
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Metke-Jimenez, Alejandro, Raymond, Kerry, & MacColl, Ian
(2011)
Information extraction from web services : a comparison of Tokenisation
algorithms. In
SKY2011 Workshop : Discovery and Representation of Runnable Knowl-
edge, 26 October 2011, Paris.

This file was downloaded from: http://eprints.qut.edu.au/43885/

c© Copyright 2011 [Please consult the authors]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://doi.org/10.5220/0003698000120023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10905476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Metke-Jimenez,_Alejandro.html
http://eprints.qut.edu.au/view/person/Raymond,_Kerry.html
http://eprints.qut.edu.au/view/person/MacColl,_Ian.html
http://eprints.qut.edu.au/43885/
http://doi.org/10.5220/0003698000120023


INFORMATION EXTRACTION FROM WEB SERVICES:
A Comparison of Tokenisation Algorithms

Alejandro Metke-Jimenez, Kerry Raymond, Ian MacColl
Faculty of Science and Technology, Queensland University of Technology, Australia

a.metke@qut.edu.au, k.raymond@qut.edu.au, i.maccoll@qut.edu.au

Keywords: Web services, Tokenization, Semantics, WSDL

Abstract: Most web service discovery systems use keyword-based search algorithms and, although partially success-
ful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based
approaches that look to go beyond simple attribute matching and try to capture the semantics of services.
However, the results reported in the literature vary and in many cases are worse than the results obtained by
keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-
natural language sections of WSDL files directly affects the performance of these techniques, because some
of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and
a new algorithm that outperforms all the algorithms found in the literature is introduced.

1 INTRODUCTION

Web services have become the de facto technology
to enable distributed computing in modern platforms.
Services directories, such as Programmable Web, list
thousands of services that can be used to build com-
plex software applications. Also, most modern back-
end software applications expose their functionality
as web services in order to facilitate B2B interac-
tions as well as integration with other software prod-
ucts deployed internally. Some applications, such as
mashups, are built entirely by combining existing ser-
vices.

With the ever increasing number of web services
available both in the public Internet as well as in the
private Intranets, web service discovery has become
an important problem for software developers want-
ing to use services to build applications. The UDDI
standard was initially proposed to address this prob-
lem by providing a centralized repository of service
descriptions. However, some authors consider that the
standard is too complex for end users who just want
to publish their services (Wu and Chang, 2007) and
also, several problems with the centralized architec-
ture have been identified. Perhaps the most relevant
of these is the fact that registration in a centralized

repository is not mandatory and therefore all unreg-
istered services will not be discoverable by potential
clients (D’Mello and Ananthanarayana, 2010). These
shortcomings of the UDDI standard have given rise to
proposals of decentralized mechanisms that crawl the
web in search of WSDL files and use only the infor-
mation found in them.

In (D’Mello and Ananthanarayana, 2010) the au-
thors propose an extensive classification of differ-
ent types of web service discovery approaches. We
are interested in the approaches found in the syntac-
tic matching and semantic matching categories, since
these techniques are decentralized and have proven to
be effective in other search domains. Within these cat-
egories the approaches can be differentiated by the de-
gree of user involvement required. Although several
standards have been proposed to add semantic annota-
tions to web services (Bose, 2008), all of these meth-
ods require both choosing an ontology and adding se-
mantic annotations to the services. On the other hand,
approaches based on information retrieval methods
use the information already available in the service
description files. We believe these latter approaches
are likely to be more successful because currently
there is little incentive for developers to manually an-
notate web services.



Several researchers have implemented service dis-
covery tools that rely solely on the information con-
tained in the web service description files. It is dif-
ficult to measure the relative performance of these
implementations against each other, and the results
found in the literature vary. In (Bose, 2008) the au-
thors compared several approaches to web service dis-
covery, including information retrieval based meth-
ods and semantics based methods, and found that
the semantic based approach using Latent Semantic
Analysis outperformed the information retrieval ap-
proach. However, in (Wu and Chang, 2007) the au-
thors showed that when comparing the results of a
system based on Latent Semantic Analysis with the
results of a system based on the Vector Space Model,
recall improved but precision fell.

In our own experiments we implemented a web
service search engine based on the Vector Space
Model (Salton et al., 1975) and a semantics based en-
gine using Explicit Semantic Analysis. In the classic
Vector Space Model approach, text documents (in this
case, WSDL files) are represented as vectors in a term
space. If a term occurs in a document then its value
in that dimension of the vector is non-zero. The value
is typically derived from the frequency of the term in
the document and the commonness of the term in the
whole document collection. One of the most common
weighting formulas used is Term Frequency Inverse
Document Frequency, although several variations of
this formula exist. In our implementation a variation
of TFIDF that uses sublinear scaling was used. The
relevant documents for a query are calculated by rep-
resenting the query as a vector in the same term space
and then calculating the similarity between the query
vectors and the vector representations of the docu-
ments in the collection. In this implementation cosine
similarity, which compares the angle between the vec-
tors, was used.

Explicit Semantic Analysis is a method introduced
in (Gabrilovich, 2006; Gabrilovich and Markovitch,
2007; Gabrilovich and Markovitch, 2009) in which
text in natural language form is represented in a con-
cept space derived from articles found in Wikipedia.
In this method each article in Wikipedia is treated as
a concept in a general-purpose ontology and the text
in the articles is used to determine the degree of re-
latedness between the concept and a text snippet. An
inverted index is used to build a vector for each in-
dividual term. The inverted index keeps track of the
articles in Wikipedia that contain each term and their
weight (which is typically calculated using some vari-
ant of TFIDF). The resulting vector for the text snip-
pet is the centroid vector of the vectors derived for
each term. The similarity between two text snippets

can then be calculated based on these ”concept vec-
tors” by using standard vector-based similarity simi-
larity metrics such as cosine similarity. The method is
said to be explicit because the concepts are explicitly
defined in Wikipedia in the form of articles.

Compared to the Vector Space Model, Explicit se-
mantic analysis produces vectors in a concept space
rather than vectors in a term space. Also, depend-
ing on the document set, the vectors in ESA tend to
be shorter (the length of a vector is the number of
articles in Wikipedia) but less sparse than the term
vectors used in VSM. ESA is considered a semantics-
based method because the documents are represented
in a concept space rather than just a term space.

We evaluated the performance of both engines us-
ing the same dataset kindly provided to us by the au-
thors in (Bose, 2008). Our initial results showed that
the ESA implementation performed worse than the
VSM approach1. Upon further investigation we found
that one of the contributing factors for the poor results
of the ESA implementation was the noise introduced
by the incorrect tokenisation of some of the terms ex-
tracted from the non-natural language sections of the
WSDL files.

Other researchers have identified the need to find
better ways of dealing with the complexities of ex-
tracting usable information from the non-natural lan-
guage text found in WSDL files (J.Hou et al., 2010).
However, to the best of our knowledge, there is no de-
tailed information published regarding the accuracy
of the tokenisation algorithms found in the literature.
Therefore, we created a data set designed specifically
to test the accuracy of different algorithms when tok-
enizing strings typically found in WSDL files. This
paper addresses the research question of which to-
kenisation algorithm produces best results when deal-
ing with non-natural language strings found in WSDL
files.

The rest of this paper is structured as follows. Sec-
tion 2 provides a review of related work. Section 3
talks about the impact of introducing noise in the to-
kenisation process. Section 4 describes the data set
that is used to evaluate the tokenisation algorithms.
Section 5 shows the evaluation results for three to-
kenisation algorithms. Section 6 introduces a new al-
gorithm and Section 7 shows its evaluation results.
Section 8 discusses future work. Finally, Section 9
summarises the paper’s research contributions.

1The results are part of an ongoing project and are not
shown here because they are out of the scope of this paper.



2 BACKGROUND

Few of the WSDL tokenisation algorithms in the lit-
erature are explained in detail. One of the few ex-
ceptions can be found in (Wu et al., 2008). The au-
thors use a tokenisation algorithm that is similar to
the Maximum Matching algorithms used in Chinese
segmentation. The algorithm starts with the first char-
acter and tries to find the longest matching word in the
dictionary that is completely contained in the string.
If no word is found then the algorithm assumes that
the single character is a token and moves on to the
next character. If a word is found then the algorithm
marks that substring as a token and moves on to the
next character until there are no more characters in the
string.

For example, assuming that we wanted to tokenise
the string “downloadMP3Music”, and that the words
“download”, “MP3”, and “music” are in the dictio-
nary, the algorithm would start looking for the longest
word starting with a “d”. It would first find the word
“down” but then it would also find the longer word
“download”. Since no words longer than “download”
are found in the dictionary, that substring is marked
as a token and the algorithm starts over from the letter
“M”.

The authors argue that relying on naming con-
ventions such as Camel Case is problematic because
many strings do not follow the convention correctly
and because certain words, such as eBay, make it dif-
ficult to comply with the conventions. Also, some
strings found in WSDL files do not even follow a
naming convention and are just a list of lower case
or upper case characters. The authors provide a table
with a few examples of the results obtained using the
tokeniser but there is no information about the accu-
racy of the algorithm when applied to a large set of
strings. Also, there is no reference to the dictionary
that was used. This is important because the perfor-
mance of this algorithm is directly related to the dic-
tionary being used. In the example mentioned in the
previous paragraph, if the term MP3 is not in the dic-
tionary, the result of the tokenisation is going to be
incorrect (“download” “MP” “3” “Music”, assuming
the abbreviation “MP” is in the dictionary). We will
refer to this technique as MMA.

In (Bose, 2008), even though the authors do not
explain the algorithm used to tokenise WSDL names
explicitly, we were able to reverse engineer it based
on their data sets. The tokeniser does the following:

1. Dashes and underscores are removed from the
string.

2. The characters in the string are iterated over from
left to right. The first character is flagged as the

start of the current token.
3. When a dot or a space is found a new token is cre-

ated using the characters from the start-of-token
flag to the previous character. The dot or space
character is discarded.

4. When an upper case letter is found a new token
is created using the characters from the start-of-
token flag to the previous character. The upper
case letter is flagged as the start of the next token.

5. The process continues until there are no more
characters in the string.
Using the same example we used to describe the

previous tokenisation algorithm, the result of apply-
ing this algorithm would produce the following to-
kens: “download”, “M”, “P3”, “Music”. We will refer
to this technique as Simple.

3 THE IMPORTANCE OF
TOKENISATION

Tokenising strings in programming-language-type
format is both challenging and important. Generating
the incorrect tokens has a negative impact on the over-
all performance of a search engine, but the impact is
different depending on the approach being used. For
example, lets consider the string “BINNAME”. This
string was found in a WSDL file that describes a fraud
detection service. The correct way of tokenising it
is “BIN” and “NAME”. However, some algorithms
incorrectly split this string into the tokens “BINNA”
and “ME”. The token “BINNA” can be associated
with the area next to the Lamington National Park in
Australia. The term is uncommon and very discrim-
inative. If an approach based on the Vector Space
Model is used, this error will likely generate a false
positive if someone is looking for a service related
to Binna Burra (an online reservation system for the
Binna Burra Lodge, perhaps). However, the error is
likely to go unnoticed when the system is evaluated
against a standard test collection, since the informa-
tion needs included in these benchmarks tend to be
generic and will almost certainly not include anything
related to Binna Burra.

In the Explicit Semantic Analysis approach, doc-
uments (in this case web services) are represented in
a concept space derived from Wikipedia articles. This
is achieved by using standard information retrieval
techniques to calculate the degree of relatedness be-
tween the document and every article in Wikipedia.
If an incorrect token such as “BINNA” is introduced,
the service is likely to be mapped closely to the con-
cepts related to that token in Wikipedia (which are



likely to be the articles related to Binna Burra). De-
pending on the technique being used to calculate the
similarity between this concept vector and other con-
cept vectors, such as the ones that represent queries,
the negative impact on the overall results can be much
more significant. For example, if only the top k con-
cepts in the vectors are used in the comparison, a term
such as “BINNA” can cause not only false positives
but can also prevent the service from being ranked
high in the results for a relevant query, thus affecting
precision. This happens because the irrelevant con-
cepts related to the term “BINNA” will displace the
concepts related to the service’s real purpose2.

4 EVALUATION DATA SET AND
METRICS

In order to evaluate the different tokenisation al-
gorithms, a collection of strings was assembled from
a collection of 576 WSDL files3. The values of the
name attribute of the following tags in the WSDL
namespace were used: service, port, binding, oper-
ation, message, and port. The values of the name at-
tribute of the tags in the type declarations were also
used. The tags used were: element, simpleType, com-
plexType, and enumeration.

This extraction process produced a collection of
31126 strings. These strings were then manually to-
kenised. When more than one tokenisation alternative
was found for a string, the one deemed most com-
mon was used. For example, the string “wikiweb-
service.GetRecentChanges” was tokenised as “wiki”,
“web”, “service”, “get”, “recent”, “changes”. Al-
though another valid tokenisation could have been
“wiki”, “webservice”, “get”, “recent”, because some-
times web services is written as a single word4, we
considered the first possibility as being the most com-
mon.

Three metrics were used to evaluate the tokenisa-
tion algorithms. The first one calculates the percent-
age of tokenisation results that are completely correct.
For example, if the correct tokenisation of the string
“BINNAME” is “bin” and “name”, then the result is
considered correct only when the tokeniser produces
these exact tokens. This metric is referred to as %
Perfect Tokenisations.

2In this case the term “BINNA” is particularly problem-
atic because it is very discriminative. The impact will de-
pend on the incorrect tokens being generated.

3The original dataset included 785 WSDL files, but
some of them were duplicates and were removed

4Wikipedia includes “webservice” as an alternative way
to spell “web service”.

The second metric is precision. In this context pre-
cision is defined as

precision =
ct
t p

, (1)

where ct is the number of correct tokens produced by
the tokeniser and t p is the total number of tokens pro-
duced by the tokeniser.

The third metric is recall. In this context recall is
defined as

recall =
ct
rt
, (2)

where ct is the number of correct tokens produced
by the tokeniser and t p is the total number of tokens
in the ground truth (the total number of tokens that
should have been returned).

When tokenising long multi-word strings, the re-
sults of the three metrics can be significantly differ-
ent. For example, suppose the correct tokenisation
of the string “wikiwebservice.GetRecentChanges”
is “wiki”, “web”, “service”, “get”, “recent”, and
‘changes‘”. If an algorithm tokenises the string as
“wiki”, “webservice”, “get”, “recent”, and “changes”,
the first metric just counts the result as being wrong.
The second metric counts four correct tokens (the to-
kens “wiki”, “get”, “recent”, and “changes”) and five
tokens produced by the tokeniser, resulting in a preci-
sion value of 80%. The third metric counts the same
four tokens as correct and six tokens in the ground
truth, resulting in a recall value of 66.66%. If this
were the only string in the collection the percentage of
perfect tokenisations would be 0%, the average preci-
sion would be 66.66%, and the average recall would
be 80%.

5 EVALUATION OF EXISTING
TOKENISATION TECHNIQUES

Along with the two tokenisation techniques dis-
cussed in Section 2 a third technique that uses the
Camel Case naming convention to decide how to to-
kenise strings was implemented. The technique does
the following:

1. Dashes and underscores are removed from the
string.

2. The characters in the string are iterated over from
left to right. The first character is flagged as the
start of the current token.

3. The second character is analysed to determine if
the current token is in lower case (all characters



are lower case), upper case (all characters are up-
per case), or camel case (the first character is up-
per case and the rest are lower case).

4. The token boundary is determined based on the
type of word detected in the previous step. If the
word is lower case or camel case then the word
boundary is flagged when an upper case character
is found. The detected token does not include the
upper case character, which is flagged as the start
of a new token.

5. If the word is upper case then the word boundary
is flagged when a lower case character is found. In
this case the upper case character right before the
lower case character is not included in the token
because it is assumed to be the first character of
the next token.

6. Numbers are considered to be part of the current
token.

7. When a dot or a space are found a new token
is created using the characters from the start-of-
token flag to the previous character. The dot or
space character is discarded.

8. The process continues until there are no more
characters in the string.
Using the same example once more, the result of

applying this technique would produce the following
tokens: “download”, “MP3”, “Music”. We will refer
to this technique as Naming Convention.

The three techniques, Simple (Bose, 2008), Max-
imum Matching (Wu et al., 2008), and Naming Con-
vention, were evaluated using the tokenisation data
set. For the Maximum Matching technique, four
dictionaries were used. The dictionaries were de-
rived from WordNet, the entries in the English lan-
guage Wiktionary5, the titles of the English language
Wikipedia, and the entire corpus of the English lan-
guage Wikipedia. Table 1 shows the number of words
in each of these dictionaries. The results of the evalu-
ation are shown in Table 2.

Table 1: Sizes of the dictionaries.

Dictionary Number of Words
WordNet 87539

Wikipedia Titles 1039508
Wiktionary Titles 1805285
Wikipedia Corpus 5549346

The results show that the performance of the Max-
imum Matching tokenisation algorithm is heavily de-
pendent on the dictionary being used. Also, using

5Technically the entries in Wiktionary are the titles of
the wiki pages. The content in the body of the wiki pages
was not used.

a dictionary containing more words doesn’t neces-
sarily increase the algorithm’s performance. In fact,
the worst performance was obtained when using the
largest dictionary, in this case, the one derived from
the entire Wikipedia corpus. The performance de-
grades because Wikipedia includes many non-words
that are incorrectly identified by the algorithm as
the right tokens. For example, when given the
string ”APRSoapIn” the MMA algorithm using the
WordNet-derived dictionary correctly tokenises it into
”apr”, ”soap”, and ”in”. However, the same algorithm
produces the incorrect tokens ”aprs”, ”oapi”, and ”n”
when using the Wikipedia-corpus-derived dictionary
because the terms ”aprs” and ”oapi” are contained
somewhere in Wikipedia (APRS is the acronym for
Automatic Packet Reporting System and OAPI is the
acronym for The African Intellectual Property Orga-
nization).

The best performing algorithm is the one based
on naming conventions. This tells us that most non-
natural language text within WSDL files is written
following some naming convention and done cor-
rectly. However, around 16% of the text in the WSDL
files does not follow a naming convention or does so
incorrectly.These results were used as a motivation
for the design of the WEASEL tokeniser.

6 THE WEASEL TOKENISER

Finding the right tokenisation for a given string re-
quires knowledge that can be obtained from the string
itself or from some external source. The dictionary
used in the Maximum Matching algorithm is an ex-
ample of external information that can be used in the
tokenisation process. The letter cases used in both the
Simple and Naming Convention algorithms is an ex-
ample of information that can be found in the string
itself.

The results in Section 5 show that the best per-
forming algorithms were the ones that used the let-
ter case information to determine how to tokenise the
strings. This suggests that this information should not
be ignored. It would also seem that using a general
purpose dictionary as a source of external information
is not very useful in the quest for achieving the perfect
tokenisation, considering that regardless of the dictio-
nary used, the performance of the Maximum Match-
ing algorithm was the worse. However, this can be
attributed to the fact that the algorithm only explores
one word combination possibility out of many. Also,
a dictionary specifically tuned for a particular domain
might improve the algorithm’s performance.

Table 3 shows some examples of the strings that



Table 2: Results of the evaluation of three tokenisation algorithms.

Tokeniser Dictionary % Perfect Tokenisations % Precision % Recall
Simple NA 71.11% 81.59% 83.9%

Maximum Matching WordNet 52.53% 67.11% 72.34%
Maximum Matching Wiktionary 45.56% 61.62% 62.92%
Maximum Matching Wikipedia Titles 41.55% 56.72% 57.11%
Maximum Matching Wikipedia Corpus 24.53% 41.37% 39.73%
Naming Convention NA 88.15% 94.49% 93.49%

the Naming Convention tokeniser had trouble tokenis-
ing correctly. The incorrectly tokenised strings can be
classified into the following categories:

1. Strings that contain numbers, where the tokens
around the numbers are split incorrectly.

2. Strings that do not use any naming convention.

3. Strings that use some naming convention but use
it incorrectly.

Strings in the first category are difficult to to-
kenise correctly without using external information
because the numbers are sometimes part of the to-
kens, in strings such as “findMP3Service”, and some-
times are independent tokens, in strings such as “In-
terestRateSwaps10Month”. Strings in the second cat-
egory are also difficult to tokenize correctly because
it is hard to differentiate between single-word strings
written in lower camel case and multi-word strings
written all in the same letter case. Finally, the strings
in the third category are the most difficult to tokenise
correctly because it is hard to identify the cases where
a naming convention has been used incorrectly, espe-
cially when this information is being used as the pri-
mary mechanism to identify word boundaries.

The first version of the WEASEL tokeniser (re-
ferred to as WEASEL v1 in the tables) attempts to
improve the performance of the Naming Convention
algorithm by dealing with the first problem. By using
a dictionary the algorithm tries to identify if a number
found within a string belongs to the current token, the
next token, or should be treated as a separate token.
It also uses the commonness of the words, which can
be easily calculated by counting word occurrences in
a large general-purpose text (in this case the whole
English language Wikipedia corpus). The algorithm
does the following:

1. The string is tokenised using the Naming Conven-
tion algorithm.

2. When a number is detected in any token the num-
ber is separated from the token. For example,
if the initial tokenisation of the string “Intere-
stRateSwaps10Month” produces the tokens “In-

terest”, “Rate”, “Swaps10”, and “Month”, the to-
ken “Swaps10” is split into “Swaps” and “10”.

3. The different combinations between the number
and its surrounding tokens are looked up in the
dictionary. In the example, these combinations
would be “Swaps10” and “10Month”.

4. If none of the combinations are found in the dic-
tionary then the number is treated as a separate
token. This is what happens in this example and
the incorrect tokenisation is now fixed.

5. If only one of the combinations is found in the
dictionary then that combination is considered the
correct token.

6. If both combinations are found in the dictionary
then the combination that is most common is cho-
sen as the correct token.

The second version of the WEASEL tokeniser (re-
ferred to as WEASEL v2 in the tables) attempts to
solve the second problem by using an algorithm sim-
ilar to the Maximum Matching algorithm to tokenise
strings that do not use any naming convention. The
algorithm is only used when a string is detected to be
entirely upper case or entirely lower case and does the
following:

1. Starting from the first character, the algorithm
looks for all the words in the dictionary that start
with that character and match the next characters
in the string. For example, for the string ”BIN-
NAME”, the algorithm would find the words “b”,
“bi”, “bin”, and “binna” (assuming these words
are in the dictionary).

2. A score is assigned to each word based on its
length and commonness. The simple formula
Score(t) = commonness(t) ∗ length(t)k is used,
with k = 2. The rationale behind this formula is
that it is more likely for a token to be the correct
choice if it is longer and more common. The con-
stant k is used to increase the relevance of the to-
ken’s length against its commonness. The value of
the constant was derived by experimenting with a
subset of the ground truth that included only lower
case strings.



Table 3: Examples where the Naming Convention tokeniser had trouble tokenising correctly.

WSDL Name Tokens Expected Tokens
BINNAME binname bin, name

historicoptiondatawsdl historicoptiondatawsdl historic, option, data, wsdl
Census1850 GetSurname census1850, get, surname census, 1850, get, surname

AxesgraphType axesgraph, type axes, graph, type

3. For each word the algorithm is run recursively
starting from the next character in the string, un-
til no more characters are left. For example, for
the token “b”, the algorithm would run recursively
using the rest of the string, in this case “inname”.
This produces a set with several possible tokeni-
sations.

4. Each tokenisation possibility is given a score,
which is simple the average of the scores for each
token. The one with the highest score is returned.

The difference with the Maximum Matching algo-
rithm is that this algorithm assembles several possible
tokenisation alternatives, based on the words found
in the dictionary, and also uses the commonness in-
formation to select the best possibility. The main
drawback is its complexity, both in time and space.
The algorithm is very inefficient, but in practice it
works well for short strings. A simple optimization
for strings longer than a certain K is to limit the re-
cursive runs to the top two scoring words only. This
reduces the amount of computation and memory sig-
nificantly.

Although this algorithm performs well for multi-
word strings that use no naming convention, it can in-
troduce noise when used in a collection thats include
single-letter words written in lower camel case, if the
words are not part of the dictionary (words might be
abbreviated or might even be in another language). In
this case the algorithm will try to tokenize the words
further and is likely to end up with several short words
that are unrelated to the service.

7 WEASEL EVALUATION

Table 4 shows the results of evaluating the differ-
ent versions of the WEASEL tokeniser using the same
four dictionaries that were used with the Maximum
Matching algorithm. The results of the Naming Con-
vention algorithm, the best performing algorithm of
the ones evaluated before, are also included.

The results show that version two using the dictio-
nary derived from Wiktionary produced the best re-
sults. The numbers show a significant improvement

over the performance achieved by the Naming Con-
vention algorithm. Version one using the same dic-
tionary comes in a close second. The performance of
these two algorithms is very similar but version one
performs slightly faster when dealing with long to-
kens that use no naming convention. The results also
show that the performance of these algorithms is de-
pendent on the external algorithm being used. The
dictionary that produced the best results was the one
derived from Wiktionary and the one that produced
the worst results was the one derived from the whole
WIkipedia corpus. These results are consistent with
the ones observed in the evaluation of the MMA al-
gorithms where these two dictionaries were also the
best and worst respectively.

8 FUTURE WORK

Although the new tokenisation algorithm performs
better than other algorithms available in the literature,
there is still room for improvement. Another source
of external information that was not used and might
be useful in certain scenarios is context. Analysing to-
kens extracted from other sections of a WSDL file can
help find common patterns that may be useful when
dealing with a complex string. In fact, context is used
a lot by humans when manually tokenising difficult
strings.

Although the levels of noise generated by the new
algorithms are much lower than the existing algo-
rithms, it is important to inspect the types of tokens
being generated incorrectly. Incorrect tokens such as
“binna” are likely to have a significant impact on the
performance of some semantics-based systems, but
incorrect tokens such as “whoisgoingtobepresident”
are not as problematic.

Finally, the new tokenisation algorithm will be
used in the implementation of the web service engine
based on Explicit Semantic Analysis. WEASEL v2
using Wiktionary produced the best results and will
therefore be used instead of the original MMA im-
plementation. We expect the performance to improve
given the superior performance of the new algorithm.



Table 4: Results of the WEASEL tokeniser evaluation.

Tokeniser Dictionary % Perfect Tokenisations % Precision % Recall
Naming Convention NA 88.15% 94.49% 93.49%

WEASEL v1 WordNet 94.17% 96.65% 96.71%
WEASEL v1 Wiktionary 94.31% 96.72% 96.75%
WEASEL v1 Wikipedia Titles 93.72% 96.55% 96.37%
WEASEL v1 Wikipedia Corpus 91.84% 95.89% 95.43%
WEASEL v2 WordNet 92.65% 95.23% 95.33%
WEASEL v2 Wiktionary 94.34% 96.8% 96.84%
WEASEL v2 Wikipedia Titles 93.93% 96.79% 96.61%
WEASEL v2 Wikipedia Corpus 92.02% 96.11% 95.66%

9 CONCLUSIONS

In this paper, the performance of tokenization
techniques used to extract information from
programming-language-type text is identified as
one of the key aspects that directly affects the perfor-
mance of certain semantics-based service discovery
approaches. A data set containing a large set of
strings extracted from WSDL files is used to evaluate
three existing tokenization algorithms. Finally a new
algorithm that outperforms existing algorithms is
introduced.

ACKNOWLEDGEMENTS

This research is supported in part by the CRC Smart
Services, established and supported under the Aus-
tralian Government Cooperative Research Centres
Programme, and a Queensland University of Technol-
ogy scholarship.

REFERENCES

Bose, A. (2008). Effective web service discovery using a
combination of a semantic model and a data mining
technique. Master’s thesis, Queensland University of
Technology.

D’Mello, D. and Ananthanarayana, V. (2010). A review of
dynamic web service description and discovery tech-
niques. In 2010 First International Conference on In-
tegrated Intelligent Computing, pages 246–251. IEEE.

Gabrilovich, E. (2006). Feature generation for textual infor-
mation retrieval using world knowledge. PhD thesis,
Israel Institute of Technology.

Gabrilovich, E. and Markovitch, S. (2007). Computing se-
mantic relatedness using wikipedia-based explicit se-
mantic analysis. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, vol-
ume 7, pages 1606–1611. Morgan Kaufmann Publish-
ers Inc.

Gabrilovich, E. and Markovitch, S. (2009). Wikipedia-
based semantic interpretation for natural language
processing. Journal of Artificial Intelligence Re-
search, 34(1):443–498.

J.Hou, J.Zhang, R.Nayak, and A.Bose (2010). Semantics-
based web service discovery using information re-
trieval techniques. In Pre-Proceedings of the Initiative
for the Evaluation of XML Retrieval 2010, pages 274
– 285. IR Publications.

Salton, G., Wong, A., and Yang, C. (1975). A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620.

Wu, C. and Chang, E. (2007). Aligning with the web: an
atom-based architecture for web services discovery.
Service Oriented Computing and Applications, 1:97–
116. 10.1007/s11761-007-0008-x.

Wu, C., Chang, E., and Aitken, A. (2008). An empiri-
cal approach for semantic web services discovery. In
Software Engineering, 2008. ASWEC 2008. 19th Aus-
tralian Conference on, pages 412–421. IEEE.


