
elite/best aerodynamic shape for aerofoil sections and wing planform design parameters and these elite design 
parameters will be seeded to the Pareto-Player to accelerate its convergence. Each node (Node0 –Node6) of 
HAPMOEA uses two fitness functions of Pareto-Player. 
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Table 4. Fitness functions for Players of Hybrid-Game. 

Player Fitness function Optimisation criteria 

Pareto-Player 
( ) ( )( )min 1Pareto Lfitness f C=  

( ) ( )( )2 min 1VPfitness f L D=  

Optimize wing planform and aerofoil 
sections at root, crank1, crank2 and tip to 
maximize LC  and L D . 

Nash-Player1 ( ) ( )( )1 min 1NP Lfitness f C=  
Maximize total wing LC  using design 
variables for AerofoilRoot only, all other 
design variables are fixed. 

Nash-Player2 ( ) ( )( )2 min 1NP Lfitness f C=  
Maximize total wing LC  using design 
variables for AerofoilCrank1 only, all other 
design variables are fixed. 

Nash-Player3 ( ) ( )( )3 min 1NP Lfitness f C=  
Maximize total wing LC  using design 
variables for AerofoilCrank2 only, all other 
design variables are fixed. 

Nash-Player4 ( ) ( )( )4 min 1NP Lfitness f C=  
Maximize LC  using design variables for 
AerofoilTip only, other design variables are 
fixed. 

Nash-Player5 ( ) ( )( )5 min 1NPfitness f L D=  
Maximize total wing L D  using design 
variables for wing planform only, all other 
design variables are fixed 

Note: ( )2 4

1
2 Sector SectorL L LC C C= +  and ( )2 4

1/ / /
2 Sector SectorL D L D L D= +  

 
 
The flight conditions are; 

Sector2: 0.7M∞ = , 6.05α = °  and altitude 40,000 ft 
Sector4: 0.9M∞ = , 0.5α = °  and altitude 250 ft 

 

4.5. Interpretation of Numerical Results 

Both HAPMOEA and Hybrid-Game were run using two 2.4 GHz processors. The HAPMOEA algorithm was 
allowed to run approximately for 6667 function evaluations and took two hundred hours. The Hybrid-Game 
(Hybrid MOEA) algorithm was run approximately for 1300 function evaluations and took fifty hours. The 
Pareto fronts obtained by HAPMOEA and Hybrid-Game are compared to the baseline design in Figure 14. It 
can be seen that Hybrid-Game produces better non-dominated solutions in terms of fitness function 1 and 2 
when compared to HAPMOEA. 
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HAPMOEA
200 hours

Hybrid Nash-HAPEA
50 hours

HAPMOEA
200 hours

Hybrid Nash-HAPEA
50 hours

 

Figure 14. Comparison of Pareto optimal front obtained by Hybrid-Game and HAPMOEA. 

 
Table 5 compares the Pareto optimal solutions obtained by HAPMOEA and Hybrid-Game. It can be seen that 
Hybrid-Game produces twice the value of the lift coefficient (CL) while slightly better results for inverse mean 
lift to drag ratio (L/D) when compared to the Pareto members obtained by HAPMOEA. 
 

Table 5. Comparison of fitness values obtained by HAPMOEA and Hybrid-Game. 

Objective Baseline 
Design 

HAPMOEA (200 hours) Hybrid-Game (50 Hours) 
PM1  

(BO1) 
PM6  
(CS) 

PM15  
(BO2) 

PM1  
(BO1) 

PM6  
(CS) 

PM10  
(BO2) 

( )1/ LC  12.232 9.890 
(-19%) 

10.096 
(-17%) 

10.562 
(-14%) 

7.836 
(-36%) 

8.017 
(-34%) 

8.223 
(-32%) 

( )1/ /L D  0.410 0.095 
(-77%) 

0.078 
(-81%) 

0.068 
(-83%) 

0.054 
(-87%) 

0.050 
(-88%) 

0.046 
(-89%) 

  Note: BO represents the best objective solution and CS stands for the compromised solution. 
 
Table 6 compares the quality of drag coefficient obtained by HAPMOEA and Hybrid-Game using the 
uncertainty mean and variance statistical formulas. It can be seen that Pareto members of Hybrid-Game 
produces lower drag at [Sector2:Sector4] while Pareto members from HAPMOEA produce stable drag. 
 

Table 6. Comparison of 
QualityDC  obtained by HAPMOEA and Hybrid-Game. 

Objective Baseline 
Design 

HAPMOEA (200 hours) Hybrid-Game (50 Hours) 
PM1  

(BO1) 
PM6  
(CS) 

PM15  
(BO2) 

PM1  
(BO1) 

PM6  
(CS) 

PM10  
(BO2) 

DC  12.232 0.025 0.011 
(-56%) 

0.009 
(-64%) 

0.009 
(-64%) 

0.009 
(-64%) 

0.0089 
(-64%) 

DCδ  0.410 5.49×10-5 1.49×10-5 1.56×10-5 2.11×10-5 2.29×10-5 2.24×10-5 

  Note: Quality is represented by mean (performance) and variance (sensitivity/stability). 
 
The Sector sweep is plotted with the lift coefficient and lift to drag ratio as shown in Figures 15 a) and 15 b). 
The range of Sector sweep is M∞ ∈[0.7:0.9], α ∈[6.05°:0.5°] and altitude (ft) ∈ [40,000:250]. Pareto fronts 
obtained by HAPMOEA and Hybrid-Game produce higher CL and L/D when compared the baseline design. 
Pareto members from both optimisation techniques produce similar results for CL and L/D at Sector 2 however 
the Pareto non-dominated solutions from Hybrid-Game produce better CL and L/D at Sector 4. 
 



14 

 

Figure 15 a) CL vs. Sectors: Hybrid-Nash represents Hybrid-Game. 

Baseline

HYBRID GAME

HAPMOEA

Baseline

HYBRID GAME

HAPMOEA

 

Figure 15 b) L/D vs. Sectors: Hybrid-Nash represents Hybrid-Game. 

 
The top, side, front and 3D view of compromised model from HAPMOEA (Pareto member 5) and Hybrid-
Game (Pareto member 6) are shown in Figures 16 a) and 16 b). Even though the Hybrid-Game spent less 
computational time when compared to HAPMOEA, both compromised solutions are geometrically similar. 
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Figure 16 a). Pareto member 5 obtained by (HAPMOEA). 

 

 
Figure 16 b). Pareto member 6 obtained by (Hybrid-Game). 

 

4.6. Summary 

This paper explored the optimisation methods: HAPMOEA and Hybrid-Game (Hybridised MOEA) for solving 
multi-objective design optimisation UCAV. HAPMOEA has been hybridised by using Nash-Game without 
hierarchical multi-population/fidelity topology: Hybrid-Game. Numerical results show that by introducing 
Nash-Game as a companion optimizer to help or guide the multi-objective evolutionary optimizer to capture a 
fast Pareto non-dominated front. It is also shown that the Hybrid-Game (Hybridised MOEA) reduces the 
computational cost while generating better Pareto front when compared to HAPMOEA. The reason why 
Hybrid-Game has superiority in terms of optimisation efficiency is that the Nash-Game decomposes one 
complex multi-objective design problem into five simpler single-objective design problems corresponds to  five 
Nash-Players.  

5. Conclusions 

The optimisation methods HAPMOEA and Hybrid-Game were demonstrated and they were implemented to 
solve multi-objective design problem. It is shown that both methods produce a set of useful Pareto non-
dominated solutions. It was also shown that the coupling of Pareto optimality and Nash-Game; Hybrid-Game 
has superiority on both computational efficiency and solution quality when compared to HAPMOEA. Both 
methodologies couple a robust MOEA, with aerodynamic analysis tools. A family of Pareto optimal designs 



16 

obtained by both HAPMOEA and Hybrid-Game provides a selection to the design engineers to proceed into 
more detail phases of the design process. Even though the numerical results of the methods show the 
simultaneous improvement in UCAV aerodynamic performance on CL and L/D there is a fluctuation between 
Sector2 to Sector3 and Sector3 to Sector4 which can cause flight control or structural failures. This fluctuation 
can be avoided by using uncertainty design technique during optimisation. Future work will focus on coupling 
Hybrid-Game and high fidelity aerodynamics and electromagnetic analysis tools under uncertainty in flight 
conditions and electromagnetic frequencies. 
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