

Semantic Modeling Method for Configurable

Enterprise Information Systems

QIANFU NI

B. Eng. and M. Eng. (Mfg)

This dissertation was submitted

as part of the requirements for the degree of

Doctor of Philosophy

School of Engineering Systems

 Queensland University of Technology

2010

Abstract

I

ABSTRACT

Business practices vary from one company to another and business practices often

need to be changed due to changes of business environments. To satisfy different

business practices, enterprise systems need to be customized. To keep up with

ongoing business practice changes, enterprise systems need to be adapted. Because

of rigidity and complexity, the customization and adaption of enterprise systems

often takes excessive time with potential failures and budget shortfall. Moreover,

enterprise systems often drag business behind because they cannot be rapidly

adapted to support business practice changes. Extensive literature has addressed

this issue by identifying success or failure factors, implementation approaches, and

project management strategies. Those efforts were aimed at learning lessons from

post implementation experiences to help future projects. This research looks into

this issue from a different angle. It attempts to address this issue by delivering a

systematic method for developing flexible enterprise systems which can be easily

tailored for different business practices or rapidly adapted when business practices

change.

First, this research examines the role of system models in the context of enterprise

system development; and the relationship of system models with software

programs in the contexts of computer aided software engineering (CASE), model

driven architecture (MDA) and workflow management system (WfMS). Then, by

applying the analogical reasoning method, this research initiates a concept of

model driven enterprise systems. The novelty of model driven enterprise systems is

that it extracts system models from software programs and makes system models

able to stay independent of software programs. In the paradigm of model driven

enterprise systems, system models act as instructors to guide and control the

behavior of software programs. Software programs function by interpreting

instructions in system models. This mechanism exposes the opportunity to tailor

such a system by changing system models. To make this true, system models

should be represented in a language which can be easily understood by human

Abstract

II

beings and can also be effectively interpreted by computers. In this research,

various semantic representations are investigated to support model driven

enterprise systems.

The significance of this research is 1) the transplantation of the successful structure

for flexibility in modern machines and WfMS to enterprise systems; and 2) the

advancement of MDA by extending the role of system models from guiding system

development to controlling system behaviors. This research contributes to the area

relevant to enterprise systems from three perspectives: 1) a new paradigm of

enterprise systems, in which enterprise systems consist of two essential elements:

system models and software programs. These two elements are loosely coupled and

can exist independently; 2) semantic representations, which can effectively

represent business entities, entity relationships, business logic and information

processing logic in a semantic manner. Semantic representations are the key

enabling techniques of model driven enterprise systems; and 3) a brand new role of

system models; traditionally the role of system models is to guide developers to

write system source code. This research promotes the role of system models to

control the behaviors of enterprise.

Keywords:

Model Driven System, Semantic Representation, Semantic Modeling, Enterprise

System Development, EAI, ERP, MDA

Declaration

III

DECLARATION

I declare that the ideas, experimental work, analyzes, software and conclusions

reported in this dissertation are entirely my own effort, except where otherwise

acknowledged. I also certify that the work is original and has not been previously

submitted for any degree or diploma.

None of the materials contained in this thesis have been submitted for publication

prior to the start of candidature. Some of the work in the thesis has been published

or submitted for publication in refereed journals or international conferences prior

to the completion of this thesis.

Signed: Date:

Acknowledgement

V

ACKNOWLEDGEMENT

I would like to give my heartfelt thanks to my principal supervisor Professor Prasad

Yarlagadda for his pertinent guidance, support and encouragement during my

candidature. It wouldn‘t have been possible to complete without his advice,

encouragement and support.

I also give my thanks to my associate supervisor Dr Mahalinga Mahalinga-Iyer,

who was always willing to help.

Thanks are given to my external supervisor, Professor Wen Feng Lu, who gave me

much technical advice and spent much precious time reviewing this thesis and the

associated technical papers.

Thanks to the School of Engineering Systems and the Faculty of Built Environment

and Engineering for providing this opportunity to make this PhD a reality.

In conclusion, thanks to all the people who have encouraged and helped me in my

study, but are not named here.

Dedication

VII

DEDICATION

This thesis is dedicated to my wife, Sandra, who took over my share of

housekeeping when I sat in the front of the computer; Dedication is also given to

my son Jingwei and daughter Yvonne who are a great source of motivation and

inspiration.

Publications

IX

PUBLICATIONS

Journal Papers

Ni, Q.F., Yarlagadda, P. and Betts, M., 2009, An Extensible Manufacturing Resource

Model for Process Integration, Asian International Journal of Science and Technology:

Production and Manufacturing, Vol. 4, No. 1, pp1-16

Ni, Q.F., Lu, W.F. and Yarlagadda, P., 2008, An extensible product structure model for

product lifecycle management in the make-to-order environment, Concurrent Engineering:

Research and Applications, Vol. 6, No. 4, pp243-251.

Ni, Q.F., Yarlagadda, K.D.V. Prasad and Lu, W.F., 2007, A Configuration-based Flexible

Reporting Method for Enterprise Information Systems, Computers In Industry, Vol. 58, No.

7, pp416-427.

Ni, Q.F., Lu, W.F, Yarlagadda, K.D.V. Prasad and Ming, X.G., 2007, Business

Information Modeling for Process Integration in the Mould Making Industry, Robotics and

Computer-Integrated Manufacturing, Vol.23, No.1, pp195-207.

Ni, Q.F., Lu, W.F., Yarlagadda, P., and Ming, X.G. 2006, A collaborative engine for

enterprise application integration, Computers in Industry, Vol. 57, No. 7, pp640-552.

Ni, Q.F., Lu, W.F. and Yarlagadda, P., 2006, A PDM-based Framework for Design to

Manufacturing in Mould Making Industry - a Case Study of Business Process Integration,

Computer-Aided Design and Applications, Vol. 3, No. 1-4, pp211-220.

Ni, Q.F., Yarlagadda, P. and Lu, W.F., 2006, Modeling of an Integrated Process Planning,

Computer-Aided Design and Applications, Vol. 3, No. 5, pp567-576.

Publications

X

Conference Papers

Ni, Q.F., Yarlagadda, P., and Lu, W.F., 2006, Semantic Representations for Configurable

Enterprise Systems, Proceedings of IDETC/CIE 2006 ASME 2006 International Design

Engineering Technical Conferences & Computers and Information in Engineering

(IDETC/CIE) Conference, Pennsylvania USA, September 10-13, 2006.

Ni, Q.F. and Yarlagadda, K.D.V. Prasad, 2006, A Configuration-based Method for

Developing Enterprise Information Systems, Proceedings of BEE Conference, Queensland

Australia.

Ni, Q.F., Yarlagadda, P. and Lu, W.F., 2005, Product Structure Modeling for the Made-to-

Order Environment, Proceedings of IDETC/CIE 2005 ASME 2005 International Design

Engineering Technical Conferences & Computers and Information in Engineering

(IDETC/CIE) Conference, California USA, September 24-28, 2005.

Ni, Q.F., Yan, J.Q. and Ming, X.G., 2004, Configurable Resource Model for Process-

oriented Applications, Proceedings of the 11th International Conference on Concurrent

Engineering (ISPE), Beijing, China, July 2004.

Contents

XI

CONTENTS

ABSTRACT .. I

DECLARATION .. III

ACKNOWLEDGEMENT ...V

DEDICATION .. VII

PUBLICATIONS ... IX

CONTENTS .. XI

ABBREVIATIONS .. XIV

LIST OF FIGURES ... XVII

LIST OF TABLES ... XXI

CHAPTER 1 INTRODUCTION .. 1

1.1 RISKS IN IMPLEMENTATION OF ENTERPRISE SYSTEMS ... 4

1.2 RESEARCH GAP IDENTIFICATION... 5

1.3 RESEARCH JUSTIFICATION ... 7

1.4 RESEARCH APPROACH.. 10

1.5 CONTRIBUTIONS ... 11

1.6 STRUCTURE OF THE THESIS ... 12

CHAPTER 2 LITERATURE REVIEW ... 15

2.1 INTRODUCTION .. 15

2.2 RESEARCH ON MANUFACTURING FLEXIBILITY ... 15

2.3 NEED FOR FLEXIBILITY IN ENTERPRISE SYSTEM .. 17

2.4 STRATEGIC RESEARCH ON FLEXIBILITY OF ENTERPRISE SYSTEM ... 18

2.5 TECHNICAL RESEARCH ON FLEXIBILITY OF ENTERPRISE SYSTEM ... 21

2.6 INNOVATIONS FOR FLEXIBILITY OF ENTERPRISE SYSTEMS ... 24

2.7 METHODS FOR DEVELOPMENT OF FLEXIBLE ENTERPRISE SYSTEMS .. 26

2.7.1 Model Driven Architecture (MDA) ... 26

2.7.2 Workflow Management ... 28

2.8 SUMMARY OF LITERATURE REVIEW .. 33

CHAPTER 3 CONCEPT OF MODEL DRIVEN ENTERPRISE SYSTEMS... 35

3.1 INTRODUCTION .. 35

3.2 REVIEW OF TECHNOLOGIES FOR MACHINE FLEXIBILITY ... 35

3.3 MECHANISM FOR FLEXIBILITY OF WORKFLOW MANAGEMENT SYSTEMS 37

3.4 UNSTRUCTURED MODEL REPRESENTATION .. 38

3.5 STRUCTURED MODELS IN A FORMAL LANGUAGE ... 40

3.6 CONCEPT OF MODEL DRIVEN ENTERPRISE SYSTEM .. 42

3.7 ABSTRACTION OF ENTERPRISE SYSTEMS... 43

3.8 REFERENCE ARCHITECTURE FOR MODEL DRIVEN ENTERPRISE SYSTEM ... 44

Contents

XII

3.9 SUMMARY ... 46

CHAPTER 4 SEMANTIC MODEL REPRESENTATIONS ... 49

4.1 INTRODUCTION .. 49

4.2 SEMANTIC ENTITY REPRESENTATION... 49

4.3 SEMANTIC RELATIONSHIP REPRESENTATION ... 55

4.4 SEMANTIC LOGIC REPRESENTATION .. 58

4.5 SEMANTIC GUI COMPONENT REPRESENTATION ... 63

4.6 SEMANTIC GRAPHICAL ENVIRONMENT REPRESENTATION .. 65

4.7 SEMANTIC FUNCTION LAYOUT REPRESENTATION .. 67

4.8 SUMMARY ... 69

CHAPTER 5 INDUSTRIAL CASE IDENTIFICATION ... 71

5.1 INTRODUCTION .. 71

5.2 BUSINESS PROCESSES IN MANUFACTURING ... 71

5.3 FOUR CRITICAL BUSINESS PROCESSES ... 72

5.4 INTEGRATION ANALYSIS ... 74

5.5 INTEGRATED ORDER FULFILLMENT PROCESS .. 74

5.5.1 Integrated Design .. 75

5.5.2 Integrated production management ... 76

5.5.3 Integrated material fulfillment .. 77

5.6 SELECTION OF CASE STUDIES ... 77

5.7 SUMMARY ... 79

CHAPTER 6 SEMANTIC RESOURCE MODELING .. 81

6.1 INTRODUCTION .. 81

6.2 NEEDS OF EXTENSIBLE RESOURCE MODEL ... 81

6.3 FOUNDATION MODEL .. 83

6.4 MACRO RESOURCE MODEL .. 85

6.4.1 Capacity Model .. 86

6.4.2 Status Model .. 86

6.5 MICRO MODEL .. 87

6.5.1 Material Model .. 88

6.5.2 Micro Machine Model .. 90

6.5.3 Micro cutting model .. 91

6.6 ILLUSTRATION OF SEMANTIC RESOURCE REPRESENTATIONS .. 92

6.7 SUMMARY ... 95

CHAPTER 7 SEMANTIC PRODUCT STRUCTURE MODELING .. 97

7.1 INTRODUCTION .. 97

7.2 BACKGROUND .. 97

7.3 ABSTRACT PRODUCT STRUCTURE MODEL .. 99

7.3.1 Master-variant pattern .. 99

7.3.2 Product structure model .. 101

7.4 LIFECYCLE MANAGEMENT SUPPORT ... 105

7.4.1 Product view model ... 105

7.4.2 Integration with other processes ... 106

7.5 SEMANTIC PRODUCT STRUCTURE REPRESENTATION .. 107

7.5.1 Entity Representation .. 108

Contents

XIII

7.5.2 Categorization Representation .. 109

7.6 SUMMARY ... 110

CHAPTER 8 SEMANTIC REPORTING MODELING ... 113

8.1 INTRODUCTION .. 113

8.2 BACKGROUND .. 113

8.3 OVERVIEW OF THE REPORTING METHOD ... 115

8.4 SEMANTIC REPORTING MODEL .. 116

8.5 SEMANTIC REPORTING CONFIGURATION LANGUAGE .. 121

8.5.1 Report type Model ... 121

8.5.2 Template Model ... 122

8.5.3 Imposition Model ... 124

8.5.4 Object Acquisition Model ... 124

8.6 SUMMARY ... 125

CHAPTER 9 PROTOTYPE .. 127

9.1 INTRODUCTION .. 127

9.2 OBJECT MODEL INTEGRATION ... 127

9.3 SEMANTIC MODEL ORGANIZATION .. 129

9.4 SYSTEM ARCHITECTURE .. 131

9.5 SEMANTIC MODEL MANAGEMENT ... 133

9.6 EXPRESSION MODEL .. 135

9.7 ENTITY MANAGEMENT .. 136

9.8 RELATIONSHIP MANAGEMENT ... 138

9.9 DATABASE SCHEMA GENERATION TOOL .. 140

9.10 PRODUCT STRUCTURE MANAGEMENT .. 142

9.11 CONCLUSIONS .. 144

9.11.1 Challenges in Development of Model Driven Enterprise System 145

9.11.2 Advantages of Semantic Representations .. 146

9.11.3 Limitations of Prototype .. 147

CHAPTER 10 CONCLUSIONS AND FUTURE RESEARCH .. 148

10.1 RESEARCH SUMMARY .. 148

10.2 RESEARCH CONTRIBUTIONS .. 150

10.2.1 Concept of Model Driven Enterprise Systems ... 150

10.2.2 Semantic Representations ... 150

10.2.3 Promoting Role of System Models .. 151

10.2.4 Advancement to MDA ... 151

10.2.5 Enlarged Space for Enterprise System Flexibility ... 152

10.3 INDUSTRIAL BENEFITS .. 153

10.3.1 New Approach to System Implementation and Maintenance 153

10.3.2 New Approach for Evaluating Enterprise Systems .. 153

10.3.3 Long Enterprise System Life .. 154

10.4 FUTURE RESEARCH .. 154

BIBLIOGRAPHY .. 157

Abbreviations

XIV

ABBREVIATIONS

ADL – Attribute Declaration Language

API – Application Programming Interface

ARIS – Architecture of Integrated Information System

B2B – Business to Business

BLOB –Binary Large Object

BOM – Bill of Material

CAD – Computer Aided Design

CAM – Computer Aided Manufacturing

CAPP – Computer Aided Process Planning

CCID – China Center for Information Industry Development

CNC – Computer Numerical Control

COM – Component Object Model

CORBAR – Common Object Request Broker Architecture

CASE – Computer Aided Software Engineering

CEPC – Configurable Event Driven Process Chain

CIMOSA – Open System Architecture for Computer Integrated Manufacturing

CRM – Customer Relationship Management

DAIM – Design-Analysis Integration Model

DICOM – Digital Imaging and Communication

EAI – Enterprise Application Integration

ebXML – Electronic Business using Extensible Markup Language

EC – Engineering Change

EJB – Java Enterprise Bean

EPC – Event Driven Process Chain

ERA – Enterprise Reference Architecture

Abbreviations

XV

ERP – Enterprise Resource Planning

FMS – Flexible Manufacturing System

GIM – GRAI integrated methodology

GUI – Graphical User Interface

HTTP – Hypertext Transfer Protocol

IDC – International Data Corporation

IDL – Interface Declaration Language

IS – Interface Declaration Language

IT – Information Technology

J2EE – Java 2 Enterprise Edition

MDA – Model Driven Architecture

MRP – Manufacturing Resource Planning

NC – Numerical Control

OAM – Open Assembly Model

OLE – Object Linking and Embedding

OMG – Object Management Group

OOP – Object Oriented Programming

PDM – Product Data Management

PERA – Purdue Enterprise Reference Architecture

PFEM – Product Family Evolution Model

PIM – Platform Independent Model

PLM – Product Lifecycle Management

PR – Purchase Request

PSM – Platform Specific Model

POI – Poor Obfuscation Implementation

PTC – Parametric Technology Corporation

Abbreviations

XVI

RFQ – Request for Quotation

SCM – Supply Chain Management

SDLC – Software Development Lifecycle

SOA – Service Oriented Architecture

SOAP – Simple Object Access Protocol

SQL – Structured Query Language

STEP – Standard for the Exchange of Product Model Data

UDDI – Universal Description, Discovery and Integration

UML – Universal Modeling Language

WAPI – Workflow Application Programming Interface

WfMC – Workflow Management Coalition

WfMS – Workflow Management System

WSDL – Web Services Description Language

XML – Extensible Markup Language

XSL – Extensible Stylesheet Language

List of Figures

XVII

LIST OF FIGURES

FIGURE 1 FLEXIBILITY AND COST EFFICIENCY (SCHOBER, ET AL. 2008) 19

FIGURE 2 WORKFLOW STANDARD INTERFACE (STOHR, ET AL. 2001) 28

FIGURE 3 A IDEAL STRUCTURE FOR FLEXIBLE ENTERPRISE SYSTEMS 37

FIGURE 4 TYPICAL LIFECYCLE OF SOFTWARE DEVELOPMENT (BROWN 2004) 40

FIGURE 5 TRANSFORMATION OF PIM TO PSM (BROWN 2004) .. 41

FIGURE 6 CONCEPT OF MODEL DRIVEN ENTERPRISE SYSTEMS... 43

FIGURE 7 ABSTRACTION MODEL OF ENTERPRISE SYSTEMS .. 43

FIGURE 8 MODEL-DRIVEN SYSTEM CONCEPT ... 46

FIGURE 9 OVERVIEW OF SEMANTIC ENTITY REPRESENTATION .. 51

FIGURE 10 ATTRIBUTE VALIDATION EXPRESSION... 52

FIGURE 11 TEXT RESOURCE CONFIGURATION .. 54

FIGURE 12 SIMPLIFIED SEMANTIC ENTITY REPRESENTATION ... 56

FIGURE 13 OVERVIEW OF SEMANTIC RELATIONSHIP REPRESENTATION 57

FIGURE 14 SEMANTIC RELATIONSHIP MODEL .. 59

FIGURE 15 SEMANTIC MAPPING .. 59

FIGURE 16 SEMANTIC PATTERN FOR IDENTITY GENERATION ... 61

FIGURE 17 SEMANTIC PATTERN FOR LISTING MACHINES ... 62

FIGURE 18 EXPRESSION FOR CALCULATING PROCESSING STEP COST 63

FIGURE 19 QUERY COMPONENT BASED ON SEMANTIC REPRESENTATION 64

FIGURE 20 ENTITY MANAGEMENT ENVIRONMENT .. 65

FIGURE 21 SEMANTIC SCENARIO REPRESENTATION .. 67

FIGURE 22 SEMANTIC FUNCTION LAYOUT ... 68

FIGURE 23 THE FIRST LEVEL EPC DIAGRAM. ... 72

FIGURE 24 CRITICAL PROCESSES IN THE MOULD MAKING INDUSTRY. 73

FIGURE 25 RESOURCE INFORMATION SHARING ... 78

FIGURE 26 IT INFRASTRUCTURE TRENDS (LIU, 2003) .. 82

FIGURE 27 EXTENSIBLE RESOURCE MODEL .. 84

FIGURE 28 LEGEND EXPLANATIONS ... 84

FIGURE 29 RESOURCE ROLE CONFIGURATION ... 86

FIGURE 30 STATUS CONFIGURATION ... 87

FIGURE 31 MICRO MATERIAL MODEL .. 89

List of Figures

XVIII

FIGURE 32 MICRO MACHINE MODEL ... 90

FIGURE 33 MICRO CUTTING TOOL MODEL ... 92

FIGURE 34 SEMANTIC MACHINE REPRESENTATION ... 93

FIGURE 35 MACHINE VIEW .. 94

FIGURE 36 RELATIONSHIPS WITH MACHINE ... 94

FIGURE 37 MASTER-VARIANT PATTERN. .. 100

FIGURE 38 PRODUCT STRUCTURE MODEL. ... 101

FIGURE 39 PRODUCT FAMILY MODEL. ... 102

FIGURE 40 A SIMPLIFIED CAR FAMILY SPECTRUM. ... 103

FIGURE 41 RELATIONSHIP BETWEEN A CAR VARIANT AND AN ENGINE VARIANT 105

FIGURE 42 PRODUCT VIEW MODEL. ... 107

FIGURE 43 SEMANTIC PRODUCT DEFINITION. .. 109

FIGURE 44 SEMANTIC CATEGORY REPRESENTATION.. 110

FIGURE 45 OVERVIEW OF THE METHOD... 116

FIGURE 46 SEMANTIC REPORTING REPRESENTATION FRAMEWORK 118

FIGURE 47 OBJECT ASSOCIATION MODEL .. 121

FIGURE 48 SEMANTIC REPORT CONFIGURATION ... 122

FIGURE 49 IMPOSITION CONFIGURATION OF A STRUCTURED REPORT 124

FIGURE 50 MODEL INTEGRATION ... 128

FIGURE 51 IMPOSITION CONFIGURATION OF A STRUCTURED REPORT 130

FIGURE 52 SYSTEM ARCHITECTURE .. 132

FIGURE 53 SEMANTIC MODEL MANAGEMENT ... 133

FIGURE 54 SERVICE MODEL OF SEMANTIC MODEL MANAGEMENT 134

FIGURE 55 SCREEN OF MODEL MANAGEMENT SERVER ... 135

FIGURE 56 EXPRESSION OBJECT MODEL... 136

FIGURE 57 ADAPTIVE ENTITY MANAGEMENT ENVIRONMENT ... 137

FIGURE 58 PROCESS OF INITIATING AN ENTITY INSTANCE ... 138

FIGURE 59 ADAPTIVE RELATIONSHIP MANAGEMENT ENVIRONMENT 139

FIGURE 60 ADAPTIVE RELATIONSHIP MANAGEMENT ENVIRONMENT 139

FIGURE 61 DATABASE SCHEME GENERATION TOOL ... 140

FIGURE 62 GENERATED DATABASE SCHEMA .. 141

FIGURE 63 OBJECT MODEL OF DATABASE SCHEMA GENERATION TOOL 141

FIGURE 64 ENVIRONMENT MODEL FOR DATABASE SCHEMA GENERATION TOOL 142

FIGURE 65 PRODUCT STRUCTURE MANAGEMENT ... 143

List of Figures

XIX

FIGURE 66 PART FAMILY SEMANTIC MODEL .. 143

FIGURE 67 SEMANTIC SCENARIO MODEL OF PRODUCT STRUCTURE MANAGEMENT 144

List of Tables

XXI

LIST OF TABLES

TABLE 1 TRADITIONAL ENTERPRISE VERSUS PROCESS ENTERPRISE (HAMMER 2002) 3

TABLE 2 METHODS FOR ADAPTING ENTERPRISE SYSTEMS (NI, 2007) 8

TABLE 3 SUMMARY OF RESEARCH ON MANUFACTURING FLEXIBILITY (NI, 2007) 16

TABLE 4 A METRICS OF ENTERPRISE SYSTEM FLEXIBILITY (NI 2007) 20

TABLE 5 STRATEGIC RESEARCH ON THE FLEXIBILITY OF ENTERPRISE SYSTEMS (GARAVELLI

2003) .. 20

TABLE 6 WORKFLOW APPLICATION PROGRAM INTERFACES (STOHR, ET AL. 2001) 29

TABLE 7 FIVE PERSPECTIVES OF THE WORKFLOW MODEL (STOHR, ET AL. 2001) 30

TABLE 8 COMMONLY USED KEYWORDS OF DESCRIPTIVE LANGUAGE 54

TABLE 9 COMMON FUNCTIONS FOR CONSTRUCTING EXPRESSIONS 62

Chapter 1 Introduction

1

Chapter 1 Introduction

Computer application in enterprises has gone through three major milestones. The

first milestone is endorsed by a standalone manner in which computers worked. At

this stage computers were mainly used as a means to assist individuals. Typical

software applications were various computer-aided applications, such as computer

aided design (CAD), computer aided process planning (CAPP) and computer aided

manufacturing (CAM). A study uncovered that the performance improvement of

individual activities does not contribute to the overall performance of an enterprise

(Abeysinghe and Phalp 1997). This is evidenced through the complaints of some

companies that their business performance was not improved as expected though

adopted technologies functioned well. The findings of this research unveiled the

main factors that led to this result, which are as follows:

 Applications were selected and implemented based on the initiatives of

individual departments rather than the common goal of the enterprise;

 Information models underneath each application with little interoperability

resulted in no way of electronically sharing or exchanging information

(Kim, Kim and Choi 1993);

 Lack of integration resulted in broken information flows and fragmentized

business processes;

 Inflexibility of software applications could not effectively support

business practice changes for new business opportunities;

 Internal competition for investment in implementing new systems or

upgrading existing systems led to difficulty to achieve the most optimal

technology deployment (Hammer 2002);

Chapter 1 Introduction

2

 Too much emphasis was focused on the technologies and the human

aspect was ignored (Sun 2000).

The age of information integration arrived when enterprises recognized the

shortcomings of the discrete computing environment. Information integration was

to build up fundamental information infrastructure, with new information

technologies incorporated, to make information exchangeable between computer

applications (Abdmouleh and Spandoni 2004). Information integration made

information exchangeable by transforming information from proprietary formats to

neutral formats. During this period, fundamental standards were developed and

commonly accepted for representing information for exchange. Though

information integration was recognized as a successful means to achieve

information sharing between applications, its shortcomings, as highlighted below,

are obvious:

 Success of information integration relied too much on the openness of

individual applications and the maturity of various standards;

 Additional work was often required to import or export information in a

neutral format;

 Coexistence of multiple copies of the same piece of information was, in

many cases if not always, inevitable. The difficulty to synchronize

information stood out;

 A common goal of an enterprise could not be clearly highlighted as

information integration usually took place between different pairs of

applications;

 Internal competition for technology upgrading among different

departments still existed because information integration only focused on

some applications (Liu, Wang and He 2004).

In the past decade, computer utilization in enterprises has rapidly evolved from

information integration to process integration. Process integration positions

individual performance initiatives under a process umbrella to maximize the

overall performance (Hammer 2002). Table 1 presents the main differences

Chapter 1 Introduction

3

between traditional enterprise and process enterprise. In nature, process integration

connects technology, process and people (Vinther 2008). Process integration

usually involves business process modeling, application integration, and culture

transformation. Business process modeling captures the as-is business process and

establishes a to-be business process model which removes business process

bottlenecks and connects fragments in the existing business process. Application

integration connects various applications to support the new business process

model. Culture transformation wakes up people to an awareness of the business

process. In a process integrated enterprise, people need to have the mindset that

their goal is to help downstream teams to complete tasks better, rather than simply

to complete their own work.

Table 1 Traditional enterprise versus process enterprise (Hammer 2002)

 Traditional Enterprise Process Enterprise

Central Axis Function Process

Work Unit Department Team

Job Descriptions Limited Broad

Measures Narrow End-to-end

Focus Boss Customer

Compensation Activity-based Results-based

Manager’s Role Supervisor Coach

Key Figure Functional executive Process owner

Culture Conflict-oriented Collaborative

One of the promises from process integration is to connect all activities of an

enterprise. As a result, enterprises can work as a whole towards a common goal.

Successful implementation of process integration offers enterprises opportunities:

 To optimize resource utilization;

 To improve cooperation, coordination and communication;

 To link functions with information, resources, applications and people;

 To streamline material, information and control flows throughout the

entire business process (Ortiz, Lario and Ros 1999, Tang 2004).

Chapter 1 Introduction

4

Process integration can lead to significant benefits such as improved customer

service, better scheduling, and reduced costs. As such, process integration has been

widely adopted by enterprises to improve business performance in terms of

productivity, flexibility and quality (Li, Wang, Wong and Lee 2004). Process

oriented software systems are also commercially available in market under a

variety of labels including enterprise resource planning (ERP), product data

management (PDM), supply chain management (SCM), customer relationship

management (CRM) and workflow management (Sun 2000).

1.1 Risks in Implementation of Enterprise Systems

Studies revealed that the number of companies that implemented process

integration kept increasing. International Data Corporation (IDC) reported that

ERP systems revenue was $21.5 billion in 2000 (Cowley 2010). Aberdeen Group

concluded that spending in the business process management software sector

reached $2.26 billion in 2001. According to CCID Report (2004), ERP sales in

Mainland China reached US $226.9 million in 2003, and would reach US $652.8

million by 2008 (Zhang, Lee, Huang, Zhang and Huang 2005).

Process-oriented systems are very expensive. System costs, in general, range from

hundreds of thousands of dollars to several million dollars (Rolland and Prakash

2000). Due to the complexity of such systems, the implementation cost can be

much higher than the systems cost. A survey (Ross and Vitale 2000) concluded that

implementation costs range from $2 million to $130 million after studying process

integration projects in 15 companies, ranging in size from $125 million to over $25

billion (US) in sales, of which eight companies deployed SAP, three implemented

Baan, another three used Oracle and one adopted PeopleSoft. The survey also

stressed that cost may escalate when counting in costs of human resources for

project implementation, new hardware for running the system, and integration with

other types of applications. A study by Gartner Group revealed that consultants

helping in the selection, configuration and implementation may cost up to three

times much money as system cost (CTRC 1999).

Implementation of process-oriented systems is difficult and time-consuming with

potential failures (Zhang, Lee, Huang, Zhang and Huang 2004). Study in the

Chapter 1 Introduction

5

literature (Ross, et al. 2000) concluded that implementation time from the signing

of the contract until the final ―go-live‖ ranges from one to five years. Standish

Group reported that ERP implementation projects, on average, were 178% over

budget, took 2.5 times as long as intended and delivered only 30% of promised

benefit (Williamson 1997). Nearly 1000 companies in China have implemented

MRP, MRP II or ERP systems since 1980 to 2005. The successful implementation

rate is extremely low at only 10% (Zhang, et al. 2005). ERP failures, cancellations,

and cost/time overruns have also been reported in different studies (King 1997).

It is absolute that the world keeps changing. Enterprises may need to change

business practices from time to time for new business objectives or new

opportunities. Strategic flexibility is a critical competency that enterprises have to

have in today's dynamic global environment. Business operation tightly relies on

the support of enterprise systems. Changes to business practices often result in

modifications to enterprise systems.

However, throughout process integration, computers in enterprises evolve from

standalone facilities to complicated interconnected network systems. The goal of

software applications shifts from assisting individuals to connecting various

functional units. The enterprise itself is transformed from relatively independent

departments to an interdependent environment. Since process integration results in

the interconnection of most, if not all, applications, a small change to one

application in a process integrated enterprise can lead to a chain of changes to

many other upstream or downstream applications. Therefore, such an enterprise has

to have various levels of project teams and support teams for maintaining and

upgrading applications based on business needs. From the long-term viewpoint, the

ongoing maintenance cost in a process integrated enterprise is really much higher

than the system and implementation costs.

1.2 Research Gap Identification

Risks in the implementation of enterprise systems have drawn the attention of

researchers (Botta-Genoulaz, Millet and Grabot 2005). Many research efforts have

been founded on identifying success or failure factors (Bradford and Florin 2003,

Chapter 1 Introduction

6

Sarker and Lee 2003, Umble, Haft and Umble 2003a, Calisir 2004, Zhang, et al.

2005), implementation approaches (Umble, Haft and Umble 2003b, Bendoly and

Kaefer 2004), and project management strategies (Sarkis and Sundarraj 2003, Yen

and Sheu 2004, Gebauer and Lee 2008). Those efforts are aimed at learning lessons

from post implementation experiences and providing knowledge to help future

implementation projects.

At present, customization is still the primary method of individualizing enterprise

systems for different enterprises. Customization involves massive effort to redesign

functions and change software codes in order to deliver tailored functions.

Compromises are often necessary due to the limitation of the base system and the

budget. In addition, current enterprise systems lack flexibility so they cannot be

quickly changed to keep up with business changes. This necessitates the

involvement of different teams, software vendors and third parties in upgrading

enterprise systems and is one of the main factors that results in high maintenance

cost. However, few research reports can be found on methods for developing

enterprise systems with the better flexibility to support different enterprises and

ongoing business changes.

System models represent business practices. Business practice differences imply

model differences and business practice changes require model changes. Currently

system models are hard coded into software programs and cannot exist independent

of software programs. Changing software code is the only way to incorporate new

models into software programs when business practices change.

This research attempts to fill the gap by initiating a concept of model driven

enterprise systems. The novelty of model driven enterprise systems is that they

decouple system models from software programs. System models can physically

exist outside of software programs. In model driven enterprise systems, system

models act as instructors to guide and control the behavior of software programs.

Software programs function by interpreting instructions contained in system

models. This offers the opportunity to control the behavior of software programs by

changing system models. Such an enterprise system provides high flexibility and

can be individualized with little modifications to software source code. Therefore,

Chapter 1 Introduction

7

model driven enterprise systems can be rapidly configured and reconfigured to

satisfy different requirements or ongoing business changes.

1.3 Research Justification

Flexibility is referred to as the ability to change or the rapid adaption to future

uncertainty at minimal cost and effort with little disturbance on other performance

variables (Slack 1989, Upton 1994, Volberda 1999). It has been becoming critical

for enterprises to win business opportunities (Ni 2007). Enterprise systems can

effectively support business operations only when they are well aligned with

business requirements (Dreiling, Rosemann, Aalst, Sadiq and Khan 2006). The

flexibility of enterprise systems can have important consequences for operational

efficiency and long-term effectiveness, yet is often not considered explicitly as a

decision factor during system design and implementation (Gebauer, et al. 2008).

Inarguably product market lifecycle is becoming shorter and customer demands are

frequently changing. Enterprises are forced to optimize their business practices in

order to tackle these challenges. A wide consensus has been reached, that being

able to respond to market and customers at lower cost and high quality is not

enough anymore. In the modern business environment, it is critical for enterprises

to have the flexibility to provide new products and continuously improved

customer services. Higher business flexibility can be achieved only when the

enterprise system in use can support changes quickly. Though enterprise system

vendors have taken flexibility as a high priority and endeavored to develop generic

architecture, enterprise systems are still subject to criticism with respect to rigidity

(Ni 2007). In reality, enterprise system implementation and maintenance still

involves massive customization efforts to make functions satisfy specific needs.

Enterprise systems need to be re-aligned with business requirements to catch up

with business changes. How easily and quickly an enterprise system can be aligned

and re-aligned with business requirements, has become a key indicator of business

agility. Flexibility has been a requirement of enterprises for decades but the

concept still remains understood (Ni 2007). The majority of research in the past

decades has focused on strategic flexibility in the context of manufacturing systems.

Chapter 1 Introduction

8

Enterprises still lack fundamental theories and systematic approaches to achieve

and measure flexibility, particularly in the context of software development and

selection.

Currently, many enterprise systems are developed, based on so-called ‗best

practice‘. In theory, it sounds very attractive to adopt the best practice. However, in

reality, few companies want to give up their existing practices for the best practice,

especially if a company has already achieved competitive advantages in enacting a

business process (Scott and Vessey 2000). Therefore, individualization is still a

popular option in the adoption of enterprise systems.

Table 2 presents methods currently being practiced to tailor or adapt enterprise

systems (Ni 2007). A conclusion can be drawn from the table that customization is

still a dominant approach in specializing or adapting an enterprise system.

Customization is to build, fit, or alter according to individual specifications by

changing system source code. This incurs excessive effort and implies a long

implementation lifecycle. Some degree of enterprise system customization is

possible, however the complexity of enterprise systems makes major modifications

impractical (Davenport 1998). Therefore, enterprises often have to compromise in

the adoption of enterprise systems. Therefore, of three challenges to enterprise

system vendors, delivering flexibility takes the first priority (Goyal 2006).

Table 2 Methods for adapting enterprise systems (Ni, 2007)

Method Participants

Adopter Vendor
3rd Party

Software Vendor
3rd Party
Support

Reconfiguration  

User Interfacing Tuning  

Extended Reporting  

Programming  

Patch Upgrades   

Version Upgrades   

Acquire New Module or
License

  

Acquire 3
rd

 Party Software  

Chapter 1 Introduction

9

A critical success factor in enterprise system implementation is to avoid system

source code changes wherever possible by using predefined change options

(Holland and Light 1990). Through the analysis of interview data and literature, Ni

(Ni 2007) concluded that configuration is on the top of the list of choices in the

adaptation of enterprise systems if the function can satisfactorily meet new

business needs. Compared with other methods, configuration is a very cost

effective solution and can be completed in a short time. Moreover, it is less

demanding for competent IT people and has minimal implication on the future

system maintenance.

Currently, configuration is achieved by setting various parameters. Several

thousands of parameters may still be insufficient to satisfy flexibility needs because

of the complexity of enterprise systems, (Dreiling, et al. 2006). Furthermore,

parameter based configuration has little intuitive conceptual support. Thus, setting

enterprise system parameters is a process which is error-prone and resource-

intensive. The lack of object-oriented and process-centric intuitiveness makes

parameter based configuration extremely difficult.

The flexibility of enterprise systems is truly realized only when stability and

achievability are guaranteed deterministically. With respect to the flexibility of

enterprise systems, extensive research needs to be done on fundamental theories

and deterministic methodologies are to be developed. This research argues that

configuration remains a better approach for the flexibility of enterprise systems.

However, an easy way to realize configuration is critical to the success of this

approach.

System models are the projection of business practices. Business practice

differences mean the difference in system models and business practice changes,

require changes to system models. It is obvious that an enterprise system can be

much more flexible when the following conditions are satisfied:

 System models can physically stay outside of software programs;

Chapter 1 Introduction

10

 Software programs can function automatically according to updated

models; and

 System models can be changed independent of software programs.

In the context of this research, an enterprise system that meets the above conditions

is referred as a model driven enterprise system. This research insists that model-

driven configuration is one of the best approaches in the individualization and

adaption of enterprise systems. System models are the blueprint of an enterprise

system with the complete context of information entities, entity relationships and

functional deployment. This provides comprehensive intuitiveness to support

configuration. Hence, compared to other approaches, model-driven flexibility is

under control and predictable with intuitiveness. The main focus of this research is

on developing a conceptual architecture of model driven enterprise systems and

semantic representations of system models, which are key techniques of model

driven enterprise systems.

1.4 Research Approach

This research is exploratory in nature. The purpose of exploratory research is to

investigate little understood phenomena and identify or discover important

variables to generate hypotheses for further research (Marshall and Rossman 1989).

The analogical reasoning approach is adopted. This approach is appropriate as the

study on methods for developing flexible enterprise systems can only be measured

in a qualitative manner. Analogical reasoning is a method of processing

information that compares the similarities between new and understood concepts;

and then uses those similarities to gain understanding of the new concept. It is a

form of inductive reasoning because it strives to provide understanding of what is

likely to be true, rather than deductively proving something as fact (Boelcke 2003).

The inductive process of exploration offers a rigorous approach to assist

understanding complex information system (IS) project implementations (Nasirin

and Birks 2002). It enables the achievement of dual objectives of rigor and

relevance (Melia 1996, Fernandez, Lehmann and Underwood 2002).

Chapter 1 Introduction

11

By using the analogical reasoning approach, this research first investigates the

knowledge of flexibility accumulated in the area of modern machines and

workflow management. Then, a hypothesis is derived which proposes that an

enterprise system developed in the analogical method should have similar high

flexibility.

1.5 Contributions

This research is the first effort to explore a deterministic method for developing

flexible enterprise systems through configuration and reconfiguration. It

contributes to the area of software development from the following three aspects.

1) The first contribution of this research is the concept of model driven

enterprise systems. Currently, business requirements, design decisions and

developers‘ thinking are hard coded into enterprise systems throughout the

development process. In such a way, enterprise system models merge into

software programs and cannot stand independent of software programs.

After a system is developed, system models become intangible. This

eliminates the possibility of adjusting enterprise systems by changing

system models. Changes to system models need to be implemented by

revising system source code. The concept of model driven enterprise

systems provides an effective mechanism to separate system models from

software programs and makes system models able to stay outside of

software programs. The separation of system models from software

programs exposes an opportunity to mediate the behavior of enterprise

systems through modifying system models.

2) The second contribution is semantic representations. Traditionally, system

models exist dependent of software programs. They are reflected in system

source code. Model driven enterprise systems require system models to be

extracted from software programs. Two key questions are raised: 1) what

can be extracted from software programs as system models; and 2) how

these system models are represented. This research identifies the system

models to be extracted by developing an abstraction model of enterprise

Chapter 1 Introduction

12

systems. Then, various semantic representations are developed. These

representations are an innovative technique used to represent business

entities, entity relationships and processing logics. Semantic representations

enable system models to exist outside of, and be loosely coupled with,

software programs. They can be easily constructed by human beings. At the

same time, they can also be effectively interpreted by computers.

3) The contribution is the promotion of the role of system models from

guiding writing system source code to controlling the behavior of enterprise.

The software development lifecycle (SDLC) provides a philosophy to

manage the process of enterprise system development. In SDLC, business

requirement collection, system design and system coding are major steps in

ensuring that an enterprise system is developed in line with business

requirements. Traditionally, software developers write system source code

by understanding business requirements and design decisions. After being

developed, an enterprise system works by following the way that the

developers defined. In other words, developers‘ thinking is implanted into

enterprise systems. Developers‘ thinking is the understanding of business

requirements and design decisions. Business requirements and design

decisions are usually represented as various system models. Consequently,

the major role system models play is to guide developers to write system

source code. MDA is a model driven framework for software development.

MDA promotes the role of system models for generating system source

code. This results in the synchronization of system source code with system

models. The concept of model driven enterprise systems extends MDA and

further promotes the role of system models for driving the behavior of

enterprise systems. In nature, the concept of model driven enterprise

systems is to achieve the synchronization of the behavior of enterprise

systems with system models at runtime.

1.6 Structure of the Thesis

This dissertation is to explore a systematic method for developing flexible

enterprise systems. This research is qualitative in nature. By applying analogical

reasoning, it develops the method through studying known phenomena in relevant

Chapter 1 Introduction

13

areas. Firstly, the dissertation investigates methods for flexibility in manufacturing

and workflow management; and the role of system models in the development of

enterprise systems. Throughout this process, the dissertation identifies the root

cause of the inflexibility of current enterprise systems. Then, a concept of model

driven enterprise systems is initiated to move away the barrier to flexibility in

current enterprise systems. The concept of model driven enterprise systems

requires system models to be separated from enterprise systems and represented in

a semantic manner. Various semantic representations are developed to support the

development of model driven enterprise systems. After that, three case studies are

identified and conducted. A proof-of-concept system is also developed to

demonstrate the development of model driven enterprise systems and effectiveness

of the semantic model representations. Finally, conclusions and future work are

presented. This chapter provides a comprehensive overview of computer utilization

in enterprises. It presents flexibility needs, research gaps and research justification.

It also outlines the research goal, research approach, and key contributions. The

following chapters are organized as follows.

Chapter 2 Literature Review provides detailed reviews of existing research on

flexibility in the context relevant to enterprise systems. Prior to the detailed review,

a short review of research in manufacturing flexibility is also presented because

research on flexibility originated from manufacturing;

Chapter 3 Concepts of Model Driven Enterprise Systems investigates technologies

for flexibility in the areas of modern machines and workflow management. The

role of system models in the development of enterprise systems is reviewed. Then,

the concept of model driven enterprise system is developed. System models to be

extracted are identified, and a reference architecture for model driven enterprise is

discussed.

Chapter 4 Semantic Model Representations develops semantic representations for

system models identified in Chapter 3. Semantic representations are a key enabler

of flexible enterprise systems.

Chapter 1 Introduction

14

Chapter 5 Industrial Case Identification identifies industrial cases for studying the

application of semantic representations in business object models by developing a

comprehensive business process model based on the practice of manufacturing

industry. Resource management, product structure management and reporting are

selected as industrial cases.

Chapter 6, Chapter 7 and Chapter 8 are case studies which apply semantic

representations to the resource model, product structure model and reporting model.

Chapter 9 Prototype develops a proof-of-concept system to further verify the

effectiveness of the concept of model-driven enterprise systems and semantic

representations.

Chapter 10 Conclusions and Future Research summarizes the dissertation and

conclude contributions. The future research is also presented.

Chapter 2 Literature Review

15

Chapter 2 Literature Review

2.1 Introduction

An enterprise system needs to be deployed to different enterprises and it should be

able to be adapted easily when business practices change. Thus, enterprise systems

have to be flexible. The easiest way to tailor and adapt enterprise systems is a

configuration which involves little change to system source code. An enterprise

system that offers flexibility by configuration is defined as a configurable

enterprise system. Flexibility is a requirement and configuration is one method to

satisfy the requirement of flexibility. Flexibility is a multidimensional concept and

it has to be discussed in a particular context (Evans 1991, Ni 2007, Maksimovic

and Lalic 2008, Stevenson and Spring 2009). This chapter provides detailed

reviews on flexibility in the context of enterprise systems. Before proceeding to the

detailed review, a short review of research in manufacturing flexibility is presented,

since research on flexibility originated from manufacturing.

2.2 Research on Manufacturing Flexibility

The concept of flexibility is not a recent phenomenon. Research on flexibility in

business operation has been conducted for over sixty years (Golden and Powell

2000, Stevenson, et al. 2009) and carried out from various domain areas, most

notably manufacturing (Gupta and Goyal 1989b, Vokurka and O'Leary-Kelly

2000). The need for flexibility is grounded in the need to cope with uncertainty in

the manufacturing environment (Schmenner and Tatikonda 2005). With the

advance of new software (e.g. CAD, CAM), improved manufacturing facilities (e.g.

CNC, robots, FMS), and expanded manufacturing information systems (e.g. MRP,

MRP II, ERP), enterprises need to understand the potential flexibility of process

and information technology deployed in their manufacturing systems to gain

maximal benefits (Slack 1989). In the 1980s, flexibility in manufacturing became

Chapter 2 Literature Review

16

an outstanding issue. It was recognized that manufacturing flexibility needs to be

conducted on a more scientific basis (Schmenner, et al. 2005). Gerwin is notable

for his contribution to initiating research on flexibility in manufacturing (Ni 2007).

He defined flexibility as the ability to respond effectively to changing

circumstances; and pointed out pointed out that flexibility associates with both

operational uncertainties and process design. He started measuring manufacturing

flexibility using a range of possibilities that manufacturing processes can handle -

time and cost, achievability and effectiveness. Continuing Gerwin‘s initiative,

research in manufacturing has been conducted from different angles, as shown in

Table 3. Different kinds of uncertainty drive the needs for different kinds of

flexibility and research on flexibility has moved forward beyond manufacturing.

Table 3 Summary of research on manufacturing flexibility (Ni, 2007)

 Focus Literature

General aspects

Definition & classification and
interrelationship between
different types of flexibility

(Browne, Dubois, Rathmill, Sethi
and Stecke 1984, Slack 1987,
Gupta, et al. 1989b, Slack 1989,
Sethi and Sethi 1990, Gerwin 1993,
Upton 1994, Cheng, Simmons and
Ritchie 1997, Parker and Wirth
1999, Narain, Yadav, Sarkis and
Cordeiro 2000)

Measurement of flexibility (Gupta, et al. 1989b, Slack 1989,
Sethi, et al. 1990, Gerwin 1993,
Parker, et al. 1999, D'Souza and
Williams 2000)

Factors and methods of
flexibility

(De Meyer, Nakane, Miller and
Ferdows 1989, Hill and Chambers
1991, Narain, et al. 2000)

Specific aspects

Manufacturing processes (Gerwin 1987, Upton 1997)

Human resources management (Gupta 1989, Denton 1994)

Business process reengineering (Zhang and Cao 2002)

Product design and development
processes

(Sanchez and Mahoney 1996)

Administrative aspects of
flexibility

(Kathuria 1998)

Manufacturing resources
management

(Correa and Slack 1996)

Machine adaptability (Mandelbaum and Brill 1989, Brill
and M 1990)

Chapter 2 Literature Review

17

2.3 Need for Flexibility in Enterprise System

Change is inevitable. Change can bring risks to those unprepared, or open up new

avenues of business to those best able to take advantage of the opportunity it brings

(Brown 2000). The effective way of managing changes, which leads to successful

business performance, calls for flexibility (Ni 2007). Flexibility enables enterprises

to absorb variation and uncertainty of business process (Applegate, McFarlan and

McKenney 1999, Gorod, Gandhi, Sauser and Boardman 2008). Business operation

flexibility depends on:

 Strategies, such as inventory level, approval process, and material order

frequency and quantity;

 Resources, such as availability, capability, and capacity;

 Technologies, such as stability, scalability, portability, maintainability and

reusability;

 Production line, such as the ability to adapt to short-runs, variable

demands and the variety of products.

Over the past decade, process integration has been broadly adopted as an effective

solution for better flexibility to tackle the changes of business environments

(Agerfalk , Smith and Fingar 2003). The goal of process integration is to make an

enterprise behave as a whole towards a common objective. Process integration

brings up two major changes to enterprise: organization of business units and

technology deployment. Organizational restructuring makes enterprises ready for

business environment changes and sophisticated technology deployment transforms

this readiness to the real flexibility. Process integration transforms an enterprise

from relatively independent departments to an interconnected environment.

Meanwhile, it makes business operations rely largely on the support of enterprise

systems. Business operation flexibility drives the demands of flexible enterprise

systems. Insufficient flexibility of an enterprise system can limit the success of an

enterprise because the system cannot support certain circumstances where manual

handling is necessary (Gebauer and Schober 2006). In addition, inflexibility often

Chapter 2 Literature Review

18

leads to long implementation time, high customization cost, and short system

lifetime (Silver 1991). This also generates indirect impacts on the flexibility of

business operation. Therefore, flexible enterprise systems have become a strong

business requirement, and this is drawing the attention of academia and software

vendors.

2.4 Strategic Research on Flexibility of Enterprise System

There are risks associated with the flexibility of enterprise systems. The

formulation and implementation of efficient strategies for flexibility have become

important aspects of risk management (Schober and Gebauer 2008). Excessive

flexibility might overwhelm enterprises (Ozer 2002). Flexibility can limit the

success of an enterprise system by reducing usability (Silver 1991, Chen, Sun and

Jih 2009) and increasing complexity (Anonymous 1999). Flexibility requires

stability to avoid chaos (De Leeuw and Volberda 1996, Volberda 1996, 1999).

Without the concern of stability, flexibility may cause overreaction and resource

wastage (Volberda 1996). At the strategic level, research on the flexibility of

enterprise systems mainly puts focus on business drives for flexibility, cost and risk

associated with flexibility, and measurement of flexibility.

Brown (Brown 2000) identified three major business environment changes that can

generate significant impacts on enterprise systems: 1) government policies and

practices; 2) organization acquisition (including mergers and takeovers); and 3)

major political and economic events. Fitzgerald (Fitzgerald 1990) also pointed out

three types of changes which require the enhancement of enterprise systems. They

are environmental, organizational and technical. Environmental changes include

government legislation, industrial relations, and external agencies. Organizational

changes include influences from strategy, policy, organizational structure, and

procedures etc. These changes can generate major impacts on business operation.

Enterprises have to concern themselves with how their enterprise systems can be

changed to adapt to these changes.

Flexibility is not free and it comes at a cost (Carlsson 1989, Das and Elango 1995,

Schober, et al. 2008). Gebauer and Schober (Gebauer, et al. 2006) argued that the

economics of enterprise system flexibility have received comparatively little

Chapter 2 Literature Review

19

attention. The guidelines regarding the management of the economics of enterprise

system flexibility are based on factors such as short-term political considerations,

risk aversion, tight budgets, and ―me-too‖ desires. Such a non-systematic and

unstructured analysis approach often leads to suboptimal results (Robinson and

Pawlowski 1999). The characteristics of a business process are represented by

uncertainty, variability and time-criticality. Based on this fact, Gebauer and

Schober (Schober, et al. 2008) developed a deterministic model for evaluating the

correlation between the flexibility of enterprise systems and cost efficiency. As

shown in Figure 1, the model adopts three variables: uncertainty, variability and

time-criticality. Uncertainty is defined as the degree to which a process task is

known to the developers of an enterprise system at the time of system initialization.

Variability refers to the degree to which process activities concentrate on certain

process tasks. Time-criticality measures the share of time-critical process activities.

This model is intended as a quantitative measurement for enterprises to preview the

cost efficiency of enterprise system flexibility.

Figure 1 Flexibility and cost efficiency (Schober, et al. 2008)

Ni (Ni 2007) also developed qualitative flexibility metrics through the study of the

post implementation experience of the three partners. His metrics measure

flexibility from five perspectives, as illustrated in Table 4. Versatility is to measure

the capacity of flexibility, which means the ability to adapt to a range of states

(Slack 1989) and accommodate a set of variety (CBDi Forum 2001). Versatility

can be understood as a collection of options for decision making (Gupta and

Buzacott 1989a). In this sense, versatility represents the band breadth of flexibility.

Effectiveness reflects the quality of flexibility. Responsiveness measures the speed

Chapter 2 Literature Review

20

of transition. Das and Elango (Das, et al. 1995) define the responsiveness as the

nimbleness and swiftness of an organization to explore external opportunities.

Thriftiness looks at flexibility from the cost perspective. It manifests the ability of a

system to minimize the economic values for transition. Resilience determines the

ability of a system to moderate disturbance on the business performance of the

organization caused by transition.

Table 4 A metrics of enterprise system flexibility (Ni 2007)

Context Metrics Object of Measurement

The ability of Transition
Versatility System

Effectiveness System

The Cost of Transition
Responsiveness Time

Thriftiness Financial cost

The Impact of Transition Resilience Business performance

Strategic research on flexibility relevant to enterprise systems is really literature

intensive. It provides enterprises with the awareness of flexibility by addressing: 1)

the effects of enterprise systems on organizational flexibility; 2) the competitive

advantage to business operation (Palanisamy and Sushil 2003); and 3) the typical

contradiction of enterprise systems flexibility (Allen and Boynton 1991, Robey and

Boudreau 1999). Garavelli provided a comprehensive summary of strategic

research on the flexibility of enterprise systems, as illustrated in Table 5.

Table 5 Strategic research on the flexibility of enterprise systems

(Garavelli 2003)

Aspects Remarks Literature

Functional
Flexibility in operations,
marketing and logistics

(Kim 1991, Lynch and Cross 1991)

Hierarchical Flexibility at shop, plant
or company levels

(Slack 1987, Gupta 1993, Koste and
Malhotra 1999)

Measurement Global flexibility
measures vs. context
specific measures

(Chung and Chen 1990, Gupta and Somers
1992, de Groote 1994, Sarker,
Krishnamurthy and Kuthethur 1994)

Strategic Strategic relevance of
flexibility

(Nakane and Hall 1991, Chambers 1992,
Gerwin 1993)

Time horizon Long-term vs. short-term
flexibility

(Zelenovich 1982)

Chapter 2 Literature Review

21

Operational Flexibility of product,
variety and volume

(Browne, et al. 1984, Sethi, et al. 1990,
Hyun and Ahn 1992, Gerwin 1993,
D'Souza, et al. 2000, Vokurka, et al. 2000)

2.5 Technical Research on Flexibility of Enterprise System

With the awareness of flexibility, enterprises started fundamentally rethinking the

way the work is done and proactively redesigning their business processes.

Technical research on the flexibility of enterprise systems attempts to develop

methods and tools to support the rethink and redesign of business process. The

most fundamental technical research is on enterprise reference architecture (ERA)

which is aimed at the support of business process re-engineering and advanced

technology deployment.

Designing or selecting an enterprise system requires the study of an enterprise at an

abstraction level. This ensures that an enterprise system designed or selected

satisfies the need of the enterprise. An effective means is needed to represent

enterprises for such studies. Research on ERA was initiated with this initiative.

ERA concerns the current state (or as-is model) of an enterprise as well as the

desired state (or to-be model) and the migration path from the as-is state to the to-

be state (David Chen, Doumeingts and Vernadat 2008). ERA provides an

appropriate architecture representation formalism to support the characterization of

features and properties of enterprises (David Chen, et al. 2008).

One well-known research on enterprise reference architecture is the ESPRIT

program carried out by the AMICE consortium. From 1985 to 1995, more than 21

companies and research units from seven European countries directly contributed

to this program, plus additional partners in validation or sister projects (e.g. VOICE,

CODE, CIMPRESS) (Ortiz, et al. 1999, Chalmeta, Campos and Grangel 2001).

The main deliverable of this program is an enterprise reference architecture known

as Open System Architecture for Computer Integrated Manufacturing (CIMOSA).

CIMOSA provides a complete framework for analyzing, modeling and designing

enterprises. It enables operational integration to be achieved based on four abstract

views and three modeling levels. The four views are function, information, resource

Chapter 2 Literature Review

22

and organization views; and three modeling levels are requirements definition,

design specification and implementation description. A detailed review of

CIMOSA can be found in the literature (Bernus and Nemes 1997, Hanneghan,

Merabti and Colquhoun 2000, Shin and Leem 2002).

Another famous research project conducted at Purdue University also led to a

generic enterprise reference architecture, named as Purdue Enterprise Reference

Architecture (PERA). PERA represents manufacturing enterprises using two

functional streams, which are the information stream and the

manufacturing/customer service stream. These two streams are mainly employed

for describing tasks and functions of the enterprise. They are further rearranged

into three implementation sets of functions: 1) human activities related to

information and manufacturing/customer service; 2) information stream activities

not carried out by humans; and 3) manufacturing/customer service activities not

carried out by humans (Li and Williams 1997, Shen, Wall, Zaremba, Chen and

Browne 2004).

In addition to CIMOSA and PERA, ARIS, GIM, GRAI and Zachman are well

known enterprise reference architectures which are widely recognized (Noran

2003). Comparing these architectures, CIMOSA and ARIS present a strong

similarity and are both process oriented approaches aimed at integrating functions

by modeling and monitoring the action flow. GIM is based on the GRAI decision

model where integration is seen as the coherence between global and local decision

objectives. PERA and Zachman architectures do not provide any new modeling

formalism but define complex architecture frameworks. All these architectures are

heterogeneous and complementary rather than contradictory (David Chen, et al.

2008).

On the top of the fundamental research, extensive studies can be found based on

the results of the fundamental research. In the middle of 1990s, the IFAC–IFIP

Task Force undertook preliminary work to identify and analyze redundancies and

complementarities for possible harmonization of different architectures. The IRIS

group from University Jaume I of Castellón in Spain also reported an enterprise

reference architecture for integrated development, named ARDIN which is the

Chapter 2 Literature Review

23

Spanish acronym of enterprise reference architecture. Complimenting other

architectures, this architecture is capable of supporting single-enterprise integration

and virtual enterprise. It looks at enterprises from five aspects including enterprise

development methodology, the enterprise integrated model, enterprise structures,

supporting tools and efficient change management. The two major advantages of

ARDIN are its strongly practical application to enterprises and emphasis on

continuous change management (Chalmeta and Grangel 2003).

Dreiling et al extended the event driven process chain (EPC) by adding a set of new

notations to ARIS. The extension resulted in a configurable process model

language, named configurable event driven process chain (CEPC), which can be

effectively used to represent process alternatives (Dreiling, et al. 2006). Further

research has been conducted to identify generic configuration patterns and

fundamental theories for verifying configurable process models and exploring the

flexibility potential of process models. Similar research in this area also can be

found on model formalization, simulation and verification (van der Aalst 1999).

Compared to strategic research on the flexibility of enterprise systems, technical

research provides enterprises with systematic methods and tactical tools for

representing, analyzing and designing business processes. Current enterprise

systems vary from one with little room for subsequent change, to a system with

many options for future change (Rumbaugh, Blaha, Premerlani, Eddi and Lorensen

1991). It is challenging to select a suitable enterprise system and to fully use the

potential of a selected enterprise system. Enterprise reference architecture fills this

gap and creates values to enterprises from the following aspects:

1) Reference architecture provides a clear blueprint of transition from the as-is

state to the to-be state This helps enterprises select a suitable enterprise

system with sufficient flexibility to support the transition;

2) Reference architecture describes the basic arrangement and connectivity of

parts of an enterprise system (David Chen, et al. 2008). It is the foundation

of enterprise systems‘ engineering and a means to assist stakeholders to

manage system engineering and changes;

Chapter 2 Literature Review

24

3) Reference architecture assists the exploration of flexibility potentials of

deployed enterprise systems.

2.6 Innovations for Flexibility of Enterprise Systems

Enterprise systems need to offer a lot of functionality in order to cope with a large

number of business requirements. Functionality needs to be aligned with business

operation to create values for enterprises. This alignment is not ongoing after it is

achieved because business operations keep changing (Dreiling, et al. 2006,

Holschke, Rake, Offermann and Bub 2010). Enterprise systems must change to

provide appropriate functionality when changes occur in business environments

(Brown 2000). For many years, the commonly used approach in achieving this

alignment is to customize functions or modules. This approach is not permanent

because it only provides temporary relief to organizations. Customization is time

consuming and resource intensive because it often involves different teams,

vendors and other third (Martinho 2010). Driven by industrial needs, two recent

interrelated innovative technologies have been developed to enable enterprise

systems to be changed quickly. These are service oriented architecture (SOA)

(Bieberstein, Bose, Fiammante, Jones and Shah 2005, Walsh 2010) and Web

services (Whiting 2003).

Platform independency was one of the big barriers in the interoperability of

enterprise systems (Wada, Suzuki and Oba 2008). For example, a program written

in Java, no matter how well it is designed and how efficiently it fulfills its purpose,

it is only useful on the Java platform (Footen and Faust 2008). Tight coupling

between applications and platforms results in the inability of different applications

to communicate with each other, and in turn, the rigidity of business operation

(Margaria and Steffen 2009). SOA achieves interoperability by employing two

architectural constraints: 1) the functionalities should be exposed as a set of

standardized interfaces. These interfaces should be available globally to all service

consumers and other service providers, regardless of their platforms; and 2)

contract schemata delivered to interfaces should be descriptive and extensible.

SOA is a framework that provides common and reusable business functionalities as

a set of services in a standardized way. It provides the flexibility for enterprises to

enhance interoperability between different applications.

Chapter 2 Literature Review

25

SOA is the result of rethinking computing architecture (Footen, et al. 2008). The

rethinking introduces the concept of encapsulation by learning from the object

oriented programming (OOP) philosophy. Encapsulation in OOP means that an

object exposes interfaces for other software objects to use, but implementation

details are hidden (McCarty and Cassady-Dorin 1999). In other words, interfaces

are the abstraction of functions an object provides to other objects. Other objects

can use these functions without the need to know how those functions are

implemented internally. This mechanism provides high independency among

objects. SOA introduces application level encapsulation to software architecture.

Each application can expose a set of services for other applications to use. Similar

to OOP, a service is the abstraction of reusable units, which exposes business

functions in a standardized way for other applications.

SOA is a design methodology which enables the combination of loosely coupled

applications into a unified, service-based infrastructure. In order to enable service

exposure, an SOA technology must represent service interfaces in an appropriate

way for two services to communicate. The first pilot to really try to solving this

problem was Common Object Model (COM) by Microsoft (Footen, et al. 2008).

COM introduces interface definition language (IDL) for COM components to

define operations to be exposed. In addition to COM, the common object request

broker architecture (CORBA) is another alternative to support SOA. CORBA was

developed by the Object Management Group (OMG), a consortium made up of a

number of technology companies and dedicated to the development of object-

oriented concepts to the enterprise. CORBA is more flexible than COM and took

off in popularity beyond COM. CORBAR enables an enterprise application to be

developed in any methodology desired; then the application can be wrapped into a

standard interface using an IDL as a service. Therefore, CORBA is considered as

the first implementation of enterprise SOA.

Nowadays, Web services have replaced COM and CORBA as a preferred SOA

technology. It has resulted in a multi-billion software industry sector (Footen, et al.

2008). Web services have an extensible markup language (XML) based

communication protocol for exchanging messages between loosely coupled

Chapter 2 Literature Review

26

applications. The Web services framework is divided into three areas: 1)

communication protocols; 2) service descriptions; and 3) service discovery. The

following specifications are currently very stable in each area (Wang, Huang, Qu

and Xie 2004): 1) simple object access protocol (SOAP) that enables

communications among Web services; 2) Web Services Description Language

(WSDL) that provides a formal and computer-readable description of Web services;

and 3) universal description, discovery and integration (UDDI) for service

directory that is a registry of Web services descriptions. Web services becomes

popular because it leverages a set of common industrial standards including HTTP,

XML, XML Schema, SOAP and UUDI. Research in Web services is literature

intensive. Active research in this area includes standardization, semantic web, grid

services and web service security (Wang, et al. 2004).

2.7 Methods for Development of Flexible Enterprise Systems

2.7.1 Model Driven Architecture (MDA)

MDA, initiated by OMG, is a prominent effort in the method of enterprise system

development (Xiao and Greer 2009). It brings up a new approach for understanding

and developing complex systems(Lings 2009). It promotes portability across

enterprise system platforms which can be in use now or may be invented in the

future (Aagedal, Bézivin and Linington 2005, Touzi, Benaben, Pingaud and Lorré

2009). This is achieved by introducing tools of model transformation. MDA

consists of three main elements: 1) PIMs (platform independent models); 2) PSMs

(platform specific models); and 3) model transformation. PIMs are technology-

independent models, such as models in unified modeling language (UML). A PIM

depicts business processes, entities and objects and their interaction rules in a

business domain (Heckel and Lohmann 2003, Kaim, Studer and Muller 2003,

Gracanin, Singh, Bohner and Hinchey 2004). It is the requirement representation in

a business language without technological details. PSMs are technology-dependent

models based on a real technical platform, such as CORBA, J2EE or .NET. A PSM

contains platform specific information, such as EJB or CORBA stubs. It is a further

description of a related PIM with more technical details. Model transformation is a

means to convert PIMs to PSMs. The major initiatives of this concept are: 1)

enable domain experts to formulate business requirements in a familiar and

Chapter 2 Literature Review

27

platform-independent format; and 2) automate the generation of software artifacts

based on PIMs.

A major advantage MDA offers, is that a set of PSMs at different abstraction levels

can be implemented based on different platforms with the integrity of the entire

application preserved. For example, an internal banking PIM may be realized using

an EJB while a business to business (B2B) PIM could be realized by using SOAP.

However, these two PSMs can interoperate with each other as defined in the PIMs.

For a certain reason, if the B2B PSM needs to be implemented using CORBA, it

would have no impact to any other models.

The research in MDA mainly puts focus on discussing some key concepts, such as

model mapping and system generation. Kent (Kent 2002) explored the application

of MDA to software system engineering to achieve model driven engineering

(MDE). He discussed various problems that would occur when applying MDA to

software system engineering. Edwards (Edwards, Deng, Schmidt, Gokhale and

Natarajan 2004) recognized that middleware platforms, such as CORBA and

Component Object Model (COM), lack a simple and intuitive way to support

service configurations and deployments. He developed generative model-driven

techniques and tools to automate tasks related to service configuration and

deployment. These tasks are often associated with the integration of

publish/subscribe services into a component-based system. They evaluated the

tools based on a real-time system with over 50 components. Bauer (Bauer, Müller

and Roser 2004) developed a methodical approach for integrating cross-enterprise

business processes based on MDA.

From the viewpoint of flexibility, MDA synchronizes business requirements with

enterprise systems through automated system generation. When business

requirements change, corresponding PIMs are revised. Then, system generation

tools can be run again to regenerate system source code. MDA maintains the

consistency between business requirements and system source code. This can

remarkably shorten the cycle from system analysis to system source code change.

Chapter 2 Literature Review

28

2.7.2 Workflow Management

2.7.2.1 Overview of Workflow Management

At present, enterprise system configuration is a process of switching on or off

functions (Dreiling, et al. 2006). Much research in this area is still conducted at

strategic and tactical levels. Research on deterministic methods for developing

enterprise systems with flexibility is rarely found. Based on this literature review,

workflow is a technology closely related to the development of flexible enterprise

systems.

According to workflow management coalition (WfMC), workflow is defined as the

computerized facilitation or automation of a business process, in whole or part. A

workflow management system (WfMS) is a system that completely defines,

manages and executes workflow through the execution of software driven by a

computer representation of the workflow logic (WFMC, 1995). WfMC has

developed a standard framework as a platform for describing the capabilities of the

workflow management systems (Stohr and Zhao 2001). This framework consists of

an engine and five interfaces exposed by the engine, as illustrated in Figure 2.

Figure 2 Workflow standard interface (Stohr, et al. 2001)

The workflow engine provides the core capabilities including:

1) Initiating new workflow instances in response to triggering events;

Chapter 2 Literature Review

29

2) Executing routing logic and determining the human or software agents to

perform each of process activities;

3) Driving documents to a selected agent

4) Generating and maintaining a list of tasks (formally named worklist) to be

performed by each human or software agent; and

5) Maintaining security and logging all activities.

These interfaces are means for the engine to interact with the external world. Table

6 presents the brief explanation of five standard workflow application program

interfaces (WAPIs).

Table 6 Workflow application program interfaces (Stohr, et al. 2001)

 Interface Remarks

1

Process Definition
Services

It is for build-time use to define the workflow process. Usually
consists of a graphic interface through which the developer
defines the workflow process as a partial ordering of distinct
activities

2
Workflow Client
Applications

It defines the standard mechanism for interacting with the
users of a WfMS - the worklists that appear on user screens,
and so on.

3
Invoked
Applications

It is an interface for enterprise integration. Through this
interface WfMS can interact with user applications, such as ERP
or other legacy applications.

4
Other workflow
enactment services

This interface enables WfMS provided by different vendors to
interoperate. This functionality is of particular importance in e-
commerce applications.

5

Administration and
Monitoring Services

This interface is for administrators to gather information from
the log maintained by the WfMS. This supports managerial
control through detailed analysis of the activities of each agent
and the performance of the overall workflow process.

It can be seen that a WfMS consists of two essential components: 1) a workflow

modeling component; and 2) a workflow enactment component. The former offers

a build-time environment where workflow logic can be defined, analyzed and

managed. The output of this component is workflow models. The latter, however,

provides a runtime environment for the creation, execution and management of

workflow instances based on workflow models defined via the modeling

Chapter 2 Literature Review

30

component. In the course of workflow execution, the component possibly interacts

with actors or some external applications through the five interfaces. The workflow

modeling component is a key to the flexibility of WfMS. To achieve the

automation of the business process, workflow models need to address the business

process from five perspectives, as illustrated in Table 7 (Curtis, Kellner and Over

1992, Jablonski and Bussler 1996).

Table 7 Five perspectives of the workflow model (Stohr, et al. 2001)

Perspective Remarks

Functional
What does the
workflow do?

This perspective specifies the workflow by
decomposing high level functions into tasks that
can be allocated to human or software agents.

Behavioral

When are the
activities and
tasks executed?

This perspective defines the time precedence of
individual process activities, the events and
triggers, and the pre- and post-conditions for
activities. Rules associate agents with roles, roles
with activities, and activities with data and
software applications.

Informational

What data is
consumed and
produced

This perspective describes the business data,
documents, and electronic forms that are
transported between agents, and the files and
databases that store persistent application
information.

Operational
How is a workflow
activity
implemented

This perspective specifies the workflow tools and
applications that perform the discrete steps of the
process.

Organizational

Who performs
what tasks and
with what tools?

This perspective defines the organizational
hierarchy, the “roles”, the security and access
authorizations, the document approval levels, the
teams and work groups that need to be
recognized, and the list of agents (individual
people and software applications).

2.7.2.2 Research on Workflow Management

In the area of workflow management, workflow modeling, analysis and verification,

and workflow change are active research topics. Workflow modeling has been

extensively studied. Most modeling techniques are based on Petri nets and graph

reduction (Qiu and Wong 2007). Petri nets are a class of modeling tools, which

were originated by Petri (Salimifard and Wright 2001). Petri nets have a well-

defined mathematical foundation and an easy-to-understand graphical feature. The

strong mathematical formalism makes Petri nets possible in describing the behavior

Chapter 2 Literature Review

31

of a system by mathematical models. The graphical nature makes Petri nets self-

documenting and a powerful design tool. Graph reduction implements an efficient

version of non-strict evaluation, an evaluation strategy where the arguments to a

function are not evaluated immediately (Wallace, Schimpf, Shen and Harvey 2004).

The foundation of the workflow model lies in its structural specifications. A

structural specification may contain conflicts, such as deadlock and lack of

synchronization. Identification of such conflicts is a computationally complex

process and requires development of effective algorithms specific for the target

modeling language. Sadiq and Orlowska (Sadiq and Orlowska 2000) proposed a

technique based on graph reduction to identify structural conflicts in workflow

models. Verification was also addressed at a conceptual level to identify

fundamental problems in workflow specifications (ter Hofstede, Orlowska and

Rajapakse 1998). Li et al identified the problem of resource constraints in

workflow specifications. They developed corresponding algorithms to verify

resource consistency against workflow specifications. The algorithms were

extended to timed workflow specifications, where time information is taken into

consideration when checking resource consistency (Li, Yang and Chen 2004).

Dynamic adaptability has become one of main features of workflow management

systems. There are potential problems in adjusting a workflow process, such as

deadlock, inconsistency and even loss of instance. Casati et al proposed a method

to facilitate changing workflow schemata by applying a complete, minimal and

consistent set of modification primitives (Casati, Ceri, Pernici and Pozzi 1998).

Van der Aalst proposed a concept of workflow inheritance to handle dynamic

workflow change (van der Aalst and Basten 2002). Qiu and Wong studied

dynamics of workflow in PDM systems and developed an approach to facilitate

dynamic workflow changes by minimizing repetitive execution of finished

workflow nodes. This approach also addressed a data integrity issue by managing

various workflow data such as node properties and scripts (Qiu, et al. 2007). Sun

and Jiang conducted research on an algorithm to calculate the minimal region

affected by workflow structural changes; to check the compatibility of those

Chapter 2 Literature Review

32

changes to the original workflow; and to determine whether an active workflow

instance would be smoothly evolved to the new workflow (Sun and Jiang 2009).

2.7.2.3 Research on Flexibility of Workflow Management

The concept of workflow flexibility has many interrelated meanings, such as easy

design and change, easy enactment of changes in running workflow instances, good

support of exception handling and failure recovery and dynamic workflow schema

evolution (Agostini and Michelis 2000). Of them, enactment flexibility is most

important (Hu and Grefen 2003). Enactment flexibility means that different

instances of an activity can be dynamically bound to different implementations at

runtime. The conceptual architecture of many WfMSs exhibits flexibility in

dynamically binding activity instances with actors by using roles. However, full

enactment flexibility has not been yet achieved in most current WFMSs. By

addressing enactment flexibility, Hu and Grefen proposed a service-oriented

approach to realize dynamically establishing or changing the association between

an activity and its implementation. The key point of the approach is to separate the

activity specification from the workflow specification. At runtime, the activity

specification is dynamically combined with the descriptions of applications or

services. Whittingham proposed an Open Water approach (Whittingham 1999),

which enables workflow participants to define and execute workflow processes

themselves instead of being controlled by a central authority. In this approach,

workflow artifacts are passed along from one participant to next, who will need to

execute his/her task based on the procedure defined by the previous participants.

This is continued until the workflow finishes. Along the time line, the sequence of

tasks is captured and stored in an organizational database. Using intelligent

techniques, this database can then suggest the appropriate sequence of steps to be

followed in the next time when the same workflow is to be executed.

As a summary, workflow management is a process of electronic scheduling and

delivery to get the right piece of work to the right person at the right time

(Anonymous 2004). It aims to automate the movement of documents (electronic or

paper-based) and to ensure that document delivery is progressed in the most

efficient way. Different types of flexibility are discussed in the context of workflow

Chapter 2 Literature Review

33

management (Heinl, et al. 1999). However, progress is likely to be steady rather

than revolutionary because of the technical complexity of workflow management

(Stohr, et al. 2001).

2.8 Summary of Literature Review

Research on the flexibility of enterprise systems has been conducted at different

levels and from different perspectives. Strategic research provides enterprises with

the awareness of business flexibility. Tactical research develops systematic

methods and efficient tools for enterprises to represent, analyze and redesign

business processes. These methods and tools help enterprises smoothly step

through organizational restructuring and make enterprises ready for internal and

external changes. However, business flexibility will not come true if enterprise

systems cannot be rapidly changed to support changes. SOA and Web services are

recent innovative technologies invented for this purpose. They look into the

flexibility of enterprise systems from the perspective of interpretability. The

flexibility they can provide is limited to functionality sharing and information

exchange. These technologies do not address methods for developing flexible

enterprise systems.

MDA puts focus on the development of enterprise systems. It is an effort to

synchronize business requirements with system source code through automated

system generations. However, the synchronization achieved is between system

models and system source code. In other words, system models in MDA drive

system code generation but not the execution of software programs. To reflect new

requirements, redevelopment and redeployment are necessary. Workflow

management is a technology closely related to the development of flexible

enterprise systems. It enables the behavior of enterprise systems to be adjusted by

changing workflow models. However, workflow systems are intended for flow

control rather than transactional systems, which involve comprehensive business

logic for processing information.

This research looks into the flexibility of enterprise systems from the software

development perspective. To extract system models from software programs, a

Chapter 2 Literature Review

34

concept of model driven enterprise systems is initiated by leveraging the synergy of

MDA and workflow management. In a model driven enterprise system, system

models act as instructors to guide and control behaviors of software programs.

Software programs function by interpreting instructions in system models. Such a

system can be tailored for different enterprises by changing system models. Then,

various semantic representations are developed to represent entities, relationships

and business logic to support model driven enterprise systems. The concept of

model driven enterprise systems and semantic representations forms a systematic

method for developing configurable enterprise systems with high flexibility.

Chapter 3 Concept of Model Driven Enterprise Systems

35

Chapter 3 Concept of Model Driven Enterprise Systems

3.1 Introduction

This chapter studies technologies for flexibility in the areas of modern machines

and workflow management. The evolution path of system modeling and the role of

system models in software development are also explored. By applying analogical

reasoning, the concept of model driven enterprise systems is proposed. An

abstraction model of enterprise systems is presented for identifying models to be

represented in a semantic manner. A reference architecture for model driven

enterprise systems is briefly discussed.

3.2 Review of Technologies for Machine Flexibility

In manufacturing, modern computer numerical control (CNC) machines are

flexible. They can work for different companies and can produce different shapes

of parts. Technologies for machine flexibility have a long evolution history which

can be recalled back to the 1800s. Thomas Blanchard realized his gun-stock-

copying lathes based on cams between 1820s and 1830s. Christopher Miner

Spencer used cams to transform the turret lathe into the screw machine in the 1870s.

The cam-based machine flexibility reached a highly advanced state in 1910. In

nature, the cam-based method for machine flexibility is to encode engineering

drawing information into cams which are then used to control the movement of the

machine spindle or cutting tool. Cams are not abstractly programmable. Encoding

drawing information into cams is a manual process which requires sculpting and/or

machining and filing (Olexa 2001).

Chapter 3 Concept of Model Driven Enterprise Systems

36

Forms of abstractly programmable control appeared in the 1800s (Olexa 2001).

Numerical control (NC) for machine flexibility did not eventuate until 1950s. One

barrier to NC machines was the tolerances required in the machining process.

Although connecting some sort of control to a storage device, such as punched

cards, is easy, it is difficult to ensure that the controls are moved to the correct

position with the required accuracy.

In the late 1818, Eli Whitney invented a milling machine in New Haven

Connecticut. The spindle of Whitney's milling machine stayed vertical rather

horizontal as the spindle of other machines stayed. In the early 1930s, Bridgeport, a

machine manufacturer, revolutionized Whitney‘s milling machine with a revolving

turret that could move the workpiece in the x, y, and z directions by increments of

0.001 inch by turning the appropriate hand crank. This machine needed to be

operated by very skilled operators. By that time, closed-loop control systems,

another key technology to the NC machine, became mature. In the 1940s, John

Parsons started attaching servomotors to the x and y axis and attempting to control

the movement of the machine spindle with a computer. The computer provided

servomotors with positioning instructions by reading punch cards. Parsons filed for

a patent on "Motor Controlled Apparatus for Positioning Machine Tools" on 5 May

1952 and the NC machine was born. When early servomechanisms were rapidly

augmented with analog and digital computers, modern CNC machine tools were

developed.

The CNC machine can produce more complicated parts and be easily

reprogrammed to produce different parts; thus offers better flexibility. Relatively,

the cam based flexibility is limited. From the perspective of the level of flexibility

achieved, the cam based method and the CNC based method are different.

However, if we think carefully about how machine flexibility is achieved, we can

conclude that machine flexibility comes from neither cams nor CNC controller. In

fact, the real origination of machine flexibility is the separation of the controller

from the machine itself. Such separation enables the controller to stay independent

of the machine. Consequently, the controller can be changed or reprogrammed to

send out different positioning instructions and the spindle or worktable of the

machine can move according to positioning instructions.

Chapter 3 Concept of Model Driven Enterprise Systems

37

By applying analogical reasoning, we can conclude that high flexibility can be

achieved in the enterprise system if the enterprise system can be separated into two

components like modern machines, as shown in Figure 3. Ideally, in such an

enterprise system, the controller stays outside of software programs and issues

instructions to guide software programs to perform information processing. A key

question raised here is what can be extracted from enterprise systems as the

controller. The following section attempts to derive an answer to this question.

Controller mechanics

Modern

Machine

Enterprise

System

Figure 3 A ideal structure for flexible enterprise systems

3.3 Mechanism for Flexibility of Workflow Management Systems

As discussed in the literature review, workflow is a technology for achieving

electronic scheduling and managing document delivery process. It is closely

associated with document management and used to drive documents according to

the business process. It ensures that the right piece of work goes to the right person

at the right time. Support and management of workflow processes in an enterprise

is a constant challenge which comes with two contradictory needs: on the one hand,

the need for control; and on the other hand, the need for flexibility so that the

workflow processes can be adapted easily and quickly to meet constantly changing

business conditions (Narendra 2004). Moreover, the workflow process varies from

one company to another. In order to make the workflow management system

generic enough and able to be changed easily, WfMC defined a standard workflow

framework which consists of two components: a modeling component; and 2) a

workflow enactment component – workflow engine. Accordingly, two stages are

Chapter 3 Concept of Model Driven Enterprise Systems

38

involved in using a WfMS (Whittingham 1999) which are build-time and runtime.

At the build-time stage, the workflow process must be understood, captured and

represented based on the workflow specification as a computerized model. Once a

workflow model is constructed and evaluated, it is then ready for use. At the

runtime stage, the workflow engine initiates an instance of the workflow model and

starts driving the workflow process against the workflow model.

Compared to the modern machine, WfMS has a similar structure to the one the

modern machine has. In WfMS, the workflow model is equivalent to the machine

controller and the workflow engine is machine mechanics. A conclusion can be

drawn that the flexibility of WfMS also originates from the separation of the

workflow model from the workflow engine. The workflow model exists

independently of the workflow engine. The workflow model acts as an instructor

and the workflow engine as an executive. A workflow engine works by interpreting

the workflow model to drive the workflow process. As the workflow model stays

outside of the workflow engine, it can be easily changed to make the workflow

engine work in different ways.

Workflow management systems are one type of enterprise systems which are

specifically used for managing workflows. Unfortunately, they are not sufficient

for transactional information management which involves complicated information

processing, such as transaction, transformation and association. However, the

system structure of modern machines and workflow management can be

transplanted to general enterprise systems for transactional information

management. This structure provides a clue to answer to the question raised in the

previous section. By applying analogical reasoning, it can be concluded that system

models need to be extracted and made independent of the software programs in

order to achieve highly flexible enterprise systems. The following sections study

how system models are related to software programs in current enterprise systems,

followed by the initiation of the concept of model driven enterprise systems.

3.4 Unstructured Model Representation

At the initial stage of software development, a majority of software developers took

a code-only approach and did not use models defined separately (Brown 2004).

Chapter 3 Concept of Model Driven Enterprise Systems

39

Such an approach was adequate for individuals or very small teams. Due to the lack

of documentation, this approach has often led to difficulty in controlling and

understanding how business logic is implemented. In turn, it resulted in the

difficulty to manage the evolution of systems while the scale and complexity of

software systems increased over time. The maintenance of such a system was much

harder, especially when it was done by a different team.

Consequently, SDLC management was introduced to ensure that business

requirements are documented and systems to be developed are thoroughly analyzed

before coding. As illustrated in Figure 4, a typical SDLC consists of multiple

phases, including requirement gathering, system analysis, design, coding, testing

and deployment. Requirement gathering is a process to understand business

concepts, business rules and functions required. The outcomes of this phase are

various unstructured documents. The analysis and design phases describe system

architecture, functional components and business logic by using various types of

documents. Then, these documents are used to guide developers to write system

source code. From the modeling perspective, these documents can be deemed as a

primitive form of unstructured system models.

Quite quickly the shortcomings of unstructured documents are recognized.

Unstructured documents are full of ambiguity and often cause much

misunderstanding, and as such, hardly play the role as expected. Standard methods

and tools for creating structured representations of business requirements become

imperative. Computer-aided software engineering (CASE) was one prominent

effort of the 1980s with regard to developing methods and tools for requirements

and design documentation. CASE had two major objectives: 1) to enable analyzers

and designers to express their design decisions in a graphical fashion, such as state

machines, structure diagrams, and dataflow diagrams; 2) to synthesize

implementation artifacts from graphical representations to software code (Schmidt

2006). CASE introduced standard graphical diagrams for depicting software

architecture, data entities, entity relationships and design decisions. Though

graphical diagrams are not well structured models, they are concise and have

consistent understanding. They help minimize misunderstanding and effectively

Chapter 3 Concept of Model Driven Enterprise Systems

40

guide the creation and evolution of software systems. However, CASE didn‘t

generate significant impacts because these graphical diagrams still played the role

of reference. CASE did not establish direct linkages between diagrams and

software programs. The referential connection between diagrams and software

programs faded away rapidly as the code phase progressed. Designers were not

motivated enough to put much effort into the accuracy of diagrams. Consequently,

these graphical diagrams were rarely in synchronization with system code in the

latter stages of system development. As a whole, CASE contributed to graphical

representations of business requirements and business logics, but the

synchronization between system models and software code was not successfully

achieved.

Figure 4 Typical lifecycle of software development (Brown 2004)

3.5 Structured Models in a Formal Language

MDA appears as a promising solution to the synchronization between system

models and software source code. MDA employs a formal language, like UML, to

document business requirements and design decisions as well structured models.

Structured models enable common understanding to be achieved between

Chapter 3 Concept of Model Driven Enterprise Systems

41

stakeholders. The formalism of modeling language provides the opportunity to

verify system models using various techniques such as Petri nets and graph

reduction. More important is a revolutionary change to the role of system models in

software development. Instead of being references for guiding developers, system

models are used to generate platform specific models. As shown in Figure 5,

platform independent models are transformed to platform specific models through

system generation tools. Platform specific models are platform dependent system

source code. Obviously, system source code gets synchronized with the platform

independent model through system generation and regeneration if changes are

made to platform specific models. Through generation and regeneration, MDA

establishes direct linkage between business requirements and system source code.

Platform Independent Model

-Name : string

-SSN : int

Customer

-Id : int

-Name : string

-Balance : float

Account

Platform Specific Model

Java, C#

public class Customer {

 private String name;

 private int ssn;

}

XML Doc

<Customer>

 <Name>Joe</Name>

 <SSN>123</SSN>

</Customer>

Independent

Business Model

Platform Specific

Model

XSD, DTD

MOF, JMI

JOLAP, JDM

UML4EJB

Figure 5 Transformation of PIM to PSM (Brown 2004)

Fundamentally, both CASE and MDA attempts to synchronize business

requirements as well as design decisions with system source code. However, they

do not prevent hard coding system models in software programs. Software

developers digest system models and construct system source code. Throughout the

software coding process, system models dissolve into software programs and

become intangible. In such a way, software programs work by following

procedures predefined by designers and developers. Because system models cannot

exist independently outside of software programs, no opportunity exists to control

the behavior of software programs by changing system models. Business

requirement changes inevitably result in changes to system source code.

Chapter 3 Concept of Model Driven Enterprise Systems

42

3.6 Concept of Model Driven Enterprise System

As analyzed above, enterprise systems can be highly flexible when system models

are separated from enterprise systems as an independent component. By taking the

advantage of MDA and leveraging MDA model transformation, this research

proposes to transform PIMs to neutral models represented in a semantic fashion.

Such neutral models represented in a semantic fashion are called semantic models.

Semantic models can be used to generate other artifacts of enterprise systems, such

as database schema, entity classes and relationship classes. Furthermore, software

programs are created to work by interpreting semantic models. In this way,

semantic models can be replaced for a different enterprise without changing

software programs. When business requirements are changed, semantic models can

be revised to adjust the behavior of enterprise systems. Such an enterprise system is

referred to as a model driven enterprise system. Model driven enterprise systems

offer high flexibility. They can be individualized for different enterprises by

providing different sets of system models and be adapted by revising system

models for business changes.

The concept of model driven enterprise systems is the convergence of workflow

management and MDA and leverages the synergy of workflow management and

MDA. As shown in Figure 6, the concept of model driven enterprise systems

retains the structure of WfMS to decouple system models from software programs.

At the same time, it inherits the concepts of platform independent models and

model transformation from MDA. The concept of model driven enterprise systems

differs from MDA in that system models can exist independent of software

programs. It differs from WfMS in model representations. It is obvious that model

representations are a critical factor to the success of mode driven enterprise

systems. To really make a model driven enterprise system flexible, system models

should be represented in a format which is easy-to-understand and easily

constructed by human beings. Meanwhile, they should also be able to be

effectively interpreted by computers. The following sections discuss what system

models are and how system models can be fitted into model driven enterprise

systems. Semantic representations will be investigated in the next chapter.

Chapter 3 Concept of Model Driven Enterprise Systems

43

Platform Independent

Model

-Name : string

-SSN : int

Customer

-Id : int

-Name : string

-Balance : float

Account

Platform Specific Model

Java, C#

public class ConfigurableEntity {

 private Collection attributeSpecs;

}

Independent

Business

Model

Semantic

model

generator

Model Driven Enterprise System

Semantic Model
<Customer>

 <attribute name=”Name”>

 <type>String</type>

 <maxLength>80</maxLength>

 </attribute>

</Customer>

Java, C#

public class AttributeSpecs {

 private String attributeName;

 private String type;

 private int maxLength;

 }

System

program
Loosely

coupled

Figure 6 Concept of model driven enterprise systems

3.7 Abstraction of Enterprise Systems

Enterprise systems support business operations by managing various information

entities and associations between information entities. From this perspective, an

abstraction model of enterprise systems can be represented as Figure 7.

Fundamentally, six key elements can be identified from the abstraction model: 1)

information entities; 2) entity relationships; 3) functions; 4) process flows; 5)

working environment; and 6) security management. Information entities represent

business objects (physical items, such as parts and products or virtual items, such

as projects).

entities relationships

F1 F2 ... Fn.

V X

process flow

functions

Security

policy Working

environment

Designer

Manager

Planner

Figure 7 Abstraction model of enterprise systems

Chapter 3 Concept of Model Driven Enterprise Systems

44

In general, entities are business concepts and terms; and entity relationships are the

projections of business practices. Throughout business processes, various

information entities are accumulatively created, manipulated and associated to

support or drive continuing business activities. Enterprise systems expose various

functions to support business activities by following business process flow. Behind

those functions, enterprise systems need to effectively manage information entities

and associate information entities to achieve continuous information flows.

Functions offered by enterprise systems should be logically organized in

accordance with process flow, and clustered into various groups for users with

different roles. To enable users to effectively interact with enterprise systems,

efficient working environments should be presented to end users to access

functions offered by enterprise systems.

The development of enterprise systems basically involves: 1) capturing business

requirements; 2) establishing system models; and 3) developing functions for users

to manipulate information. System models need to be built by correctly

understanding business requirements and concepts. Functions are realized by

creating software programs. Functions have to be developed according to system

models which represent the need of business operations. In enterprise systems,

security needs to be well managed to control access to information and functions.

Therefore, to achieve a really flexible enterprise system, it is essential to extract the

following models from enterprise systems: 1) entity model; 2) relationship model;

3) processing logic model; 4) scenario model; 5) function layout model; and 6)

graphic user interface (GUI) presentation.

3.8 Reference Architecture for Model Driven Enterprise System

Architecture, which conceptually characterizes a software system, is a critical

factor decisive to the success of application development and integration.

Architecture design is a process used to determine system structure, define core

components and identify common functions. From a structural viewpoint, it defines

a way for decomposing a system into various interrelated building blocks

(Doumeingts, Ducq, Vallespir and Kleinhans 2000). From a functional viewpoint,

it identifies useful design patterns and supports the patterns by providing abstract

Chapter 3 Concept of Model Driven Enterprise Systems

45

layers (Gamma, Helm, Johnson and Vlissides 1998). Design patterns provide

unified approaches to solving similar problems and make system development

more efficient. Therefore, architecture design is a key step in the development of

enterprise systems. A well-designed architecture provides a solid common

foundation and enables the focus of system development on domain functions with

less work on fundamental functions.

With these concerns incorporated, the architecture for model driven enterprise

systems is developed as shown in Figure 8. The proposed architecture provides an

effective mechanism for incorporating various semantic representations to increase

the flexible of enterprise systems. Semantic representations are categorized as

follows: 1) semantic entity representation; 2) semantic entity relationship

representation; 3) semantic logic representations, such as editing control, value

validation and deriving value candidates; and 4) semantic environment

representation. Entity representation and entity relationship representation are the

foundations of other representations. They are also used to generate database

schema and entity classes and to guide data persistence. Logic representations are

intended for describing logic to control information processing, such as data

validation. Environment representations contain instructions to guide GUI layout,

information presentation and function layout.

Taking machine management as an example, the machine entity model is

semantically represented in XML. This semantic model is utilized to generate

machine table schema and machine entity class. Data persistence is also to be

completed by interpreting the semantic machine model. The presentation of

machine attributes is carried out by dynamically interpreting the semantic model at

runtime. The semantic model plays a critical role in the synchronization of the

database table, entity class, persistence and presentation. To individualize the

machine management function, the machine entity model can be constructed or

reconstructed based on the specific needs of a company. Likewise, logic

represented in a semantic manner can also be easily changed to have a different

method to control editing process, a different validation rule and a different set of

value candidates. The machine database table and machine entity class can be

Chapter 3 Concept of Model Driven Enterprise Systems

46

regenerated based on the updated entity models. Since presentation and persistence

are performed dynamically by interpreting the entity model at runtime, they do not

have to be changed. Therefore, such a system can be rapidly configured and

reconfigured for different enterprises.

Figure 8 Model-driven system concept

3.9 Summary

This chapter transplants the structure for flexibility in the area of modern machines

and workflow management to enterprise systems; and derives the concept of model

driven enterprise systems by applying the analogical reasoning method. System

models to be extracted from enterprise systems are identified based on the

abstraction model of enterprise systems. A reference architecture is proposed for

the incorporation of semantic models to model driven enterprise systems. The next

chapter develops semantic representations of various system models. According to

the concept initiated, an enterprise system consists of two essential components:

semantic models and software programs. Semantic models serve as instructors to

guide and control the execution of system programs. In turn, software programs act

as executives to carry out processing by interpreting instructions from semantic

models. When models are changed or replaced, software programs can accomplish

processing according to new models. The customization of a model driven

Machine Management

Milling Machine

Grinding Machine

Milling machine[MT-001]

Milling machine[MT-002]

OK CancelDeleteUpdate

True

FUNC-X5

MT-M-001

250mm

ValueAttribute

ID

Model

Length

Critical

TrueFUNC-X5MT-M-001 250mm

ModelID Length (mm) Critical

FalseSIMENS-45MT-M-002 380mm

TrueAB-X214MT-M-003 700mm

TrueMAHO-88MT-M-004 1000mm

<object class="workcenter">

<attribute>

<type>TEXT</type>

<name>Id</name>

<title>ID</title>

</attribute>

<attribute>

<type>TEXT</type>

<name>model</name>

<title>Model</title>

</attribute>

<attribute>

<type>DOUBLE</type>

<name>length</name>

<title>Length</title>

<suffix>mm</suffix>

</attribute>

<attribute>

<type>BOOL</type>

<name>critical</name>

<title>Critical</title>

</attribute>

</object>

E
d

it
in

g
 C

o
n

tr
o

l

Database

Instruct

Generate

Classes

-id : String

-name : String

WorkCenter

-id : String

-name : String

-type : String

Machine

V
a

lid
a

ti
o

n

V
a

lu
e

 C
a

n
d

id
a

te
s

PersistenceInstruct

Entity Model

Graphical User Interface
<object class="machine">

<attribute>

<type>TEXT</type>

<name>Id</name>

<title>ID</title>

</attribute>

<attribute>

<type>TEXT</type>

<name>model</name>

<title>Model</title>

</attribute>

<attribute>

<type>DOUBLE</type>

<name>length</name>

<title>Length</title>

<suffix>mm</suffix>

</attribute>

<attribute>

<type>BOOL</type>

<name>critical</name>

<title>Critical</title>

</attribute>

</object>

g
e

n
e

ra
te

True1000MAHO-88MT-M-004

True700AB-X214MT-M-003

False380SIMENS-45MT-M-002

True250FUNAC-X5MT-M-001

CriticalLengthModelID

True1000MAHO-88MT-M-004

True700AB-X214MT-M-003

False380SIMENS-45MT-M-002

True250FUNAC-X5MT-M-001

CriticalLengthModelID

True1000MAHO-88MT-M-004

True700AB-X214MT-M-003

False380SIMENS-45MT-M-002

True250FUNAC-X5MT-M-001

CriticalLengthModelID

True1000MAHO-88MT-M-004

True700AB-X214MT-M-003

False380SIMENS-45MT-M-002

True250FUNAC-X5MT-M-001

CriticalLengthModelID

True1000MAHO-88MT-M-004

True700AB-X214MT-M-003

False380SIMENS-45MT-M-002

True250FUNAC-X5MT-M-001

CriticalLengthModelID

True1000MAHO-88MT-M-004

True700AB-X214MT-M-003

False380SIMENS-45MT-M-002

True250FUNAC-X5MT-M-001

CriticalLengthModelID

Semantic

Action Flow

Model

Semantic

Presentation

Model

Chapter 3 Concept of Model Driven Enterprise Systems

47

enterprise system is to configure semantic models. The adaption of a model driven

enterprise system is to reconfigure related semantic models. The flexibility of

model-driven enterprise systems is achieved through model configuration and

reconfiguration.

Chapter 4 Semantic Model Representations

49

Chapter 4 Semantic Model Representations

4.1 Introduction

Model representations are critical in modeling driven enterprise systems. To enable

model driven enterprise systems to be configured and reconfigured, model

representations need to be easily understood by human beings while they can be

effectively processed by computers. XML has been a standard markup language

and has been widely adopted for metadata representations. A variety of tools

targeted for different platforms are available to process XML documents. XML

fulfills the needs of semantic representations. Therefore, this chapter develops

semantic representations for various system models by using XML.

4.2 Semantic Entity Representation

The attributes of the same business entity can vary from one company to another

due to the difference of business practices. A model driven enterprise system needs

the ability to introduce new entities, add attributes to an existing entity or remove,

visually if not physically, attributes which are not required. This research reveals

essential techniques that enable the introduction of new entities and changing

attributes of an existing entity, including:

1) entities can be declared in a standalone neutral file;

2) new attributes can be added to an entity;

3) unrequired attributes can be clearly indicated;

4) a mechanism built into entity classes to hold the values of extended

attributes;

Chapter 4 Semantic Model Representations

50

5) processing logic can be injected for validating the values of extended

attributes;

6) the values of extended attributes can be automatically stored to database;

and

7) an adaptive environment presentation is needed to present extended

attributes or hide unwanted attributes.

By taking these needs into consideration, an entity declaration model, as illustrated

in Figure 9, is developed for declaring entities in a neutral format outside of

software programs. This model provides a means to semantically define entities

and attribute specifications. A semantic entity declaration comprises a set of

semantic attribute definitions. A semantic attribute definition depicts basic

information about an attribute, such as attribute name, type, title and editor. In

Figure 9, Properties is introduced into attribute definition for describing the

miscellaneous characteristics of attributes, such as editable, visible, title suffix, and

transient etc. A title suffix is a short text to be attached to a title for display, such as

the unit name. Transient attributes are not to be persisted to database.

Miscellaneous information can be used to manage GUI presentation, control

editing and guide data persistence.

As shown in the model, an attribute can be modeled, extended or category

dependent. A modeled attribute is an attribute designed at the development stage.

An extended attribute is the one added after a system is developed. A category

dependent attribute is the one an entity has, only when the entity is associated with

a category. For example, a Resource class is designed as a generic representation of

resources. Attributes modeled in the Resource class are common to all categories of

resources. Machines and cutting tools are two specific categories of resources.

Each category needs a specific set of attributes. For example, the machine needs

two additional attributes: model and spindleSpeed; and the cutting tool needs

another two different attributes: material and shankDiameter. A semantic category

model can be defined for machines and cutting tools respectively. Each category

model has its corresponding two attributes defined. When initiating an instance of

the Resource class, it needs to be associated with a category. If it is associated with

Chapter 4 Semantic Model Representations

51

the machine category, two attributes defined in the machine category model are

dynamically incorporated into the instance. Likewise, if it is associated with the

cutting tool category, two attributes defined in the cutting tool category are

incorporated into the instance.

Entity

Attribute N

...

NumericConstraints

maximum

minimum

decimal

...

TextConstraints

maximalLength

spacePermitted

caseMode

...

ObjectConstraints

nullPermitted

initializer

...

Modelled Extended Category-dependant

Editing

 visible

 editable

 editor

Attribute 2

Definition

Validation

ValueSource

Properties

NavigatedSource

relationship

condition
A B2

B1

ConstantSource

Value 1

Value 2

... V1 V2 ...

QueriedSource

className

condition
Data

O1 O2 ...

Initialization

 default value

 initializer

 auto initialization

Persistence

 persistable

 required

 encoding

Definition

name

title

data type

Localized text

resource

key

...

Localized

resource

RES1=Save

RES2=Update

...

Attribute 1

Definition

Validation

ValueSource

Properties

EntityTableMapping AttributeFieldMapping

View 1 View 2 View XView ..

Figure 9 Overview of semantic entity representation

The entity declaration model supports the concept of view. An entity view consists

of a subset of attributes. The entity declaration model enables an entity to have

multiple views associated with it. The view declaration can redefine default value,

value source, and value validation to override counterparts defined in entity

declarations. Views are mainly defined for different roles.

The model also enables an attribute to be further characterized by defining value

constraints, value validation, value source, mapping between entities to database

tables and default value. Value constraints are simple rules that can be attached to

attribute editor for validating user input. Value constraints should be defined in

Chapter 4 Semantic Model Representations

52

accordance with data types. Legal constraints for the text type include: 1)

maximum length of value; 2) uppercase or lowercase only; and 3) whether spaces

are permitted. Legal constraints for the numerical data can be: 1) maximum value;

2) minimum value; and 3) the number of decimal digits. Value constraints can also

be used in database schema generation.

More complicated validation logic can be defined in value validation. A value

validation is a logical expression representing complicated validation logic. As

shown in Figure 10, given that the length of bolts is numerical but it is standardized,

it cannot be any numerical values. In the expression, ―it‖ represents the value of the

attribute the expression is attached to. The indexOf function returns the index of an

element in a list. If the index returned is greater than or is equal to zero, it means

that the attribute value falls into the list. If it is less than zero it means that the

attribute value does not exist in the list. This expression requires that the length of

bolt must be one of the values in the list. Value validation expressions are usually

used to validate attribute values based on business rules. Figure 10 indicates that

value validation can be limited to some specific actions, such as save and update.

This enables an attribute to have different validation logic associated for different

actions. For example, the delete action may need different validation logic.

<validation class="cbd.enterprise.resource.SampleEntity">

<attribute name="length">

<type>error</type>

<actions>

<action>save</action>

<action>update</action>

</actions>

<condition>

<![CDATA[indexOf(it, list(125, 250, 450))>=0]]>

</condition>

</attribute>

</validation>

Figure 10 Attribute validation expression

Value sources provide information for deriving the value candidates of attributes.

Value candidates can be displayed as a dropdown list for selection in an editing

environment. Three types of value sources can be defined, which are constant value

source, query value source and navigation value source. The constant value source

defines a set of constants as value candidates. The query value source contains

Chapter 4 Semantic Model Representations

53

information for retrieving value candidates from a database. The navigation value

source provides information for deriving value candidates by evaluating an

expression.

The table map is used to define the mapping between entities and database tables.

The field map is for defining the mapping between entity attributes and table fields.

The table mapping and field mapping are used to generate database schema and to

guide storing entities to database. To support attribute extension, each entity table

needs to have an additional field for storing the values of extended attributes. Two

approaches can be used to store the values of extended attributes in a database. One

is to use a collection to hold all the values of the extended attributes, serialize the

collection as a binary data set and store the binary data set as a binary large object

(BLOB). Another approach is to store the extended attribute values as XML

fragments. The first approach needs less effort because most computer languages

support the BLOB data type. The disadvantage of the first approach is that the

binary data can only be reversed back to a corresponding language-dependent

object. The second approach is language-independent and some database systems

already support the XML data type. This is the preferred approach to store values

of extended attributes.

This entity declaration model separates the default value definition and descriptive

title configuration from the entity declaration. This separation enables different

teams to work collaboratively to construct semantic models. People who have

technical skills of system configuration may focus on attribute declarations while

people with business domain knowledge can carry out the definition of default

values and display titles. In addition, descriptive information may need to be

localized. The separation of descriptive information from the entity declaration

makes localization independent of the entity declaration. Mixing up descriptive

information with the entity declaration potentially leads to unexpected changes to

the attribute declaration. The entity declaration model introduces a text resource

configuration for defining descriptive texts. As shown in Figure 11, the text tag

represents a text resource element. The key attribute of the text tag is to associate

this element with an attribute. The textKey and longTextKey tags are used to link

Chapter 4 Semantic Model Representations

54

this element to a text element in a resource file. The LocalizedText and

LocalizedTextService class are entity class and service class for managing the

localized resource configuration.

A formal declarative language is needed to define entities based on the developed

entity semantic representation model. An XML-based entity declaration language,

named Attribute Declaration Language (ADL), is developed for this purpose. Table

8 presents commonly used tags as examples.

Localized text

group 1

entry 1

entry 2

...

<group key="group1" resource="group1">

<text key="handle">

<textKey>HANDLE</textKey>

<longTextKey>L_HANDLE</longTextKey>

<prefix>HANDLE_PREFIX</prefix>

<suffix>HANDLE_SUFFIX</suffix>

</text>

<text key="name">

<textKey>NAME</textKey>

<longTextKey>LNAME</longTextKey>

<prefix>NAME_PREFIX</prefix>

<suffix>NAME_SUFFIX</suffix>

</text>

...

</group>

<group key="...">

...

</group>

group 2

entry 1

entry 2

...

group N

entry 1

entry 2

...

Localized resource[en-US]

HANDLE=Handle

L_HANDLE=Machine

handle

PREFIX=

SUFFIX=[Auto-generated]

NAME=Name

LNAME=Machine name

NAME_PREFIX=

NAME_SUFFIX=

+getLocalizedText() : String

-resource : String

-text : String

-longText : String

-prefix : String

-suffix : String

-localeName : String

LocalizedText

group ...

...

Object model

Resource file

Localized text configuration

+parseLocationText() : void

+getLocationText() : LocalizedText

LocalizationService

Figure 11 Text resource configuration

Table 8 Commonly used keywords of descriptive language

Type Keyword Explanation

Core name Defines name of an extended attribute

type Defines attribute data type

extended Indicates if attribute ’s modelled or extended attribute

defaultValue Defines the default value of the attribute

Specialization extends Specifies parent schema

deprecated Indicates that an attribute is deprecated

Display title Defines a text as the display title of an attribute

visible Indicates whether the attribute is visible on screen

prefix Defines a text as the prefix of the attribute title

suffix Defines a text as the suffix of the attribute title

Chapter 4 Semantic Model Representations

55

Table 8 Commonly used keywords of descriptive language (Continued)

Type Keyword Explanation

Editing editable Indicates whether the value is editable on screen

required Indicates whether the attribute is compulsory

Suffix Defines a text as the suffix of the attribute title

valueSource Define a set of possible values

Validation maximalValue Defines a text as the display title of an attribute

minimalValue Defines a text as the prefix of the attribute title

maxLength Defines a text as the suffix of the attribute title

decimalNum Defines the number of digits after the decimal point

uppercase Automatically converts characters to uppercase

lowercase Automatically converts characters to lowercase

spacePermitted Indicates whether spaces in the attribute value is allowed

Figure 12 demonstrates a simplified entity model in ADL. The tag entity wraps the

declaration of an entity. To avoid the unnecessary duplications of attribute

declarations and improve the efficiency of semantic model construction, an entity

model can be declared by extending another entity model. The attribute super of

the tag entity is used to specify a super entity. The attribute class of the tag entity

defines the class that represents this entity. The tag attribute, a nested tag of the tag

entity, declares entity attributes. Attribute name, data type and display title are

mandatory information in the declaration of attributes. As shown in Figure 12,

attribute name is defined by the attribute name of the tag attribute. Data type and

display title are defined by the nested tags type and title. The tag extended is

employed to indicate that an attribute is an extended attribute (if the tag value is

―true‖) or a built-in attribute (if the tag value is ―false‖). The tag required indicates

whether the attribute value can be empty when storing the entity to a database. The

tag attribute can also have a nested tag deprecated. This tag can mark an attribute

as unwanted by setting the tag value to ―true‖. An unwanted attribute will be made

invisible to end users.

4.3 Semantic Relationship Representation

Relationships between entities are the projections of business practices. Figure 13

shows a model representing relationships. Given class A and class B, the class

Chapter 4 Semantic Model Representations

56

ABLink represents their relationship. The class ABLink contains the information

which is meaningful only when the association between the two entities exists. For

example, the salary information makes sense only when a person is an employee of

a company. As such, it should be an attribute of the link class of company and

employees. In enterprise systems, relationship models are templates which guide

the management to associations between the instances of two interrelated classes.

Traditionally, relationships between different entities are hard coded into

corresponding management programs. After the system is developed, changes to

relationships lead to much rework. In order to make relationships configurable,

even after the system is developed, relationships need to be represented in a

semantic way.

Figure 12 Simplified semantic entity representation

<entity class=―person">

<attribute name=―firstName‖>

<type>TEXT</type>

<title>First name</title>

</attribute>

<attribute name=―givenName‖>

<type>TEXT</type>

<title>Given name</title>

</attribute>

</entity>

<object class=―employee― super=―Person‖>

<attribute name=―employeeNo ―>

<type>TEXT</type>

<title>Employee No</title>

</attribute>

</entity>

<entity class=―supervisor― super=―employee‖>

<attribute name=―role‖>

<type>TEXT</type>

<required>true</required>

<title>Role</title>

</attribute>

<attribute name=―workshop‖>

<type>TEXT</type>

<deprecated>true</deprecated>

<title>Workshop</title>

</attribute>

<attribute name=―remarks‖>

<type>TEXT</type>

<extended>true</extended>

<title>Remarks</title>

</attribute>

</entity>

Chapter 4 Semantic Model Representations

57

Figure 13 Overview of semantic relationship representation

To achieve flexible relationship management in model driven enterprise systems,

relationships between entities need to be represented in a semantic fashion and

management programs are implemented based on semantic relationship models.

Semantic relationship models stay outside of the programs. Therefore, entity

relationships can also be flexibly configured. When the models are changed, the

programs can automatically manage relationships based on new models without the

need to modify system source code. Relationship management functions can be

categorized into two groups: relationship maintenance, such as relationship

creation or removal, and relationship navigation, which is to retrieve linked objects

or link objects by using a known object based on relationship definitions.

Accordingly, semantic relationship models are divided into two categories:

relationship definitions and navigation configurations. A relationship definition

provides information about how two objects should be associated, such as

cardinalities and primary keys.

Figure 14 illustrates an example of the semantic relationship model. Two instances

of a class can be associated with the same instance of another class for different

purposes. For example, an employee can be associated with a work center as a

member. Another employee can be associated with the work center as a supervisor.

These two different types of associations can be represented as two different

In
st

a
n

ce
s

o
f

 c
la

ss
es

End user environement

Relationship Management

b1 b2

b3 b4

b5 b6

a1 a2

a3 a4

a5 a6

a1b2Link Manager

Semantic

Relationship

Representtion

Parent

objects

unlinked

child objects

existing

links

child

objects

Navigator
Business

practices

Relationship model

Class

A

Class

B

Class

ABLink

1 n

a2b6Link

Chapter 4 Semantic Model Representations

58

relationships by using two link classes. They can also be represented as one

relationship by introducing link roles. The aggregation of different types of

associations can simplify a management program. To support this flexibility, the

tag linkRole is introduced for defining the roles of associations. The model also

enables one association for multiple roles. The tag linkRoles is used for this

purpose. The tag linkRoles can have multiple nested tag linkRole. Other tags in the

relationship definition are self-explanatory.

Navigation configurations are further classified into two categories: one-step

navigation and multi-step navigation. The one-step navigation is referred to as

retrieving linked objects or link objects based on known objects. The multi-step

navigation is formed by two or more joint one-step navigations. For example,

supervisors have associations with work centers and further work centers are linked

with machines. To know the machines managed by a known supervisor, firstly, one

or more work centers can be retrieved based on the known supervisor. Then, the

machines within each work center can be navigated. Obviously, retrieving

machines under a known supervisor consists of two adjacent one-step navigations.

As shown in Figure 14, navigation schemata are used to define one-step

navigations, and navigation paths are adopted to define multi-step navigation.

4.4 Semantic Logic Representation

Enterprise systems often involve various types of logic for processing information,

such as transformation, calculation and identity generation. Model driven enterprise

systems need to extract logic and represent logic as semantic models. Three types

of logic representations are investigated in this research: 1) mapping; 2) pattern;

and 3) expression.

Semantic mapping provides simple logic to transform one value to another value,

such as transforming a keyword to a descriptive text for display. A simple example

is the choices of ―Yes‖ and ―No‖. In database, the Yes choice may be saved as ―1‖

and the ―No‖ choice as ―0‖. When presenting these choices on screen, ―Yes‖ and

―No‖ are more descriptive to end users. Figure 15 illustrates a priority mapping

model.

Chapter 4 Semantic Model Representations

59

Figure 14 Semantic relationship model

Figure 15 Semantic mapping

A semantic pattern is developed for representing complicated processing logic.

Identity generation is adopted to demonstrate semantic pattern representation. Each

business item has an identity to uniquely identify it. The format of identities for

different items can be different. It also varies from one company to another. If

identity formats are not configurable, much effort is needed to customize an

enterprise system for a particular need. A pattern based identity generation can

<navigationPath key="machineBySupervisor" >

<step>workcenterBySupervisor</step>

<step>machineInWorkcenter</step>

</navigationPath>

<navigation key="workcenterBySupervisor" knownRole="roleA" >

<relationship>employee-workcenter</relationship>

<returnLink>false</returnLink>

<linkRole>supervisor</linkRole>

</ navigation>

<navigation key="machineInWorkcenter" knownRole="roleB">

…

</ navigation>
Navigation

Schema

Navigation

Path

<relationship key=“employee-workcenter"

roleA="cbd.resource.Employee“

roleB="cbd.resource.WorkCeneter">

<cardinality>

<roleA>1</roleA>

<roleB>M</roleB>

</cardinality>

<primaryKey>

<roleA>id></roleA>

<roleB>id</roleB>

</primaryKey>

<linkClass>EWLink</linkClass>

<linkRoles>

<linkRole>operator</ linkRole>

<linkRole>supervisor</ linkRole>

</linkRoles>

</relationship>

Relationship

Definition

<mapping>
 <group key="priority" >

 <map key="High Priority " code="C" />
 <map key="Medium Priority " code="M" />
<map key="Low Priority " code="L" />

</group>
</mapping>

Chapter 4 Semantic Model Representations

60

provide a significant advantage. As shown in Figure 16, an identity pattern is

developed for generating identities for change requests. The pattern consists of a

set of sequential elements. An element can be one of the following types:

 Constant, the element is a constant value;

 Year, the element is a four or two digital number of the year when that

object is created. This tag has an attribute longFormat. It is used to

indicate a year is represented in a two-digital or four-digital number;

 Month, the element can be a two digital number, full name or three-

character short name of the month when that object is created. This tag has

three attributes: numerical, longFormat and uppercase. The attribute

numerical indicates using a digital number or the name of months. The

attribute longFormat indicates using a full name or short name for the

month in the case where the tag numerical is set to false. The attribute

uppercase is applicable only when tag numeric is set to false. It indicates

that month names should be uppercase or lowercase;

 Date, the element is a two digital number of the date when that object is

created;

 Mapping, the element value is to be derived based on a semantic mapping

model. This also shows how semantic representations can be integrated to

represent complicated business logic;

 Serial number, most identities contain a sequential number. The sequential

number is continuous length-fixed digits. In this tag, initial value, interval

and length can be defined for a sequential number. In addition, a

sequential number may need to be reset under certain conditions. For

example, a sequential number can be reset every new year. In this tag,

multiple dependent elements can be defined. When the dependent element

values are different from the previous one, the sequential number will be

reset to the initial value. In Figure 16, dependent elements are the first

element mapping and the third element year. It means that each identity

starting with ―O‖, ―C‖ or ―M‖ has its own sequential number and the

sequential numbers are reset to the initial value each new year.

Chapter 4 Semantic Model Representations

61

Figure 16 Semantic pattern for identity generation

Obviously, more types of elements can be supported for more complicated

processing logic. Semantic pattern representation can also be used for other

purposes, such as generating display titles, formatting numbers and deciding

images for different types of entities. Figure 17 shows another semantic pattern

model for list machines as a table. The pattern indicates that ‗id‘ is displayed as a

hyperlink and ‗model‘ is displayed with an image in front of it.

The expression is a comprehensive approach to represent business logic. An

expression is a set of sequential elements linked together by mathematical

operators, logical operators and some functions. Expressions can be used to

transform values, perform value calculations, and validate values. An element can

be constant operand or a call to another expression. In semantic expression

representation, the dot is a specific operator representing a method, such as

machine.getTitle(), or an attribute, such as machine.model, of an object. The key on

the left of a dot, such as machine, is the identifier of an object. The key on the right

side is a method if it is followed by a pair of parenthesis, or an attribute if it is not

followed by parenthesis. Besides normal mathematic operators and logical

operators, various functions can be developed for constructing expressions. Table 9

presents the commonly used functions developed in this research. Figure 18 shows

an example expression for calculating the cost of a process step.

<pattern key="changeRequest" version="1.0">

<mapping key="typecode" map="changeRequest" method="getDisplay“ />

<constant>-</constant>

<year key="year" longFormat="true" />

<constant >-</constant>

<month numeric="false" longFormat="false" uppercase="true"/>

<constant>-</constant >

<date/>

<constant>-</constant>

<serialNumber length="4" initValue="1" interval="1" resetElement="typecode,year" />

</pattern>

<maps>

<map key="changeRequest" default=“O”>

<entity key="Internal Request" code="C" />

<entity key="External Request" code="M" />

<entity key="Other" code="O" />

</map>

</maps>

Object

value returned

by method on

object

1 2

3

4

5

M-2003-DEC-28-0003

Chapter 4 Semantic Model Representations

62

Figure 17 Semantic pattern for listing machines

Table 9 Common functions for constructing expressions

Function
Name

Remarks

sqrt Calculate square root

average Calculate average of a set of values

max Return the maximal value of a set of values

min Return the minimal value of a set of values

date Get current date

toDate Convert a text to date

month Get current moth

season Get current season

round Round a decimal value

int Get integer of a decimal value

fraction Get fraction of a decimal value

switch Execute a block based on the input value

for Starts a loop

createArray Initiate an array

toArray Convert a collection to an array

<conf type="table_pattern">
<pattern key="cbd.enterprise.resource.Machine"
title="MACHINE_TABLE_PATTERN">

<column attribute="Id">
<template><![CDATA[
$idValue$]]></template>
<valueConfig>

<value key="$idValue$" type="attribute" source="Id"/>
</valueConfig>

</column>
<column attribute="Title">

<template><![CDATA[$nameValue$]]></template>
<valueConfig>

<value key="$nameValue$" type="attribute" source="Title"/>
</valueConfig>

</column>
<column attribute="Model">

<template><![CDATA[$modelValue$]]></template>
<valueElement>

<element>$modelImage$</element>
</valueElement>
<valueConfig>

<value key="$modelValue$" type="attributeValue" source="Model"/>
</valueConfig>

</column>
</pattern>

</conf>

Chapter 4 Semantic Model Representations

63

Table 9 Common functions for constructing expressions (Continued)

Function
Name

Remarks

isArray Check if an object is the array type

arrayLength Get the length of an array

indexOf Return the index of a given element in an array

callMethod Call a method on an object with parameters

expression Call another expression

startsWith Check if a text starts with a given text

contains Check if a text contains a sub text

endsWith Check if a text ends with a sub text

isExistingFile Check if a file physically exists

Figure 18 Expression for calculating processing step cost

4.5 Semantic GUI Component Representation

Semantic representations can be used to develop some generic components. They

can greatly increase the reusability of software components and make enterprise

systems more flexible. An object query component based on a semantic query

model is used to illustrate this advantage.

In entity management, end users often make queries to retrieve a set of objects for

selection. Different objects have different sets of attributes and are stored in

different database tables. In general, it is difficult to develop a generic query

component for different objects. Semantic representations can be used to develop a

generic query component. As shown in Figure 19, a semantic query model is

adopted to define information for retrieving and displaying objects. A semantic

<conf type="expression">
<expression name="processingCost" title="Processing Cost">

<formula>
<![CDATA[
 Machine.costRate * process.processingTime

+ labor.costRate * process.processingTime
]]>
</formula>

</expression>
</conf>

Chapter 4 Semantic Model Representations

64

query model consists of pre-conditions, conditional attributes, display attributes

and filters.

The query model divides the query condition into two parts: pre-condition and

runtime condition. A pre-condition is the one which is common to all retrievals

made, based on the same query. For example, in the creation of reports listing

purchase requests in the state of approval, the value of the state attribute is

―approval‖ and can be deemed as a pre-condition. A runtime condition is one that

is constructed by end users at runtime based on GUI(s). In a case where a purchase

manager would like to create a report listing under-approval purchase requests

raised by the design department, the value of the department attribute is ―design‖

which can deemed as a runtime condition. The pre-condition and runtime

conditions are to be combined to form a complete query condition.

In the query model, conditional attributes are the ones that can be used to construct

runtime conditions while display attributes are the ones that are not used for

constructing runtime conditions, but need to be presented to end users while listing

retrieved objects. A filter is an expression which can be used to refine a query

result. After a collection of objects are retrieved, each object in the result is used as

input to evaluate the filter expression to decide the object should be kept in, or

removed from the query result. Filters can be understood as extensible and

comprehensive post processors. Based on semantic query models and semantic

entity models, such a query component can be used to query different types of

objects.

Figure 19 Query component based on semantic representation

400mmDX-005MT-005

1000mmMAHO-88MT-004

700mmAB-X214MT-003

380mmSIMENS-45MT-002

250mmFUNAC-X5MT-001

CriticalLengthModelID

400mmDX-005MT-005

1000mmMAHO-88MT-004

700mmAB-X214MT-003

380mmSIMENS-45MT-002

250mmFUNAC-X5MT-001

CriticalLengthModelID

Query Cancel OK

ID starts with 200

(ID startsWith MT) AND (length>200)

Condition:

NOT OR ()

True

True

True

False

False

<query key=“machine">

<target>cbd.resource.Machine<target>

<caption>Query Machine</caption>

<preCondition><![CDATA[id startsWidh

“M”]]></preCondition>

<filter>checkRelease</filter>

<conditionAttributes>

<attribute>id</attribute>

<attribute>model</attribute>

</conditionAttributes>

<displayAttributes>

<attribute>length</attribute>

<attribute>critical</attribute>

</displayAttributes>

</query>

ID

Model

Chapter 4 Semantic Model Representations

65

4.6 Semantic Graphical Environment Representation

Graphical environments are workplaces provided by enterprise systems for end

users to view and manage information, or perform business activities. Flexible

GUIs are critical to flexible enterprise systems. Entity management is selected to

illustrate the semantic environment representation. Figure 20 shows an

environment for managing machines. The environment adopts a two-column table

as an attribute editing sheet. The editing sheet can provide different types of editors

for each attribute based on a semantic entity model. Some specific editing

components may be developed for some composite data types. In this case, editor

can be defined in a semantic entity model. If an attribute has no editor configured,

editors can be constructed according to attribute types. If a value source is defined

for an attribute, a dropdown list may be created for the attribute. A check box can

be created for a Boolean attribute. If the tag editable is a semantic attribute

definition is set to false, the attribute is presented as a text.

Pattern configuration

<pattern identifier="cbd.enterprise.resource.Machine.title">

<element type="methodValue" methodName="getType"/>

<element type="staticValue" value="["/>

<element type="methodValue" methodName="getId"/>

<element type="staticValue" value="]"/>

</pattern>

Title pattern 1

Title pattern 2

Title pattern ...

Title pattern N

Processor

Image pattern 1

Image pattern 2

Image pattern ...

Image pattern N

Font pattern 1

Font pattern 2

Font pattern ...

Font pattern N

Color pattern 1

Color pattern 2

Color pattern ...

Color pattern N

Machine Management

Environment

id

M-01

M-02

M-03

Semantic Entity Model

Milling machine[MT-01]

...

title

Milling Machine [MT -01]

Milling Machine [MT -02]

Milling Machine [MT -03]

<entity class=”machine”>

<attribute name=”id”

</attribute>

<attribute name=”type”

</attribute>

<attribute name=”length”

</attribute>

<attribute name=”critical”

</attribute>

...

</entity>

id = M-01

name = a milling machine

type = Milling Machine

A milling machine : Machine

True

Mllling machine

M-01

250mm

ValueAttribute

ID

Type

Length

Critical

Mapping

MMilling Machine

GGrinding Machine

DDrilling Machine

LLathe Machine

Figure 20 Entity management environment

Chapter 4 Semantic Model Representations

66

Various patterns can be configured to control the presentation of the machine list,

such as title pattern, image pattern, and color pattern. As shown in Figure 20, a title

pattern is provided for displaying the machine title, which is a combination of type

and id. A title as ―Milling Machine [MT-01]‖ can be derived for a given instance of

machine based on the pattern. In this way, the presentation of the machine list is

controlled by a set of patterns. When patterns are changed, the list can be presented

in a different way. As mentioned above, some attribute values may be stored as

keywords in a database but need to be presented in a more descriptive way. For

example, in the database, ―M‖, ―L‖ and ―D‖ represent milling machine, lathe

machine and drilling machine respectively. Semantic mapping model can be used

to support descriptive presentation. When a mapping model is associated with an

attribute, a descriptive value is to be derived before presentation.

End users need to interact with a graphical environment to complete information

management via various action components, such as buttons. A flexible entity

management environment has to be able to present action components. A semantic

scenario model is developed as shown in Figure 21. The semantic scenario model

consists of four sub-models, which are the action model, action flow model,

component model and layout model. The action model defines actions that end

users can perform in a graphical environment. The component model defines

various components that will be presented in a graphical environment. The layout

model provides information about how action components are to be presented. In

general, components are organized into different groups. A group can have

multiple sub-groups. In a group, components can be arranged horizontally or

vertically. Similarly, component groups at the same level can also be arranged

horizontally or vertically. The layout model enables the definition of some specific

containers for a group of components, such as tabbed or split panels. The action

flow is for managing the state (active or inactive) of action components. The action

flow model is used to evaluate the state of components at runtime. The state of

component is to be re-evaluated after each user action. If a component needs a

specific logic for managing its state, the value of the tag statusManaged in the

component model should be set to ―false‖. In this case, a specific state management

bean can be configured for managing the state of the component.

Chapter 4 Semantic Model Representations

67

It can be observed that semantic environment representation is achieved by the

combination of semantic entity model, semantic environment model and semantic

scenario model.

Figure 21 Semantic scenario representation

4.7 Semantic Function Layout Representation

An enterprise system can be deemed as a collection of modules, such as a resource

management module and a design management module. Each module may consist

of various functions. Further, a function may be realized by a set of operations. For

example, a quotation module may include functions like quotation management,

quotation report management, and performance report management. In an

enterprise system, system functions should be presented to end users in a logical

way. A hierarchical structure is commonly adopted. The first level is initially

presented to the user. By selecting an item, the user can invoke a concrete function

or drill down to the next level. However, different companies may need different

sets of functions and require different ways to group functions.

Compared to a simple application for individual activities, enterprise systems

provide a large set of functions to support various activities performed by users

<layout direction="vertical">

<tabbedPane key="tabs">

<tab>

<title>...</title>

<components direction="horizontal">

<component key="..."/>

</components>

</tab>

...

</tabbedPane>

<componentGroup direction="horizontal">

<component key="start"/>

...

</componentGroup>

</layout>

<action name="start">

<downstream>

<action name="stop">

<rewind action="__init__"/>

</action>

</downstream>

</action>

<action name="disable">

<rewind action="__init__"/>

</action>

...

<component key="start">

<action>start</action>

<type>button</type>

<class>cbd.beans.bbeans.BButton</class>

<statusManaged>true</statusManaged>

</component>

<component key="stop">

<action>stop</action>

...

</component>

<component key="parameter">

<type>attributeEditor</type>

...

<title>...</title>

</component>

<action name="start">

<title>...</title>

<command>start</command>

</action>

<action name="stop">

<title>...</title>

<helpTip>...</helpTip>

<command>stop</command>

</action>

...

Component Model
Layout Model

Action Flow Model

Action Model

Chapter 4 Semantic Model Representations

68

from different departments. A flexible way to organize system functions is

necessary. To achieve a flexible function layout, a semantic function layout model

is developed. As shown in Figure 22, the function layout model consists of two

sub-models: function model and function group model. The function model

contains all functions to be presented to end users. In the function model, title,

module and component are three key attributes that characterize system functions

in terms of layout. A title is the descriptive name of a function. The module

indicates a business domain that a function should be grouped into. The component

specifies a functional component that actually realizes a function. The function

group model is used to logically group functions for presentation. As shown in the

Figure 22, various groups can be defined, and groups can be associated as a

hierarchical structure to present as multi-level menus. In the sales_quotation group,

the tag groupLink is used to link another group into this group. When the

corresponding menu item is selected, a sub-menu is presented. The semantic

function layout representation provides a unified method to group and present

functions.

<function key="rfq">

<title>RFQ Management</title>

<module>sales_quotation</module>

<comp type="bean">epcit.dm.sq.ui.RFQBean</comp>

</function>

<function key="quotation">

<title>Quotation Management</title>

<module>sales_quotation</module>

<comp type="bean">epcit.dm.sq.ui.QuotationBean</comp>

</function>

<function key="quotation_rpt">

<title>Quotation Report</title>

<module>sales_quotation</module>

<comp type="bean">epcit.dm.sq.ui.QuotationReportBean</comp>

</function>

<function key="performance_rpt">

<title>Quotation Management</title>

<module>sales_quotation</module>

<comp type="bean">epcit.dm.sq.ui.PerformanceReportBean</comp>

</function>

Function Model

Quotation management

Sales management

Product design management

RFQ management

Quotation management

Reporting...

Customer order management

Job order management

Shipment management

Task assignment

Layout design

Detail design

Quotation report

Performance report

Function layout

<group key=”sales_quotation” title=”Quotation Management”>

<function key="rfq"/>

<function key="quotation"/>

<groupLink key="quotation_reporting"/>

</group>

<group key=”quotation_reporting” title=”Reporting”>

<function key="quotation_rpt"/>

<function key="performance_rpt"/>

</page>

<group key=”main” title=”Main”>

<groupLink key="sales_quotation"/>

<groupLink key="sales_order"/>

<groupLink key="product_design"/>

</group>

Function Group Model

Figure 22 Semantic function layout

Chapter 4 Semantic Model Representations

69

4.8 Summary

This chapter presents and develops semantic representations for various types of

system models, including entities, entity relationships, business logics and function

layout. These semantic representations can be constructed by designers, developers

or system administrators. In the meantime, they can also be effectively interpreted

by computers. Therefore, they can be loosely coupled with software programs to

control the behavior of software programs. Semantic representations make model

driven enterprise systems highly configurable. Semantic models can be constructed

based on the particular needs of a company during implementation. They can be

reconfigured to support ongoing business changes after implementation.

Chapter 5 Industrial Case Identification

71

Chapter 5 Industrial Case Identification

5.1 Introduction

Semantic representations developed in the previous chapter need to be further

verified using industrial cases. This chapter develops a business process model

based on the common practice of the manufacturing industry. Four critical business

processes are identified. Based on the process model, resource management,

product structure and reporting are identified as industrial cases for verifying

semantic representations.

5.2 Business Processes in Manufacturing

Industrial cases need to be typical and representative. ―Typical‖ implies that a case

should have most characteristics concerned. ―Representative‖ requires a case to

have the need for flexibility. To identify proper industrial cases, it is necessary to

understand business processes accurately. Due to the complexity of business

processes, a graphical representation of business processes is necessary to provide

an intuitive environment for effectively analyzing business processes. This research

uses the ARIS Toolkit to document the business process model. ARIS is a well-

known reference architecture, which mainly focuses on information systems for

supporting business operation (Shin, et al. 2002). In ARIS, event driven process

chain (EPC) diagrams provides an effective means to overview business processes

in a hierarchical structure. These diagrams act as a control view to connect data

view, function view and organization view. Figure 23 shows the first level of the

business process model established based on the made-to-order practice of the

manufacturing industry.

Chapter 5 Industrial Case Identification

72

Figure 23 The first level EPC diagram.

5.3 Four Critical Business Processes

Through further analysis, four critical processes are identified as the order

fulfillment process, design process, production process and material fulfillment

process, as shown in Figure 24. The order fulfillment process is an interfacing

process that connects manufacturing companies and customers. This process starts

with the request for quotation (RFQ) and ends when the product is delivered; and

the payment is made by customers. Major activities of this process include

quotation preparation, customer order processing, project management and delivery

management. When a quotation is requested, the sales department should promptly

respond to the customer with a quotation report through requirement analysis and

cost estimation. A quotation report usually encloses essential pricing information as

well as terms and conditions. When a quotation is accepted, the customer sends a

customer order to officially confirm the order. Long-term partners may directly

send customer orders if trust relationships have been established. Typically, made-

to-order manufacturing companies are operated in a project-centric manner. When

a customer order is received, projects are initialized. After that, design, production

and resources are managed on a project basis. After production, the customer

service department takes the responsibility of organizing packing and delivery. At

Chapter 5 Industrial Case Identification

73

the same time, the finance department tracks and processes customer payments

according to the payment terms described in the customer order.

The design process attempts to manage design activities and design information to

improve design efficiency and quality. On receiving a customer order, the drawings

of products and specific requirements are conveyed to the design department. First,

layout design is carried out to determine the overall structure and the major

specifications of key parts. After the layout design is confirmed internally, it may

be sent to the customer for review and approval. Detailed design starts after the

layout design is confirmed by the customer. Depending on the importance of parts,

designers may be requested to submit their designs for review and approval. Finally,

completed design is released for planning and production.

Figure 24 Critical processes in the mould making industry.

Production is a process to convert raw materials to products based on design

specifications. It consists of two phases: planning and execution. In the planning

phase, routing planning is first carried out to identify operations needed to machine

each feature on individual parts, optimize the sequences of operations and features,

and plan setups to position and clamp parts for machining. After routing planning,

master planning is carried out to determine time periods during which individual

parts must be accomplished so that the order due date can be fulfilled. Based on the

RFQ Cost Estimation Review Customer Order

Project Setup

Approved
Y Payment Invoice

Delivery

Layout Design Internal Review Customer ReviewApproved Approved

Project Planning

Detailed Design Review ReleaseApproved

N
Y

N

Y

Routing Planning Master Planning
Production Scheduling ME

Material Planning

 Trial

Tracking

FAI

Purchasing Request

Customer

Employee
Purchasing Order Goods ReceivingReview Approved Inventory

Order fulfillment

Design

Production

Material fulfillment

ME: Manufacturing Execution FAI: First Artifact Inspection

N

Y

N

Y

N

Chapter 5 Industrial Case Identification

74

outcome of master planning, production scheduling is further carried out to allocate

time slots for each machining operation according to the available capacity of

machines. To ensure that the required materials are ready for use when needed,

material planning is also performed to determine the best time to issue material

orders. After planning and scheduling, the production process runs to the execution

phase. Workshop supervisors assign machining tasks to operators on a daily basis.

The production progress is tracked and monitored according to the schedule.

The material fulfillment process manages purchase requests (PRs), purchase orders

(POs) and inventory to support other business processes. According to material

plans, the purchase department prepares and issues purchase orders to appropriate

suppliers. Inventory management manages delivered materials and issues materials

to workshops when requested. This process also manages non-planned consumer

goods based on safety levels, which are the minimum quantities of individual

goods to be maintained in inventory.

5.4 Integration Analysis

Four critical business processes are not independent. They need to be integrated to:

1) automate business activities; 2) motivate collaborative decision making; and 3)

enable business process concurrency. In the following sections, the analysis of

business process integration is conducted to identify commonly used information

and key functions. The management of commonly shared information and key

functions is to be selected as a case for further study.

5.5 Integrated Order Fulfillment Process

Resource information is needed in this process to determine if capacity and

capability of available resources for early decision making can satisfy requirements

of a customer order. If resources cannot satisfy a customer order, overtime and

outsource may be required, which means high cost and long order lead time. In this

case, a decision has to be made on the acceptance of the order with consideration

given to customer satisfaction.

By leveraging the advantage of the similarity between quotations and customer

orders, customer orders can be generated based on quotations and projects can be

Chapter 5 Industrial Case Identification

75

automatically initiated. When a project is initiated, relevant business units, such as

design department, production department and purchasing department, can be

notified with the necessary information. This greatly enhances the efficiency of

customer order processing. Meanwhile, downstream teams start preparation and

organize resources as early as possible. Consequently, the concurrency of business

processes can be achieved.

Rapid responses to FRQ are critical in winning customer orders. An order

fulfillment process needs to be integrated with other business processes for better

cost estimation. On receiving a RFQ, the design department is to be notified with a

request to perform product structure configuration. A product structure can be

roughly estimated by identifying critical parts and materials for critical parts.

During production structure configuration, process plans of critical parts can also

be automatically created based on process plan templates. Process planners can be

notified to review and refine process plans generated. With these types of

information available, labor cost, equipment depreciation cost, material cost,

packing cost and delivery cost are be considered in cost estimation to improve the

accuracy of cost estimation.

5.5.1 Integrated Design

Design is a process of converting the needs and requirements for a product into

specifications about a product. To fulfill customer requirements and allow the

needs of downstream processes to be considered at an early stage, design process

needs to be integrated with other critical processes.

Cost analysis is used to calculate the actual cost of customer orders after production.

It is intended to improve the performance of cost estimation. By comparing reports

of cost estimation and cost analysis, factors not considered accurately in cost

estimation can be identified. Through the integration of design process with order

fulfillment process, product structures configured in quotations and customer

orders can be inherited to speed up the design process. As a result, seamless

linkage can be achieved between the product structure configured in quotations or

customer orders and the actual product structure for better cost analysis.

Chapter 5 Industrial Case Identification

76

Integration of design process with production process enables manufacturability

evaluation to be done at an early stage. It can effectively shorten the design cycle

and minimize design iterations. This integration also enables partial releases in

design for better process concurrency. Partial releases are done before design is

completed and when design is mature for some downstream activities. A part can

have multiple partial releases for different purposes, such as partial release for

material purchasing and release for process planning.

For the purpose of better decision making in design, resource information needs to

be made available to designers. This leads to better decision making in the

selection of materials and material stocks for parts. Two ways exist for designers to

select materials for parts. One is to specify a particular material stock available in

inventory. Another is to simply define a blank if there is no appropriate material

stock for use in inventory. In this case, a notification will be generated for the

purchasing department to schedule purchase orders as early as possible. The

information about cutting tools and machines also helps design to achieve better

manufacturability.

5.5.2 Integrated production management

Process plans are documents containing detailed resource information and

instructions for operators to complete operations. Process plan information is also

the input of capacity planning and job scheduling. Process planners are responsible

for creating process plans for each part to be machined internally. Workshop

supervisors generate workshop tasks and job schedules based on product structures

and process plans. These tasks are assigned to operators on a daily basis. The

integration of production process with design process makes product structures

available for determining the precedence of tasks. As mentioned above, concurrent

engineering between design and production process can be achieved by partial

release, process plans can be created as early as possible. Therefore, workshop

tasks can be automatically generated at an early stage. This helps achieve better

resource allocation, capacity management and workshop job scheduling. The

production process can also be integrated with the order fulfillment process to

make the progress of customer orders available to sales department and project

Chapter 5 Industrial Case Identification

77

management. This enables better customer satisfaction to be achieved through

better communication with customers.

5.5.3 Integrated material fulfillment

Early purchase of materials not only holds cash in inventory but also increases the

stock level of inventory. It introduces a barrier to the optimization of cash flow and

leads to higher product cost. Late purchases can delay production, which can lead

to the dissatisfaction in the order due date. This process also manages resource

information which is widely shared by other business processes. It is imperative to

integrate this process with design and production processes as analyzed above.

5.6 Selection of Case Studies

Throughout the above analysis, it can be observed that resource information and

production structure are widely shared by critical business processes. As shown in

Figure 25, resource information is widely shared by various business processes for

different purposes. However, resource management capability is very limited if it is

provided by traditional applications like CAD and CAM. Usually, traditional

applications only manage some of manufacturing resources for internal use without

attention to the needs of other applications. As most traditional applications are

standalone and must be installed on individual computers, the coexistence of

manufacturing resource information on different computers is inevitable. This

research selects resource management as a case study by developing an extensible

resource model based on semantic representations to support business process

integration.

Product structure is also widely used in order fulfillment process, design process

and production process. In the made-to-order environment, product structure is

complicated because each product can have many variants with slightly different

constitutions to fulfill different customer requirements. In such a context, product

structure management needs two interrelated functions: family structure

management and variant structure management. At the same time, these two

functions need to be seamlessly integrated to ensure the consistency of a family

Chapter 5 Industrial Case Identification

78

structure and its variant structure. From the business process perspective,

throughout the entire product lifecycle, different business activities look at the

product structure for different purposes. Some activities are carried out based on

variants and deem individual variants as different products and some activities need

to be performed based on an entire family. A flexible product structure model is

imperative. Therefore, product structure management for the made-to-order

environment is selected as another case study for verifying the effectiveness of the

proposed semantic representations.

Figure 25 Resource information sharing

In addition, reports are critical deliverables provided to end users by enterprise

systems. They provide structured and concise information for end users to

effectively capture the status of resources, track the progress of jobs and analyze

the profitability of products, etc. Reports are also key documents that help

managers make decisions, perform planning activities and communicate with

partners. At present, enterprise systems are usually developed with fundamental

reporting capabilities. Much effort is required to design and develop customized

reporting functions to individual companies at the implementation stage. Reporting

customization is time-consuming and the result cannot be reused. Reports often

have different formats and contents; Report look and feel varies from company to

company. Therefore, reporting is a good study case for examining semantic

representations.

Manufacturing Resources

Machining

Customer

order
Project

initialization

Design NC

programming

Capacity

planning and

scheduling

Routing

planning

Required capacity

Demonstrated

capacity

M
o
ld

in
g

p
ro

d
u
c
t

s
tru

c
tu

re

Molding

product

Part information

Part

information
Routing

plan

N
C

p
ro

g
ra

m
m

in
g

Process

Planning

Process

Plan

Chapter 5 Industrial Case Identification

79

5.7 Summary

The effectiveness of semantic representations needs to be further investigated using

industrial cases. This chapter, in which four critical business processes are

identified, develops a business process model based on the made-to-order practice

in the manufacturing industry. By analyzing the requirements of integration

between critical business processes, three case studies are selected, which are

resource management, product structure management and reporting. The following

three chapters a develop resource model, product structure model and reporting

model, based on the three cases identified by using by semantic representations.

Chapter 6 Semantic Resource Modeling

81

Chapter 6 Semantic Resource Modeling

6.1 Introduction

To effectively support business process integration, resource information needs to

be managed in a centralized database for better sharing. It is imperative to look at

resources from a broader viewpoint and represent resources in a flexible and

unified way. A resource model is needed to coherently represent various resources

so that resource information can be shared by each subsystem used by people with

different concerns. Therefore, a comprehensive and extensible data structure needs

to be developed to accommodate as much information as possible to characterize

every aspect of resources and the relationships between their different types. By

taking these needs into consideration, this chapter develops a semantic resource

model as a case study of semantic representations.

6.2 Needs of Extensible Resource Model

Since the early 1990s, much effort has been put into research and development of

information infrastructure and support platforms for business process integration

(Aalst 2002). Most efforts were focused on reusing, extending and integrating

various industry standards and enabling technologies, such as communications,

object oriented technologies and also information exchange technologies, such as

standards for the exchange of product model data (STEP) (Barry, et al. 1998,

Camarinha-Matos and Afsarmanesh 1999b). Efforts can also be seen in the

integration of multiple standards or technologies, e.g. exchange of business

messages, exchange of technical product data, and federated/distributed database

(Camarinha-Matos and Afsarmanesh 1999a).

Chapter 6 Semantic Resource Modeling

82

Due to those efforts, IT infrastructure has evolved from being system-centric to

network-centric, in order to facilitate information integration. It is moving towards

a standard-centric and process-centric situation, as shown in Figure 26 (Liu 2003).

The standard centric stage can be deemed as a leading stage to a process centric

stage. In the standard centric infrastructure, standards play a very important role by

providing interoperability among different heterogeneous systems, such as CORBA,

STEP and ebXML. CORBA addresses interoperability among objects in different

languages; STEP focuses on product information exchange between CAD

applications and other applications. EbXML provides a standard means for

business process modeling, which covers requirement analysis, architecture and

collaboration (Lindsay, Downs and Lunn 2003).

Figure 26 IT infrastructure trends (Liu, 2003)

Traditionally, resource models are functional based and created according to the

needs of individual applications. Function-based models often lead to the problems

of information inconsistency and duplication. They also hinder the integration of

different applications due to the incompatibility between models. In order to better

serve business process integration, resource management needs to be generalized as

a core function, to support different business processes. On one hand, it needs to be

generic enough to represent all resources. On the other hand, it should be

developed in readiness to be extended for the representation and management of

more details. Thus, it can be easily enhanced to support specific needs.

Extension of a resource model to manage specific information should not generate

impacts to the entire model and existing resource management functions.

Fundamental requirements of such a resource model include:

Business

Application

•Advanced

network

•Distributed

computing

•Standards

•Common

Web services

•Business

process

oriented Web

services

System centric

Development

Environment

Computing

Environment

Network

Environment

Business

Application

Development

Environment

Computing

Environment

Network

Environment

Network centric

Business

Application

Development

Environment

Computing

Environment

Network

Environment

Standard centric

Business

Application

Development

Environment

Computing

Environment

Network

Environment

Process centric

Chapter 6 Semantic Resource Modeling

83

 Enabling incremental implementation to provide detailed resource

information when needed;

 Enabling rapid implementation and deployment with less customization

effort; and

 Providing a flexible foundation to support ongoing changes to business

processes.

This case study develops a generic resource model, which can serve as a unified

platform for process integration. The developed model consists of three interrelated

sub-models: extensible object model, macro resource model and micro resource

model. An extensible object model is an enabling technique based on semantic

representations to make the resource model flexible and extensible. The macro

model builds a generic framework for representing common characteristics of

resources. The micro model enables specific characteristics to be represented.

6.3 Foundation Model

An enterprise system with the resource information hard-coded is rigid. It is

difficult to tailor such as a system to support different business practices. To make

an enterprise system generic, it is essential to develop a resource management

engine which can be flexibly individualized for different needs. The resource

model underneath such a resource management engine needs to be generic but also

complete. By taking this into account, a unified resource model (shown in Figure

27) is developed. Figure 28 explains the symbols used in the model, which are the

compliant of UML. To achieve generality and extensibility, the model

characterizes resources from the three levels: foundation level, macro level and

micro level.

The foundation level establishes an object-oriented model to support semantic

representations. As shown in Figure 27, AttributeDefinition is modeled for

representing and managing semantic attribute specifications in ADL. IConfigurable

is the abstraction of entities that can have semantic entity models associated.

Configurable is the default implementation of IConfigurable to provide capabilities

Chapter 6 Semantic Resource Modeling

84

shared by all subclasses. AttributeValue is for managing attribute values based on

semantic attribute definition. AttributeValues, an aggregation of AttributeValue, is

a collective data structure to manage the values of extended attributes based on

semantic representations. Configurable aggregates AttributeValues. Fundamentally,

this provides all its subclasses with the capability to support semantic

representations and to hold the values of extended attributes.

Partner Machine EmployeeWorkcenter

1...*

0...*

MacroResource

CalendarShiftTimePeriod

Status

Configuration

MicroResource

ResourceRole

DatedShift

ResourceStatus

StatusEffectivity

Activity

ActivityEffectivity

Resource Role

Configuration

1...* 0...*

1

0...* 1

0...*

0...*
1

ResourceGroup

0...*

Material

0...*

Macro model

Micro model

0...*

0...*

1...*

0...*

0...*

0...*

IStocked
MemberRole

GroupRole

10,1

IConfigurableAttributeDefinition

ConfigurableAttributeValuesAttributeValue

1
0...*

1...*

11...* 1

Team

EntityModel

1

1

1

foundation

Figure 27 Extensible resource model

Figure 28 Legend explanations

specializes

aggregation by reference

association class

reference association

aggregation by value

Configured by

implements

dependency

c=1 means that one A instance has to be and only

can have one B instance assoicated

c=0,1 means that one A instance may have no or

one B instance associated

c=0...* means one A instance may have no or more

than one B instances assicated

No c means c=0,1

c
A B

Chapter 6 Semantic Resource Modeling

85

6.4 Macro Resource Model

On the top of the extensible foundation, a macro model is established to

characterize common features of resource entities. As shown in the model,

MacroResource is a subclass of Configurable. MacroResource is the supper class

of other resource entities. As a result, all resource entities can support semantic

representations. In the macro model, MacroResource is a unified object modeled to

represent all resources and ResourceRole plays the role of resource categorization.

A resource can only have one role. MicroResource represents the association of

MacroResource and ResourceRole. Thus, it also has a one-to-one mapping

relationship with MacroResource. The information associated with MacroResource

is the common information about resources. As shown in Figure 29, ResourceRole

is defined in a semantic model. In the semantic model, the attribute name of the tag

role is a unique key for identifying the role, and the attribute title defines the name

of the role for screen display. The attribute schema specifies a key pointing to a

semantic model associated with the role. As a result, each role can have a different

set of attributes. ResourceRole is self-associated, which enables a role to have sub-

roles. In other words, the resource can be categorized in the tree structure. A

semantic model of a role can be inherited by its sub-roles and each sub-role also

can have additional attributes to further characterize a resource associated with the

role. As shown in the model, the resource with the employee role has three

extended attributes. The attributes firstName and givenName are derived from the

person role and the attribute employeeNo is specifically defined for the employee

role. Semantic representations enable resource categorizations and attributes of

each category to be configured or reconfigured. By changing resource role models,

resource management engine can be tailored different enterprises.

The information about resource availability is critical to generate accurate plans

and ensure that activities can be performed in time without resource conflicts. If the

activities are not well planned, some activities may compete for resources. This can

lead to the delay of the entire business process. The resource availability is

described from two aspects, namely capacity and status.

Chapter 6 Semantic Resource Modeling

86

Figure 29 Resource role configuration

6.4.1 Capacity Model

Resource capacity is information that is key to master planning and production

scheduling. It is also utilized to manage task assignments in workshops and design

departments. In the model, resource capacity is represented by a set of shifts and

calendars. A shift consists of a set of time periods which indicates time slots when

a resource takes effect. For instance, employees can be in the office from 8:00am to

5:00pm, but they are not available in the period from 12:00pm to 1:00pm, which is

lunch time. Therefore, the shift for the employees consists of two time periods:

8:00am to 12:00pm and 1:00pm to 5:00pm. The calendar organizes shifts based on

date on a yearly basis. If a date has more than one shift linked, it means that the

related resource works for multiple shifts on that date.

6.4.2 Status Model

The capacity model describes the availability of resources over the timeline.

However, at a certain time, a resource might not be available because of

unexpected incidents, such as machine breakdown and staff leave. The status

<role name="person" schema="person" title="Person">

<role name="employee" schema="employee" title="Employee"/>

<role name="operator" schema="operator" title="Operator"/>

<role name="manager" schema="manager" title="Manager"/>

</role>

</role>

<entity class=“person">

<attribute>

<type>TEXT</type>

<name>firstName</name>

<title>First name</title>

</attribute>

<attribute>

<type>TEXT</type>

<name>givenName</name>

<title>Given name</title>

</attribute>

</entity>

<entity class=“employee">

<attribute>

<type>TEXT</type>

<name>employeeNo</name>

<title>Employee No</title>

</attribute>

</entity>

…

Chapter 6 Semantic Resource Modeling

87

model assists to manage the availability of resources from this perspective. The

status information is also used for performance analysis, cost tracking and task

management. The model uses ResourceStatus to represent the resource status and

StatusEffectivity to record the time period when a related resource stays in a

particular status.

Different resources can have a different set of meaningful statuses. In addition,

different companies may manage different sets of statuses for the same resource.

Taking machines as an example, one company may only manage breakdown status

in terms of availability, but another company may also manage monthly and yearly

maintenance. To achieve flexibility in defining resource status, resource status is

made configurable, as shown in Figure 30. The status configuration is associated

with resources based on role. This implies that different roles can have different

status.

Figure 30 Status configuration

6.5 Micro Model

MacroResource only holds information to all resources. Therefore, MicroResource

is introduced to further characterize a specific resource. It can be seen from the

model that specialization to MicroResource won‘t cause any impact to the macro

level as MicroResource is the link class of MacroResource and ResourceRole.

Therefore, the model is generic and extensible. This research focuses on three

micro models: material model, machine model and cutting tool model.

<status role=―machine‖>

<identity>Normal</identity>

<identity>Maintenance</identity>

<identity>Breakdown</identity>

</status>

<status role=―person‖>

<identity>Normal</identity>

<identity>Medical leave</identity>

</status>

Chapter 6 Semantic Resource Modeling

88

6.5.1 Material Model

Material information is commonly shared by design, process planning and NC

programming. Materials are characterized by physical properties and chemical

properties. Designers should consider material physical properties, such as tensile

strength, and select proper materials for parts to ensure the performance and life of

parts and products. From the concurrent engineering viewpoint, material machining

performance should also be considered in design. In processing planning, material

chemical properties must be considered in the selection of cutting tools. In the

machining process, high chemical affinity between a cutting tool material and a

part material can cause sticking, even chemical changes, due to high temperature.

This can dramatically decrease the quality of machined surfaces. Cutting tools

made of tenacious materials are recommended to cut hard and brittle materials to

minimize the chipping possibility of cutting edges. For tenacious part materials,

cutting tools made of hard materials should be selected to achieve a high material

removal rate by using high cutting speeds. In nature, cutting tool selection is a

knowledge-intensive decision-making process. However, no sound theoretic model

exists to represent this type of relationship, between cutting tool materials and part

materials (Baker and Maropoulos 2000). To represent this knowledge, this research

proposes two relationships between part materials and tool materials which are the

compatible relationship and the repellent relationship. The former is the one which

indicates that tool materials are highly recommended for associated part materials.

The latter implies that tool materials are not appropriate for associated part

materials.

Material information is shared by many activities in different processes, such as

design, planning and purchasing. A unified material model, sharable to all related

activities, can maximize material information sharing and streamline the relevant

processes to improve working efficiency. Designers are responsible for selecting

the proper materials for parts. In a design drawing, a designer can partially or fully

specify material specifications, such as material code, raw status, shape and size. If

only the material code is specified, a process planner has to decide on the blank

shape and size by taking into consideration the required dimension accuracy,

surface roughness and material machining performance. Material planning is done

Chapter 6 Semantic Resource Modeling

89

to decide when standard parts need to be ready for use and what material stocks are

required. Material plans, outcomes of material planning, are official documents to

support the purchase department in preparing and issuing purchase orders. In the

market, shapes and sizes of material stocks are standardized. Non-standard material

stocks can cost more and lead to longer supply time. Designers and planners look at

materials in terms of part specification and performance. Purchasers are more

concerned with prices, delivery time, shapes and sizes. At the micro level, the

material model is specialized by incorporating the concerns discussed above, as

shown in Figure 31.

Figure 31 Micro material model

As shown in the model, Material, a subclass of MicroResource, is defined to

represent materials. PartMaterial and ToolMaterial are specialized from Material

to represent part materials and cutting tool materials respectively. MaterialStock is

the association of PartMaterial and Shape, representing various sizes and shapes of

the material stock. PartMaterial, an abstract concept without shape and size,

provides information about chemical and physical properties. MaterialStock is used

for characterizing shapes and sizes of materials. Shape can be configured using

semantic representations based on the industrial standard. Standard sizes also can

be configured in semantic models. RawStatus represents heat treatment to materials

done by manufactures. As discussed above, Compatible and Repellent relationships

Partner

Supplier

MaterialStock

1...*

0...*

0...*

1

Material

Shape

0...*

0...*

RawStatus

PartMaterial

Compatible

Repellent

ToolMaterial
0...* 0...*

0...*0...*

Shape

Configuration

IStocked

ConsumerGoods

ISupplied MicroResource

Macro layer

Micro layer

CuttingTool

0...*

1

Chapter 6 Semantic Resource Modeling

90

are introduced and represent better and worse matches between cutting tool

materials and part materials. This relationship can be represented using semantic

models.

6.5.2 Micro Machine Model

Machines are one of the critical resources in manufacturing companies and

machine information is needed by designers, planners, financial staff and

maintenance staff. For the purpose of manufacturability evaluation, designers need

to know the machine capability. The micro machine model is developed with focus

on characterizing machine capability, as shown in Figure 32.

0...*

MachineToolHoder WorkpieceHolder

ToolMovement WorkpieceMovement

RotationalMovement LinearMovement

RotationalSpeed LinearSpeed

CompositeMovement

MachiningMovement

0...*

1

11

1...*

1...*1

0...* 0...*

1

0,1 0,1

1

1 1

1..* 1..*

Macro model

Micro model
EmployeeCuttingTool

1...*

0...*

1...*

1...*

MicroResource

CapabilityGroup ActivityEffectivity
1 0...*

1

0...*

Figure 32 Micro machine model

Machining capability can be described by three elements: operations a machine can

perform; design features a machine can deal with; and precision a machine can

achieve. In general, one machine can carry out multiple types of operations. In

addition, machine capabilities need to be associated with individual spindles or tool

holders because each spindle or tool holder can perform different sets of operations.

Theoretically, design features are formed by relative movements between cutting

tools and work pieces. For instance, the combination of rotational movement of a

Chapter 6 Semantic Resource Modeling

91

work piece and linear movement of a cutting tool forms a cylindrical surface. Some

machines, such as lathes, use the spindle as a work piece holder and others, such as

milling machines, use the spindle as a tool holder. In order to make capability

representation generic, abstract movements are used to assist defining machine

capabilities. In the model, LinearMovement represents a linear movement

characterized by LinearSpeed, which can be a set of values for discrete speed

gearing or a speed range for continuous speed gearing. Similarly,

RotationalMovement represents a rotational movement described by

RotationalSpeed with a set of values or a speed range depending on the type of

gearing. CompositeMovement represents composite movement of linear movement

and rotational movement. As the model shows, CompositeMovement can have zero

or one rotational movement and zero or one linear movement. Therefore, three

types of CompositeMovement exist: 1) a composite movement with a

LinearMovement linked, which means a linear movement; 2) a composite

movement with a RotationalMovement linked, which means a rotation movement;

and 3) a composite movement with both LinearMovement and RotationalMovement.

As shown in the model, a machine can have one or more tool holders and

workpiece holders. Each tool holder and workpiece holder can link to zero or more

CompositeMovements. Jointly, ToolMovement and WorkpieceMovement form a

MachiningMovement. As shown in the model, MachiningMovement is specialized

from CapabilityGroup. As a result, each MachiningMovement instance can have a

set of capabilities.

6.5.3 Micro cutting model

Effective cutting tool information available during the design stage can assist

designers to make better decisions to prevent the proliferation of cutting tools,

which is the problem that nearly 70% of manufacturing companies are struggling to

tackle (Baker, et al. 2000). This can lead to less manufacturing lead time and lower

production cost. The micro cutting tool model is developed, as shown in Figure 33.

The model can represent the complicated tools with multiple cutting edges. For the

purpose of manufacturability evaluation, three major types of information, i.e. tool

Chapter 6 Semantic Resource Modeling

92

shank, tool material and cutting edges, are represented. Tool shank, an interface to

the tool holder of machines, is represented by Shank, a subclass of Shape defined at

the macro level. Similar to machine tools, cutting tool capabilities are represented

as the combination of operation, feature and precision. Cutting tool capabilities are

managed based on the cutting edge, represented by CuttingEdge.

CuttingTool

Shank

ToolMaterial

CuttingEdge

0...*

1

0...*1

CuttingEdge

Configuration

Shape

1

1

MicroResource

Macro model

Micro model

CapabilityGroup ActivityEffectivity
1 0...*

1

0...*

1...*

1

Figure 33 Micro cutting tool model

6.6 Illustration of Semantic Resource Representations

This section briefly demonstrates the semantic representation for machines. Based

on semantic entity representations, the semantic machine model can consist of six

elements, as shown in Figure 34:

1) Entity declaration, which defines attributes the machine has. Machine

entity is defined on the top of a super class named

cbd.entity.MicroResource. It inherits all attributes defined for

cbd.entity.MicroResource;

2) Value constraints, which provide simple rules for validating attribute values;

3) Value validations, which provide comprehensive rules for validating

attribute values based on business rules. This often involves validating

relationships with other entities;

4) Default values, which define default values of machine attributes

5) Text resource, which provides a way to achieve the localization of default

values and attribute titles.

6) Value sources, which provide a way to get value candidates of attributes.

As shown in the model, machine model should be selected from a list.

Chapter 6 Semantic Resource Modeling

93

<valueConstraints class="cbd.enterprise.resource.Machine">

<attribute name="id">

<caseMode>capital</caseMode>

<spacePermitted>false</spacePermitted>

<maximalLength>32</maximalLength>

</attribute>

<attribute name="length">

<minimum included=”true”>50.0</minimum>

<decimalNumber>3</decimalNumber>

</attribute>

</valueConstraints> Attribute Properties

<entity class="cbd.enterprise.resource.Machine"

super=”cbd.entity.MicroResource”>

<attribute name="id">

<type>VARCHAR</type>

<required>true</required>

<extended>false</extended>

<title>MACH_ID_TITLE</title>

</attribute>

<attribute name="model">

<type>VARCHAR</type>

<title>MACH_MODEL_TITLE</title>

</attribute>

<attribute name="length">

<type>VARCHAR</type>

<extended>true</extended>

<title>MACH_LENGTH_TITLE</title>

</attribute>

<attribute name="critical">

<type>BIT</type>

<extended>true</extended>

<title>MACH_CRITICAL_TITLE</title>

</attribute>

</entity> Entity Declaration

<defaultValue class="cbd.enterprise.resource.Machine">

<attribute name="id" valueKey=”MACH.ID.DEF_VAL”/>

<attribute name="critical" valueKey=”MACH.CRITICAL.DEF_VAL”/>

</defaultValue>

<valueSource class="cbd.enterprise.resource.Machine">

<attribute name="model" valueSourceType=”constant”>

<default>FUNC-X5</default>

<candidates>

<candidate>FUNC-X5</candidate>

<candidate>SIMENS-45</candidate>

<candidate>AB-X214</candidate>

<candidate>MAHO-88</candidate>

</candidates>

</attribute>

</valueSource>

MACH_ID_TITLE=ID

MACH_MODEL_TITLE=Model

MACH_LENGTH_TITLE=Length

MACH_CRITICAL_TITLE=Critical

MACH.ID.DEF_VAL=AUTO_GENERATED

MACH.CRITICAL.DEF_VAL=true

<validation class="cbd.enterprise.resource.Machine">

<attribute name="length">

<type>error</type>

<actions>

<action>save</action>

<action>update</action>

</actions>

<condition><![CDATA[it <= 800 &&

indexOf(it, list(125, 250, 450))>=0]]></condition>

</attribute>

</validation> Attribute Validation

Attribute Value Source

Text Resource
Default Value

Figure 34 Semantic machine representation

Figure 35 shows views defined for the machine. A view contains a subset of entity

attributes for different roles. Views assist access control and tailor information for

different business units. The view model indicates the view 1 is editable and view 2

is read-only. If a role is associated with view 2, all persons with this role can only

view machine id and machine name. A machine can have a supervisor and multiple

operators associated. These are reflected by relationship models shown in Figure

36. The relationship model implies that a machine can only have one supervisor but

one supervisor can be associated with multiple machines. The relationship between

machines and operators are many-to-many. According to this relationship

definition, the machine-supervisor relationship is exclusive, which means that

when a person is associated with a machine as supervisor, this person cannot be

associated with the machine in other relationships. Vice versa, if a person already

has other relationships with a machine, he cannot be associated with the machine as

a supervisor.

Chapter 6 Semantic Resource Modeling

94

Figure 35 Machine view

Figure 36 Relationships with machine

<relationship key="machine-person" roleA="cbd.enterprise.resource.Machine"
roleB="cbd.enterprise.org.Person">

<schema key="supervisor">
<title>_localizedText(RELATION_SUPERVISOR)</title>
<linkRole>supervisor</linkRole>
<linkClass>cbd.enterprise.resource.MachinePersonLink</linkClass>
<roleA>

<primaryKey>
<attribute name="id" nameInLink="machineId"/>

</primaryKey>
<cardinality>M</cardinality>

</roleA>
<roleB>

<primaryKey>
<attribute name="id" nameInLink="personId"/>

</primaryKey>
<cardinality>1</cardinality>
<exclusive>true</exclusive>

</roleB>
</schema>
<schema key="operator">

<title>_localizedText(RELATION_OPERATOR)</title>
<linkRole>operator</linkRole>
<linkClass>cbd.enterprise.resource.MachinePersonLink</linkClass>
<roleA>

<primaryKey>
<attribute name="id" nameInLink="machineId"/>

</primaryKey>
<cardinality>M</cardinality>

</roleA>
<roleB>

<primaryKey>
<attribute name="id" nameInLink="persionId"/>

</primaryKey>
<cardinality>M</cardinality>

</roleB>
</schema>

</relationship>

<object class="cbd.enterprise.resource.Machine">
<view name="cbd.enterprise.resource.Machine.view1">

<attribute name="id">
<editable>false</editable>

</attribute>
 <attribute name="name">

<editable>true</editable>
</attribute>
<attribute name="worktableLength">

<editable>true</editable>
</attribute>

 </view>
 <view name="cbd.enterprise.resource.Machine.view2" >

 <attribute name="id">
<editable>false</editable>

</attribute>
 <attribute name="name">

<editable>false</editable>
</attribute>

 </view>
 </object>

Chapter 6 Semantic Resource Modeling

95

6.7 Summary

By considering the requirements of process integration, the resource model is

separated into three levels: foundation, macro and micro. The foundation layer is a

linkage between the resource model and semantic representations. At the macro

level, the model is generic to represent all resources by addressing role, availability,

capability and group. At the micro level, the model can be extended to present

further detailed information of a specific resource. With various semantic

representations incorporated, the model is also highly configurable. This case study

proves that semantic representations can be effectively applied together with

traditional modeling methods to establish configurable and extensible business

object models.

Chapter 7 Semantic Product Structure Modelling

97

Chapter 7 Semantic Product Structure Modeling

7.1 Introduction

Product structure is a hierarchical tree representing the classification of

components of a product and the interrelationships of components. Product

structure is key information widely shared by various business activities performed

at different stages (Mannisto, Peltonen, Martio and Sulonen 1998, Eynard, Gallet,

Nowak and Roucoules 2004, He, Ni, Ming and Lu 2004). PLM is a strategic

business principle to make product information consistent and sharable throughout

the entire product lifecycle. It associates relevant information with product

structures throughout business processes to serve various needs (Thimm, Lee and

Ma 2006). This case study first develops a comprehensive product structure based

on the needs of the made–to-order manufacturing environment. Then, semantic

representations are applied to represent entities and categorizations in product

structure to verify the effectiveness of semantic representations.

7.2 Background

To provide customers with tailor-made products faster, better and cheaper,

manufacturers have shifted their production mode to mass customization in order to

take advantage of mass production for small batch-size production (Ni, Ming and

Lu 2003). For such an environment, a product initially consists of a common base

and modularized functional subsystems to form a customization platform

(MacCarthy, Brabazon and Bramham 2003, Brière-Côté, Rivest and Desrochers

2010). Accordingly, it is essential to develop a product structure model capable of

flexibly representing product families and product variants with the attention to

different business processes in a product lifecycle (Xu and Jiao 2009a). A good

product structure model should be able to synchronize a family structure and its

variant structures (Xu and Jiao 2009b). At present, research in this area generally

Chapter 7 Semantic Product Structure Modelling

98

attempts to structure and represent detailed data related to a single product, and

many product structure models and associated management systems are

specifically developed for the purpose of design management. Product structure

models consider product family and are capable of supporting entire product

lifecycle management rarely exists (Shu and Wang 2005).

One essential function of PDM systems is to manage product structure (Eynard, et

al. 2004). However, few available PDM systems are powerful enough to effectively

manage product structures for mass customization because of the weakness of

product structure models in representing product families (Janitza, Lacher, Maurer,

Pulm and Rudolf 2003). Additionally, as the current PDM framework is

specifically defined for design management, most product structure models

underlying PDM systems lack the ability to support the integration of other

business processes, such as customer order management, planning and production

(Hameri and Nihtila 1998, He, Ni and Lee 2003).

Reports can be found on product structure models relevant to product family

representation. Sudarsan (Sudarsan, Fenves, Sriram and Wang 2005) presented a

product information modeling framework based on three models: open assembly

model (OAM), design-analysis integration model (DAIM) and product family

evolution model (PFEM). Of these models, PFEM model addresses product family

representation. It pays little attention to the effective representation of common

characteristics of a family and particular characteristics of a variant. Du (Du, Jiao

and Tseng 2000) reported a product structure model to represent product family for

mass customization. The model employs three views, which are functional view,

technical view and structural view. The functional view focuses on the

classification of diverse functional features of a product portfolio for customer

recognition. The technical view is intended to represent building blocks. The

structural view represents the topological structure of building blocks and

configuration rules guide the product configuration. This model is helpful for

companies in shifting from individual product development to family-based design

because it provides a systematic method to establish a building block repository

and configuration rules. However, it lacks the ability to support design process

management. Fujita (Fujita 2002) proposed a product structure representation by

Chapter 7 Semantic Product Structure Modelling

99

decomposing a product into different subsystems. By employing entity

relationships to represent the topological structure of subsystems and attributes to

represent the association possibilities of subsystems, the model places its focus on

maximizing product varieties using minimum building blocks to achieve optimized

a customization platform. Janitza (Janitza, et al. 2003) also reported a product

model for mass customization by incorporating product decomposition and part

specification into one model. This model focuses on providing a flexible product

model specification for product designers and a simple configuration for customers.

Family representation and variant representation has not received enough attention,

and little research can found on the synchronization of family presentation and

variant representation.

This case study addresses some of main gaps, which include: 1) explicit

representations of common characteristics of product family and specific features

of product variants; 2) synchronization of a family model and its variant models in

the context of mass customization; 3) integration of production structure and other

business object models; and 4) extensibility of product structure models for flexible

product lifecycle management systems.

7.3 Abstract Product Structure Model

7.3.1 Master-variant pattern

To enable the developed model to effectively represent the common features of a

family and special features of different variants, a master-variant pattern, as shown

in Figure 37, is proposed as a fundamental technique for establishing the product

structure model. In the model, the interfaces IMaster and IVariant are modeled to

represent common properties and behaviors of families and variants respectively.

The interface IMVLink represents common properties and behaviors of associations

between masters and variants. Classes that directly or indirectly implement the

interface IMaster are enforced to comply with the principles defined by the master-

variant pattern. The cardinalities of the association between IMaster and IVariant

imply that one master can have one or more variants and a variant should have and

can only have one master. Based on this pattern, a master and its variants exist

Chapter 7 Semantic Product Structure Modelling

100

interdependently. A master cannot exist without a variant and vice versa. Attributes

common to all variants should be defined in the master classes, which are the

classes that directly or indirectly implement the interface IMaster. Attributes

specific to variants should be modeled in variant classes, which directly or

indirectly implement the interface IVariant. IMaster is an abstract for grouping

variants and represents the common characteristics of variants. IVariant represents

the special characteristics of variants.

Figure 37 Master-variant pattern.

In the model, the attributes id and name are defined to uniquely identify individual

families. The attribute version is used to differentiate variants in a family. The

model implies that all variants share the same id and name and each variant can

have a special name because the attribute variantName is defined in the class

Variant.

The master-variant pattern offers three main advantages: 1) it provides a clear

boundary between family representation and variant representation. At the same

time, it provides an easy way to maintain data integrity; 2) it is capable of

representing common characteristics of families and specific characteristics of

individual variants; and 3) it can flexibly meet different requirements of different

Chapter 7 Semantic Product Structure Modelling

101

business processes. Masters or variants can be explicitly used as input to business

processes and related information can be explicitly linked to masters or variants.

For example, process plans can be linked to variants so that each variant may be

produced in a different set of operations. Assembly plans may be linked to masters

as all variants have the same connection features.

7.3.2 Product structure model

Based on the master-variant pattern, the product structure model shown in Figure

38 is developed. Based on the master-variant pattern, the model adopts three

groups of classes to represent product, part and subassembly respectively: Product,

ProductVariant and ProductMVLink, Part, PartVariant and PartMVLink as well as

Subassembly, SubassemblyVariant and SubassemblyMVLink. The classes Product,

Part and Subassembly represent product masters, part master and subassembly

master while the classes ProductVariant, PartVariant and SubassemblyVariant

represent product variants, part variants and subassembly variants.

Figure 38 Product structure model.

Chapter 7 Semantic Product Structure Modelling

102

7.3.2.1 Family Structure

For clarity, the family structure model is taken out from Figure 38 and shown in

Figure 39. In the model, aggregation associations between Product and Part,

Subassembly as well as StandardPart indicate that a product can consist of non-

standard parts, subassemblies and standard parts. A subassembly can constitute

other subassemblies, non-standard parts and standard parts. Therefore,

Subassembly has aggregation associations with itself, Part and StandardPart. It has

to be pointed out that Part and Subassembly are master classes, as shown in Figure

39, they represent a family rather than a concrete variant. Hence, the model shown

in Figure 39 only reflects how families, subassembly families and standard parts

are involved in a product family. It does not provide concrete information about

which variant of a part family or a subassembly family is involved in a product

variant. However, based on the master-variant link, all part variants and

subassembly variants are clearly reflected. Therefore, the family model provides an

overall view of a product family about product variants and all optional part

variants and subassembly variants. Such an overview is called product family

spectrum (Hameri, et al. 1998).

Figure 39 Product family model.

Figure 40 shows the sample spectrum view of a simplified car family based on the

developed model. A car family, represented by Car:Product, can consist of an

audio subsystem, represented by Audio:Subassembly, and an engine, represented by

Chapter 7 Semantic Product Structure Modelling

103

Engine:Part. Further, an audio subassembly consists of a radio subsystem,

represented by Radio:StandardPart, and a media player, represented by

MediaPlayer:Subassembly. From the spectrum, it can be clearly seen that three

types of engines with different rated powers and three types of audio subsystems,

which are cassette player, CD player and video player, are available for selection.

The spectrum can effectively assist designers to configure products for customers,

amend design to reorganize existing functions into configurable subsystems, design

new alternative subsystems, or develop new functional subsystems to enhance

customizability of a family. It also helps customers configure products when

placing orders.

Family Structure

handle : long = 0001

id : String = CAR-M-001

name : String = General car

Car : Product
Audio Family

handle : long = 0011

version : String = AUIDO.CD

variantName : String = CD based audio

CDAudio : SubassemblyVariant

handle : long = 0010

version : String = AUIDO.CASSETTE

variantName : String = Cassette based audio

CassetteAudio : SubassemblyVariant

handle : long = 0012

version : String = AUDIO.VEDIO

variantName : String = Video based audio

VideoAudio : SubassemblyVariant

Car Family

handle : long = 0002

version : String = CAR.A

variantName : String = Car A

CarA : ProductVariant

handle : long = 0003

version : String = CAR.B

variantName : String = Car B

CarB : ProductVariant

handle : long = 0004

version : String = CAR.C

variantName : String = Car C

CarC : ProductVariant

Engine Family

handle : long = 0006

version : String = ENG.1.8

variantName : String = Engine 1.8

Engine1.8 : PartVariant

handle : long = 0007

version : String = ENG.2.0

variantName : String = Engine 2.0

Engine2.0 : PartVariant

handle : long = 0008

version : String = ENG.2.2

variantName : String = Engine 2.2

Engine2.2 : PartVariant

handle : long = 0009

id : String = AUDIO-M-001

name : String = Car audio

Audio : Subassembly

handle : long = 0013

id : String = RADIO-M-001

name : String = AM/FM Radio

Radio : StandardPart

handle : long = 0005

id : String = ENG-M-001

name : String = Engine

Engine : Part

handle : long = 0015

id : String = PLAYER-M-001

name : String = Media player

MediaPlayer : Part

Media Player Family

handle : long = 0016

version : String = MP.Cassette

variantName : String = Cassette player

CassettePlayer : PartVariant

handle : long = 0017

version : String = MP.CD

variantName : String = CD player

CDPlayer : PartVariant

handle : long = 0018

version : String = MP.VIDEO

variantName : String = Video player

VideoPlayer : PartVariant

Figure 40 A simplified car family spectrum.

7.3.2.2 Variant Structure

A variant structure should clearly reflect what part variants and subassembly

variants are used to form a particular product variant. At the same time, the model

should be capable of enforcing the consistency of the family structure and variant

structures. To achieve this goal, the variant structure model is built on the top of the

Chapter 7 Semantic Product Structure Modelling

104

family structure model. As shown in Figure 38, FPPLink and FPSLink respectively

represent associations of a product family with a part family and a subassembly

family, and FSSLink represents association of a subassembly family with other

subassembly families. To further represent variant structures, three association

classes, i.e. PPVersionLink, PSVersionLink and SSVersionLink, are defined to

associate FPPLink with PartVaraint, FPSLink with SubassemblyVariant and

FSSLink with SubassemblyVariant. PPVersionLink, PSVersionLink and

SSVersionLink are called version links. A key attribute in the version links is

version. The value of this attribute indicates to which product variant or

subassembly variant the associated variant is attached.

To explain the variant structure model, the relationships between a car variant and

engine variants are taken as an example. As shown in Figure 41, the car family has

three variants, i.e. CarA, CarB and CarC, and the engine family also has three

variants, which are Engine1.8, Engine2.0 and Engine2.2. Car and Engine are

associated through CarEngineLink, which is an instance of FPPLink. As mentioned

above, FPPLink is incapable of providing information about which engine variant

is used for CarA, CarB and CarC respectively. To reflect the associations between

the engine variants and the car variants, three version link instances are introduced,

i.e. EngineVersionLink1, EngineVersionLink2 and EngineVersionLink3 to associate

Engine1.8, Engine2.0 and Engine2.2 with CarEngineLink respectively. The

attribute version in the version link classes plays the role of specifying which car

variant each associated engine variant is used for. According to Figure 41, it is

clear that Engine1.8 is used for CarA, as the value of the attribute version of

EngineVersionLink1 is CAR.A, which should be same as that of the attribute

version of CarA.

Compared to the variant structure model that directly associates variants of a part

family and subassembly family with a product variant, a significant advantage of

this model is that the family structure model and the variant structure model are

integrated. As a result, product variant structures can be well controlled by the

corresponding product family structure. For example, in Figure 41, if the engine

family was not associated with the car family, CarEngineLink would not exist.

Consequently, no engine variants could be associated with any product variants.

Chapter 7 Semantic Product Structure Modelling

105

This feature is very significant to companies which manage multiple families and

there exist multiple subsystems that provide the same functions, but are not

exchangeable crossover families. For instance, two engine families are maintained

for two car families respectively without exchangeability. While configuring

products, this model can effectively prevent the selection of incompatible variants

based on the developed product structure.

Figure 41 Relationship between a car variant and an engine variant

7.4 Lifecycle Management Support

7.4.1 Product view model

Users with different disciplines usually look into products from different

perspectives. For example, purchase staff are only interested in the components

which are to be purchased from suppliers or outsourced to partners. A production

manager may only be concerned with the components which are to be made or

assembled internally. In product lifecycle management, in addition to product

structure, a product should be represented in different ways to fulfill different needs.

These representations should be consistent with the product structure, which

completely reflects product constitution and relationships of constitutional

components from the perspectives of functions and structures (Fuxin 2005). To

fulfill this need, the developed product structure model is extended to support

handle : long = 0001

id : String = CAR-M-001

name : String = General car

Car : Product

CarEngineLink : FPPLink

handle : long = 0005

id : String = ENG-M-001

name : String = Engine

Engine : Part

handle : long = 0003

version : String = ENG.2.2

variantName : String = Engine 2.2

Engine 2.2 : PartVariant

version : String = CAR.A

EngineVersionLink1 : PPVersionLink

version : String = CAR.B

EngineVersionLink2 : PPVersionLink

version : String = CAR.C

EngineVersionLink3 : PPVersionLink

handle : long = 0006

version : String = ENG.1.8

variantName : String = Engine 1.8

Engine 1.8 : PartVariant

Car Variants

handle : long = 0002

version : String = CAR.A

variantName : String = Car A

CarA : ProductVariant

handle : long = 0003

version : String = CAR.B

variantName : String = Car B

CarB : ProductVariant

handle : long = 0004

version : String = CAR.C

variantName : String = Car C

CarC : ProductVariant

handle : long = 0007

version : String = ENG.2.0

variantName : String = Engine 2.0

Engine2.0 : PartVariant

Chapter 7 Semantic Product Structure Modelling

106

product views. A product view is a hierarchical representation to associate some of

components of a product in different ways, to fulfill needs of a specific stage in a

product lifecycle. In product view management, an essential requirement is that a

product view should be independent of its product structure. However, it should be

easily synchronized with product structure. In other words, the product structure of

a product should be kept unchanged while constructing product views. Changes to

the product structure should be reflected in the product views. As shown in Figure

42, a reference mechanism is adopted to realize product views. A product view,

represented by the class ProductView, consists of a set of instances of PartRef

and/or SubassemblyRef organized in a hierarchical structure. Since product views

are constructed using part references and subassembly references, they are

independent of a product structure. However, the reference mechanism enables

product views to be linked back to product structure. Synchronization between

product views and the corresponding product structure can be achieved. A

reference is a pointer which does not contain the actual data of a part or a

subassembly. Therefore, no duplications of data exist and data consistency can be

easily maintained. A product can have multiple views, such as manufacturing view,

bill of material (BOM) view and engineering change (EC) view. As shown in

Figure 42, the categorization of product views is realized based on view roles,

which is represented by the link class ViewRole. The ability to support product

views enables the model to better support product lifecycle management.

7.4.2 Integration with other processes

As shown in Figure 38, the model differentiates standard parts and non-standard

parts. The main reasons for differentiating non-standard parts and standard parts

are: 1) family concept is inapplicable to standard parts; and 2) processes that non-

standard parts go through are different from those of standard parts. Standard parts

are purchased from suppliers and managed in inventory. However, non-standard

parts may go through various processes, such as a production process if they are

made internally or an outsourcing process if they are made by partners, and an

inventory management process if they are made to stock.

Chapter 7 Semantic Product Structure Modelling

107

Figure 42 Product view model.

The interfaces IStockable, IPurchasable and IOutsourcable are modeled to enforce

the implementing classes to comply with the processing rules of stock management,

purchase management and outsourcing management. The implementation of

IStockable by variant classes, i.e. ProductVariant, PartVariant and

SubassemblyVariant, implies: 1) common parts, subassemblies and even products

are allowed to be made to stock; and 2) it enables make-to-order and make-to-stock

decisions to be made at a variant level. As a result, in a part or subassembly family,

variants commonly demanded can be made-to-stock while variants only demanded

by a few customers may be particularly made when being ordered.

7.5 Semantic Product Structure Representation

The product structure model discussed above is abstract and lacks the ability to

differentiate and characterize different types of products, parts and subassemblies.

To make it useful to the development of PLM systems, the model has to be

converted to a concrete model according to industrial sectors. The object-oriented

approach to derive a concrete model, based on an abstract model, is called

generalization, which is a process to define subclasses by extending abstract classes

to represent specific types. For example, the subclasses Shaft and Gear may be

defined by extending the abstract class Part to represent shafts and gears, which are

more concrete types of parts. However, companies in different industrial sectors

have different types of products, parts and subassemblies. Even companies in the

same industrial sector may categorize these items in different ways due to the

Chapter 7 Semantic Product Structure Modelling

108

difference of business practices. For example, one company may categorize gears

as standard gears and non-standard gears, while another as cylindrical gears and

conical gears. The identification of subclasses and the essential attributes of each

subclass are difficult at the stage of creating a concrete product structure model. A

concrete product structure model developed by creating subclasses may not be

sharable to different companies. Traditionally, concrete models are usually

established at the design stage and are physically built into a PLM system. In such

a way, any changes to a model will cause changes to system source code. Such a

PLM system cannot be reused for different companies and lacks the flexibility to

support business practice changes.

This case study uses semantic representations to develop a concrete product

structure model and make a product structure model loosely coupled with system

programs. In such a PLM system, the product structure model can be changed or

replaced for different business practices. Such a PLM system is highly flexible and

can be easily deployed to different companies, even in different industrial sectors.

7.5.1 Entity Representation

Figure 43 shows the semantic model of product. Entity definition declares all

attributes a product entity has. Default value defines default values for the

attributes id and critical. Value sources define value candidates for the attribute

model. Attribute properties define constraints for the attributes id and length.

Attribute validation contains rules for validating values assigned to the attribute

length. It indicates that validation is only to be done for two actions: save and

update. It can be seen that semantic representations can effectively represent

entities in product structures. The representation is similar to and consistent with

the machine representation. This proves that the semantic model can be easily

constructed.

Chapter 7 Semantic Product Structure Modelling

109

Entity Definition

Text Resource

<valueConstraints class="cbd.design.ProductVariant">

<attribute name="id">

<caseMode>capital</caseMode>

<spacePermitted>false</spacePermitted>

<maximalLength>32</maximalLength>

</attribute>

<attribute name="length">

<minimum included=”true”>50.0</minimum>

<decimalNumber>3</decimalNumber>

</attribute>

</valueConstraints> Attribute Properties

<validation class="cbd.design.ProductVariant">

<attribute name="length">

<type>error</type>

<actions>

<action>save</action>

<action>update</action>

</actions>

<condition><![CDATA[it <= 800 &&

indexOf(it, list(125, 250, 450))>=0]]></condition>

</attribute>

</validation> Attribute Validation

<valueSource class="cbd.design.ProductVariant">

<attribute name="model" valueSourceType=”constant”>

<default>SD-X4</default>

<candidates>

<candidate>SD-X1</candidate>

<candidate>SD-X2</candidate>

<candidate>SD-X3</candidate>

<candidate>SD-X4</candidate>

</candidates>

</attribute>

</valueSource> Attribute Value Source

<entity class="cbd.design.ProductVariant"

super=”cbd.entity.Base”>

<attribute name="id">

<type>VARCHAR</type>

<required>true</required>

<extended>false</extended>

<title>PRODV_ID_TITLE</title>

</attribute>

<attribute name="model">

<type>VARCHAR</type>

<title>PRODV_MODEL_TITLE</title>

</attribute>

<attribute name="length">

<type>VARCHAR</type>

<extended>true</extended>

<title>PRODV_LENGTH_TITLE</title>

</attribute>

<attribute name="...">

...

</attribute>

</entity>

<defaultValue class="cbd.design.ProductVariant">

<attribute name="id" valueKey=”PRODV.ID.DEF_VAL”/>

<attribute name="critical" valueKey=”PRODV.CRITICAL.DEF_VAL”/>

</defaultValue>

Default Value
PRODV_ID_TITLE=ID

PRODV_MODEL_TITLE=Model

PRODV_LENGTH_TITLE=Length

PRODV.ID.DEF_VAL=AUTO_GENERATED

...

Figure 43 Semantic product definition.

7.5.2 Categorization Representation

The approach of creating different subclasses to represent different types of

products, parts and subassemblies results in a rigid concrete model. Therefore, this

case study uses semantic category representations for flexible categorization. As

shown in Figure 44, semantic category representation organizes categories in a

hierarchical format. The tag category defines a category using three parameters:

key, title and schema. The attribute schema contains a keyword pointing to a group

of attribute definitions associated with the category. A collective category, such as

gear, can have sub-categories, such as cylindrical gear and conical gear, which are

represented as nested elements of the collective category. The attributes defined for

a collective group will be inherited by all its sub-categories. Apart from attributes

defined in the class PartVariant, instances of CylindricalGear and ConicalGear

also have attribute teethNumber which is defined for the category gear. At the

same time, CylindricalGear and ConicalGear instances have specific attributes

respectively to characterize cylindrical gears and conical gears. This approach does

Chapter 7 Semantic Product Structure Modelling

110

not require identifying all subclasses at a design stage because categories and

category-related attributes can be configured in semantic models.

Figure 44 Semantic category representation.

7.6 Summary

In the manufacturing industry, product structure needs to be managed to support

various business processes. Product structure representation is critical to PLM

systems. In a make-to-order environment, a product is a family with a number of

variants rather than a single product. Accordingly, a product structure

representation should be able to characterize common characteristics and particular

characteristics of individual variants from a different perspective. It is a significant

industrial need to develop a product structure model that can effectively represent

the family structure and variant structures, and support different stages of the

product lifecycle. This case study adopts a master-variant pattern for establishing

such a product structure model. To make the product structure model extensible,

semantic representations are applied to extend the abstract product structure model

to a concrete model for developing flexible PLM systems. This case study proves

<categories item="cbd.design.PartVariant">

<category key="gear" title="Gear" schema="gear">

<category key="cylindricalGear" title="Cylindrical gear" schema="cylindricalGear"/>

<category key="conicalGear" title="Cylindrical gear" schema="conicalGear"/>

</category>

<category key="shaft" title="Shaft" schema="shaft"/>

<category key="house" title="House" schema="house"/>

</categories>

<category key="gear">

 <attribute>

 <type>INTEGER</type>

 <name>teethNumber</name>

 <title>Teeth number</title>

 </attribute>

</category>

<category key="cylindricalGear">

 <attribute>

 <type>DOUBLE</type>

 <name>diameter</name>

 <title>Diameter</title>

 </attribute>

</category>

<category key="conicalGear">

 <attribute>

 <type>DOUBLE</type>

 <name>smallDiameter</name>

 <title>Small end diameter</title>

 </attribute>

 <attribute>

 <type>DOUBLE</type>

 <name>bigDiameter</name>

 <title>Big end diameter</title>

 </attribute>

</category>

…

Part

Gear

Shaft

House

Cylindrical gear

Conical gear

CylindricalGear:Part

 identity

 version

 weigth

 stockable

 shape

 teethNumber

 outerDiameter

ConicalGear:Part

 identity

 version

 weigth

 stockable

 shape

 teethNumber

 smallDiameter

 bigDiameter

Part Variant Model

Part category tree

Semantic part category representation

Category-based attribute efinition
Part instance representing

a conical gear

Part instance representing

a cylindrical gear

Chapter 7 Semantic Product Structure Modelling

111

that semantic representation can be used to represent comprehensive business

information models with complicated hierarchical structures. Compared to the

previous chapter, the semantic machine model and semantic product model are

very similar. This will also prove that semantic representations are consistent and

easy to use.

Chapter 8 Semantic Reporting Modelling

113

Chapter 8 Semantic Reporting Modeling

8.1 Introduction

This chapter develops a flexible reporting model to verify the usability of semantic

representations in cases where massive and complicated information processing is

involved. According to the architecture of model driven enterprise systems, the

reporting function is separated into two parts: report configurations and software

programs. Report configurations are based on semantic representations and contain

instructions that guide computer programs to generate reports. By providing

different report configurations, the same software program can generate different

types of reports. This approach enables the development of a generic and flexible

reporting solution which can be reused in different enterprises.

8.2 Background

The purpose of an enterprise system is to provide the right person with the right

information in the right format at the right time by capturing, generating,

associating, populating information according to business practices (Clive and

Aiken 1999). To effectively assist end users, information must be presented in a

structured and concise format. Indeed, reports play a very important role in

enterprise systems. Reports provide summarized information about the status of

resources, progress of jobs and profit profiles for planning and decision-making.

Reports also contribute to communication with external partners, e.g. suppliers and

customers. There are many types of reports to be generated and managed to

facilitate operational management in enterprises. Based on the knowledge obtained

from our industrial partners, there typically exist 50 to 80 types of reports in small

Chapter 8 Semantic Reporting Modelling

114

and medium-sized enterprises (SMEs). Therefore, reporting is one of the critical

functions in enterprise systems and it has been one of the key functionalities to be

evaluated in the selection of enterprise systems.

Different types of reports usually have different appearances and contents. Even for

the same type of reports, the appearances and contents can also vary from one

company to another. After a system is deployed, end users may have the need to

adjust report formats and/or contents, and to add new reports due to changes in

business practices. Though the need of a flexible reporting method has existed for a

long time, it has received little research attention (Kahn 1998, Jensen and

Baumgartner 2003). This research presents a configuration-based reporting method

that can be used to develop flexible reporting solutions. Such solutions can be

rapidly customized to satisfy the requirements of different companies. They can

also be easily reconfigured to support new business practices even after being

deployed. As a result, the deployment cycle of an enterprise system can be

effectively shortened and end users can have more freedom to change their

business practices when necessary.

A few studies on reporting can be found in the literature (Kahn 1998, Langlotz

2000b, Jensen, et al. 2003, Luo and Bai 2005). These studies only discussed report

generation for some specific applications without consideration of flexible

reporting methods for enterprise information systems. Langlotz (Langlotz 2000a)

carried out a study on structured reporting for radiology practices. This study came

out with a structured model that enabled the embedding of multimedia into reports

and made report contents semantic. Reports based on the model could be easily

shared through the internet and stored to support future research. Jensen (Jensen, et

al. 2003) also reported a structured reporting system for hospital use. The system

adopted a template-based method for report generation. The templates were

represented as XML documents. Extensible stylesheet language (XSL) was

adopted to transform the template for displaying on screen for data collection. The

collected data was converted to structured report objects based on the standard of

digital imaging and communications (DICOM) in medicine. Based on the Web

services technology, Luo (Luo, et al. 2005) developed a reporting system for

generating software test reports. The system is composed of three components:

Chapter 8 Semantic Reporting Modelling

115

report definition, report generator and report presentation. The report definition

was employed to define the types of reports and database tables and table fields to

be shown in the report. Similar to the system reported by Jensen, XSL was also

used to control report visualization.

The above efforts focused on modeling and designing reporting systems for

specific applications. Reporting functions for enterprise systems are usually much

more complicated. The information shown in enterprise reports is not directly

collected from end users with an empty report on screen. Instead, most information

is processed by other functional modules and stored in different database tables.

Furthermore, many enterprise systems make the structures of, and relationships

between, database tables transparent to implementers and end users (Keller and

Teufel 1998, PTC 2000). Implementers and end users may have difficulties in

understanding the database tables and relationships between these tables. Reports

cannot be generated directly based on database tables.

Reporting solutions provided by commercial enterprise systems are also not

powerful and flexible enough (Henschen 2005). Many companies with enterprise

systems have complained, citing difficulties for their management in finding out

how the business was performed, because not enough formal printed reports were

provided by the adopted enterprise systems (Ross, et al. 2000). These systems put

focus on managing online transactions rather than converting data into information

to assist in making decisions. In addition, the report solutions provided by these

enterprise systems usually store structured report data in a database with limited

configurability. Contents in reports cannot be changed without the modification of

system source code (Jensen, et al. 2003). Hampered by limited technologies,

redesign and redevelopment are dominant approaches in delivering tailored

reporting solutions for companies (Kahn 1998). Therefore, this case study develops

a reporting method based on semantic representations.

8.3 Overview of the Reporting Method

The reporting method proposed facilitates the development of generic reporting

functions which can be easily adapted to different companies through semantic

Chapter 8 Semantic Reporting Modelling

116

model configuration with little redesign and redevelopment. As shown in Figure 45,

the proposed method decouples report generation logic from the report generation

program. The report generation program is not developed based on generation logic

of individual reports. Instead, it is designed to create reports by interpreting

generation logic in semantic models. Accordingly, based on the architecture of a

model-driven enterprise system, such a reporting solution consists of two

components: semantic reporting models and a generation program. Generation

logic is represented in semantic reporting models so that generation logic can be

changed easily. As the report generation program is driven by generation logic

explicitly represented in semantic reporting models, the program can produce

different reports by providing different sets of models. When reporting models

related to a report are modified, the newly generated reports will be different from

the ones that were generated previously. Instead of writing different software

programs to generate different reports, different sets of semantic reporting models

can be composed for different reports. Similarly, to modify an existing report, the

method is to revise corresponding models rather than to modify the generation

program. The customization of such a report solution is to construct different sets

of semantic reporting models while the generation program can be kept unchanged.

1234567Fax1234

1234567Tel71 Avenue Drive

12/02/2004
Issue

Date

Customer

Address

71

12/02/2010

Report Generation Program

Enterprise

System

Database

Functional

Component

Reporting

System

Semantic Reporting

Models

Figure 45 Overview of the method

8.4 Semantic Reporting Model

The flexibility of the report generation is achieved by utilizing different types of

semantic models which decouple report generation logic from the report generation

program. This section details semantic reporting models which integrate various

logic representations to achieve flexible report generation. As the structure of

Chapter 8 Semantic Reporting Modelling

117

reports plays an important role in semantic reporting model construction, structural

analysis is taken as an entry point to discuss semantic reporting models. To be

generic, a report may consist of multiple pages, including a cover page and/or an

end page. Different pages may have different formats. Each page of a report,

including the cover page and/or end page if they are presented, can be logically

divided into different data areas, optionally separated by lines in different styles.

Furthermore, a data area may constitute various cells with different sizes and styles.

The cells can be located using row and column indices. According to this structural

breakdown, each page of a report can be deemed as various information entries

shown at different locations in different styles.

Based on the structural decomposition, the semantic reporting representation

framework shown in Figure 46 is developed for configuring various types of

reporting logic. In general, the differences of reports can exist in formats, such as

appearances, information entries, entry locations and entry display styles. To

achieve a flexible reporting solution, report formats should be configurable and

information entries in reports should be able to be redefined easily. As shown in

Figure 46, the framework employs a report type model, template model, object

acquisition model, and entry imposition model to realize flexible configuration. Of

these semantic models, the report type model is used to define report types. The

report template defines report appearances and data areas. The object acquisition is

introduced to configure the logic used to retrieve related objects, which are to be

processed to derive information entries. The imposition model is employed to

define the logic of determining information entries and the locations of each entry.

The positions and display styles of information entries can also be specified in this

model. Since report types, report formats, information entries, and entry positions

and entry display styles can be flexible configured, a reporting solution is flexible

and configurable.

In companies, various types of reports need to be generated and managed to

facilitate business operations and decision making. Furthermore, report types can

vary from one company to another. The report type model provides a means for

defining report types needed by individual companies. By revising this model, new

Chapter 8 Semantic Reporting Modelling

118

report types can be added and unwanted report types can be removed. Therefore,

through the report type model, a tailored reporting environment can be easily

achieved for a particular company.

Report Type

Style

Font

Color

Alignment

Semantic Model based Object

Acquisition Processor

Value

Processor

Location

Cell

Data area

Report

Value Source

Constant

Serial

Number

Attribute

Value

Method

Value

Expression

Value

Entry

Value

Style

Location

Entry

Imposition

Objects

Machine list Purchase order Job Tracking

Template

Page

Structure

Cover Page ?

Page

Structure

End

Page

Structure

Object Acquisition

Object Query Navigation Path

Relationship Definition Navigation

Data Retriever

Title

Legends:

Information
Semantic

Model
Aggregate

Figure 46 Semantic Reporting Representation Framework

A type of report can be uniquely characterized by the format, information entries,

entry locations and entry display styles. The proposed method clusters report

generation logic into three types of models: templates, object acquisition and entry

imposition. The report templates are utilized to define report appearances, such as

borders and grid lines, and describe the structures, such as data areas and the

arrangement of data areas. As shown in Figure 46, appearances and structures are

defined on a page basis. As such, different pages can have different appearances

and structures. This should also allow multiple pages to share a template to

minimize the effort of semantic model construction. The positions of information

entries in a data area can be specified in two ways: absolute and relative. The

absolute way is to specify the absolute indices of row and column according to the

upper-left corner of a data area and can only be used for independent information

Chapter 8 Semantic Reporting Modelling

119

entries. On the other hand, if the position of an information entry can only be

worked out when the positions of a related entry are determined, a relative way has

to be used for defining positions of information entries. For example, in a report

listing machines based on work centers, the position of machine entries can only be

decided after the work center entry is located. Accordingly, the data areas are

categorized into absolute data areas and relative data areas. When positioning

entries in a relative way, the growing direction, either horizontal or vertical, can be

defined. Relative data areas can be classified into vertical areas and horizontal

areas. They are also used to control pagination. A page can have multiple relative

data areas and a virtual pointer can be assigned to each relative data area to record

the place where the next entry should appear. When a pointer is out of the data area,

an event is triggered to inform the generation program that a new page should be

initialized.

Report generation is a process of deriving information entries by manipulating

relevant objects and imprinting information entries to specified data areas of a

blank report. It is obvious that the flexibility of a reporting solution is limited if the

logic of gathering necessary objects for report generation is physically built into the

report generation program. In this case, implementers and end users lose

opportunities to change information entries for reports. It is impossible to add new

reports without updating system source code. To improve the flexibility of a

reporting solution, the logic of object acquisition is represented in semantic models

to guide object query, relationship navigation, or invocation of services provided

by enterprise systems to gather objects. By separating object acquisition logics

from the report generation program, it is made possible to customize the contents

of reports without changing the generation program.

Objects needed for report generation are classified into two categories: primary

objects and secondary objects. The objects which have to be provided as initial

input are referred to as primary objects. The objects which can be dynamically

retrieved through relationship navigation based on primary objects are defined as

secondary objects. For example, in purchase order report generation, a purchase

order object is a primary object since it can only be retrieved by a direct database

Chapter 8 Semantic Reporting Modelling

120

query. The objects representing order items in a purchase order are secondary

objects because they can be navigated based on the semantic relationship model

defined between purchase order and order items. Accordingly, the representation

framework introduces object query model for retrieving primary objects and

navigation model for retrieving secondary objects. The query model provides

instructions, which are ultimately converted to SQL statements, to retrieve data

from a database to construct primary objects. The navigation configuration

provides information about relationships between objects to guide relationship

navigation. The model also allows specification of an object retriever for the report

generator to gather objects. An object retriever is a plug-and-play component that

can be invoked to collect objects. It can be developed by reusing some application

functions.

The entry imposition model represents object manipulation logic for deriving

information entries, provides instructions for allocating information entries to

correct positions and specifies display styles of information entries. The entry

imposition model offers opportunities to change information entries, relocate

information entries, and redefine display styles. As indicated in the representation

framework, information entries shown in reports can be configured as constants,

serial numbers, object attribute values, object method values or expression values.

Constants, which are usually the titles of information entries, are directly used as

information entries. Serial numbers are a set of continuous integers, mostly indices

of a collection of related information entries. Attribute values indicate using

attribute values as information entries. Similar to the attribute values, method

values instruct a generation program to invoke the methods on objects to obtain

information entries. Expression values represent complex logic in manipulating

relevant objects to derive information entries.

To effectively facilitate report generation, objects provided for report generation

should be associated in an appropriate way so that the objects can be easily and

quickly found when needed. By addressing these issues, the object association

model has been developed. Figure 47 shows the structure by using a purchase order

as an example. The model organizes objects in a hierarchical tree and identifies

object using names, which are defined in semantic models. In the model, each node

Chapter 8 Semantic Reporting Modelling

121

at the first level holds a keyword, which is the name of object(s) held by its child

nodes. Recursively, an object node can further have name nodes to hold a set of

objects. For example, the object node person has a name node address to hold an

object node of Address. It means that the object Address is associated with the

object Person to represent the person‘s address.

Figure 47 Object association model

8.5 Semantic Reporting Configuration Language

A semantic and easy-to-use configuration language is essential to enable

implementers and end users to undertake reporting configuration. The syntaxes of

the semantic reporting configurations are illustrated in Figure 48. Report types,

page structures, imposition and object acquisition are configured in separate files.

In the type configuration, appearance, pageStructure, entryImposition and

objAcquisition are four tags for linking a report type to its appearance template,

page structure model, imposition model and object acquisition model.

8.5.1 Report type Model

Each report type is defined by the tag report with four nested tags, which are

appearance, pageStructure, objAcquisition and entryImposition. The tags of

appearance, pageStructure and entryImposition are compulsory and the tag

Legends:

purchaseOrder

Order

contactPerson

Person

company

items

item 1

...

item N

supplier

company ...

key

Obj

keyword node

object node

address

Address

Chapter 8 Semantic Reporting Modelling

122

objAcquisition is optional. Each nested tag defines a value as a keyword pointing to

corresponding models. The report type model can be used to dynamically lay out a

reporting environment for end users. A specific reporting environment can be

easily provided for individual companies.

Figure 48 Semantic report configuration

8.5.2 Template Model

The template model provides the information of report appearances and structures

on a page basis. Providing a visual environment for defining or changing report

appearances can make the appearance definition much easier and more efficient. In

this case study, Microsoft Excel is selected for this purpose as it is very popularly

used. It needs to be pointed out that Excel spreadsheets only play a role of defining

the formats of reports. Contents, entry imposition and information processing logic

are specified in other models. In such a way, the report formats can be changed

independently and safely without any potential damages to other models.

Report template
A Microsoft Excel file

<imposition key=“mach_list“>

<object key=“supervisor" dataArea="workcenter"

rowOffset="0" columnOffset="0">

<attributeValue name=“FistName" type="string“

rowOffset="0" columnOffset="2"/>

</object>

<object key="workcenter" dataArea="workcenter“

rowOffset="0" colOffset="0">

<constantValue name="Work Center" type="string"

rowOffset="0" colOffset="0"/>

<attributeValue name="Name" type="string"

rowOffset="0" colOffset="2"/>

</object>

</imposition>
…

Imposition

<pageConf key=“mach_list”>

<page sheet=“content” key="1,default">

<pageArea startRow="26“ startColumn="1“

spanRows="24“ spanColumns="8"/>

<dataArea name=“supervisor" startRow="3"

startColumn="3“ spanRows="3" spanColumns="5“

growing="vertical"/>

<dataArea name=“workcenter" startRow="3“

startColumn="3“ spanRows="3" spanColumns="5"

growing="vertical"/>

</page>
<page …>
…

</page>

</pageConf>

…

Page Structure
<reports group=“resource">

<report type=“machineList“>

<appearance>mach_list</appearance>

<pageStructure>mach_list</pageStructure>

<entryImposition>mach_list</entryImposition>

<objAcquisition>mach_list</objAcquisition>

</report>

<report identifier=“machineSpecs“>

…

</report>

</reports>

Type configuration

Report template
A Microsoft Excel file

<imposition key=“mach_list“>

<object key=“supervisor" dataArea="workcenter"

rowOffset="0" columnOffset="0">

<attributeValue name=“FistName" type="string“

rowOffset="0" columnOffset="2"/>

</object>

<object key="workcenter" dataArea="workcenter“

rowOffset="0" colOffset="0">

<constantValue name="Work Center" type="string"

rowOffset="0" colOffset="0"/>

<attributeValue name="Name" type="string"

rowOffset="0" colOffset="2"/>

</object>

</imposition>
…

Imposition

<imposition key=“mach_list“>

<object key=“supervisor" dataArea="workcenter"

rowOffset="0" columnOffset="0">

<attributeValue name=“FistName" type="string“

rowOffset="0" columnOffset="2"/>

</object>

<object key="workcenter" dataArea="workcenter“

rowOffset="0" colOffset="0">

<constantValue name="Work Center" type="string"

rowOffset="0" colOffset="0"/>

<attributeValue name="Name" type="string"

rowOffset="0" colOffset="2"/>

</object>

</imposition>
…

Imposition

<pageConf key=“mach_list”>

<page sheet=“content” key="1,default">

<pageArea startRow="26“ startColumn="1“

spanRows="24“ spanColumns="8"/>

<dataArea name=“supervisor" startRow="3"

startColumn="3“ spanRows="3" spanColumns="5“

growing="vertical"/>

<dataArea name=“workcenter" startRow="3“

startColumn="3“ spanRows="3" spanColumns="5"

growing="vertical"/>

</page>
<page …>
…

</page>

</pageConf>

…

Page Structure
<reports group=“resource">

<report type=“machineList“>

<appearance>mach_list</appearance>

<pageStructure>mach_list</pageStructure>

<entryImposition>mach_list</entryImposition>

<objAcquisition>mach_list</objAcquisition>

</report>

<report identifier=“machineSpecs“>

…

</report>

</reports>

Type configuration<reports group=“resource">

<report type=“machineList“>

<appearance>mach_list</appearance>

<pageStructure>mach_list</pageStructure>

<entryImposition>mach_list</entryImposition>

<objAcquisition>mach_list</objAcquisition>

</report>

<report identifier=“machineSpecs“>

…

</report>

</reports>

Type configuration

Chapter 8 Semantic Reporting Modelling

123

On the top of the appearance model, the page structure model is introduced to

further describe page structures from two aspects: page area and data area. The

page area is the effective area of a Microsoft Excel spreadsheet where a page

appearance is defined. The tag pageArea is used to define page areas, which has

the compulsory attributes startRow, startColumn, spanRows and spanColumns. The

attributes startRow and startColumn define the upper-left corner of the effective

area and spanRows and spanColumns specify the size of the effective area in row

and column. The effective page area is divided into different data areas. The tag

dataArea is employed for defining data areas of a page. Each data area is assigned

a unique name for reference. Similar to the tag page, the tag dataArea has four

attributes, i.e. startRow, startColumn, spanRows and spanColumns, for defining the

ranges of data areas. The difference is that the upper-left corner of a data area is

relative to the upper-left corner of the page area while the page upper-left corner is

defined using the absolute indices of row and column in a spreadsheet.

The tag page has two required attributes: sheet and key. The attribute sheet

associates the structure model with a spreadsheet in a workbook of Microsoft Excel,

which defines appearance of the page. The attribute key indicates which pages the

model is defined for. The value of the attribute key is a page number or

combination of multiple page numbers. For multiple page numbers, attribute values

can be given in three formats: 1) enumeration, such as ―1,2,3‖; 2) range, such as

―1-3‖; or 3) hybrid, a combination of enumeration and range, such as ―1,2,4-6‖.

The keywords of ―cover‖, ―end‖, ―even‖ and ―odd‖ are reserved for the cover page,

end page, even pages and odd pages respectively. The keyword ―default‖ is also

reserved for pages without a page structure model specified. In other words, when

no page structure model is found based on a page number, the page model whose

attribute key is set to ―default‖ is automatically selected. The rule for finding a page

structure model is described as follows. Firstly, the page number is used to search

for a page structure model. If not found, then, a proper keyword of ―cover‖, ―end‖,

―even‖ or ―odd‖ is used for further searching. Finally, the keyword ―default‖ is

used to search if no page structure is found in the previous two steps.

Chapter 8 Semantic Reporting Modelling

124

8.5.3 Imposition Model

The imposition model represents the logic of deriving information entries and

positioning entries. Entry display styles can also be specified in this model. In the

tag object, an object and the logic can be specified. The object is to be processed

according to specified logic to derive an information entry. The attribute dataArea

refers to the data area where the derived entry should appear. The tag object has

five nested tags, which are constantValue, serialNumber, attributeValue,

methodValue and expressionValue, to define logic for deriving information entries.

The display styles, such as font, alignment and line break, can be configured in the

tag object and the nested tags. The styles specified in the tag object take effect for

all the nested tags. The styles defined in a nested tag overwrite the styles defined in

the tag object and only take effect for that nested tag.

For interdependent information entries, such as the work centre-based machine list

report stated in the previous section, a hierarchical format is used to configure the

interdependent entries. As illustrated in Figure 49, the second object tag is nested in

the first one. It implies that the positions of machine entries are relative to the

positions of the corresponding work centers.

Figure 49 Imposition configuration of a structured report

8.5.4 Object Acquisition Model

The object acquisition model is incorporated to prevent object acquisition logic

from being hard-coded into the report generation program. It maximizes the ability

to accommodate potential changes to report contents. As stated above, three types

of object acquisition logic can be configured, which are object query, relationship

<imposition>

<object key="workcenter" dataArea="workcenter" rowOffset="0" …>

<constantValue name=“Work Center" type="string" rowOffset="0" …/>

<attributeValue name=“name" type="string" rowOffset="0" ../>

…

<object key="machine" dataArea="workcenter" rowOffset="0" …>

<attributeValue name=“id" rowOffset="1" columnOffset="0"/>

<attributeValue name=“title" rowOffset="0" columnOffset="2"/>

…

</object>

</object>

</imposition>

Chapter 8 Semantic Reporting Modelling

125

navigation and object retriever. The object retriever is a plug-and-play component

for retrieving objects. Object query, relationship navigation and expression have

been discussed in detail in Chapter 4.

8.6 Summary

This case study has outlined a reporting method for developing flexible reporting

solutions based on semantic representations. In this method, templates, page

structure model and imposition model are employed for defining types of reports

and the logic of report generation. The report templates define appearances and

structures of individual pages of reports. The page structure model further

describes the structural constitution of reports based on the appearance definition.

The imposition model contains the logic of deriving, positioning and displaying

information entries. To maximize this flexibility, three types of object acquisition

models are employed. The object acquisition models play the role of preventing

object acquisition logic from being physically coded into the report generation

program. An object association model has also been established to organize objects

in a tree format to effectively support report generation.

The method provides the following flexibility with the support of semantic

representations:

 Providing a semantic and systematic approach for defining report

generation logic;

 Semantic report generation logic representation makes the construction

and modification of report configurations independent of any specific

tools and platforms;

 Enabling implementers and end users to easily redefine report formats and

change information entries to be shown on reports;

 Providing opportunities for implementers and end users to configure new

reports and to remove unwanted reports;

Chapter 8 Semantic Reporting Modelling

126

 Reusing or sharing information processing capabilities of enterprise

information systems.

This case study demonstrates the ability of semantic models to represent complex

business logic. It proves that semantic representations can be used in cases when

complicated processing logic is involved.

Chapter 9 Prototype

127

Chapter 9 PROTOTYPE

9.1 Introduction

This chapter develops a proof-of-concept system to study the process of the

development of model driven enterprise systems and further verify the

effectiveness of model driven enterprise systems. The prototype is developed in

Java. The apache web server is adopted as the web server and Tomcat is selected as

the JSP (Java ServerPage) engine. The functions of programmatically processing

Microsoft Excel files are developed using APIs developed by the Apache POI

(Poor Obfuscation Implementation) project, which aims to develop a whole set of

Java-based APIs for manipulating various file formats based upon Microsoft's OLE

2 Compound Document (Oliver, Stampoultzis and Sengupta 2004).

9.2 Object Model Integration

System models developed in the three case studies are discussed separately. These

models are integrated and linked to the configurable object model in order to

incorporate semantic models, as illustrated in Figure 50. The configurable object

model provides the ability to map semantic to memory objects. It also establishes a

connection between semantic models and business object models. In the

configurable object model, the class EntityDefinition has an aggregation

association with the class AttributeDefinition. The class EntityDefinition represents

semantic entity models and the class AttributeDefinition represents semantic

attribute declarations. This implies that a semantic entity model is a collection of

semantic attribute definitions. The classes AttributeValueSource, ValueConstraints

and AttributeValidation are associated with the class AttributeDefinition so that

Chapter 9 Prototype

128

information about attribute value candidates, attribute value constraints and

validation rules are liked to entity objects through the class EntityDefinition.

Report Model

Resource Model

Product Structure ModelConfigurable Object Model

Variant

(from family)

Family

(from family)
IFamily

(from family)

<<Interface>>

ProductFVLink

(from design)

PartFVLink

(from design)

Document

(from Reporting)

Report

(from Reporting)

MicrosResource

(from resource)

Machine

(from resource)

Team

(from resource)

CuttingTool

(from resource)

Material

(from resource)

ToolMaterial

(from resource)

PartMaterial

(from resource)

Person

(from org)
Operator

(from resource)

Supervisor

(from resource)

Product

(from design)

ProductFamily

(from design)

Part

(from design)

PartFamily

(from design)

AttributeValueSource

(from oc)

AttributeValidation

(from oc)

EntityView

(from oc)

ValueConstraints

(from utils)

AttributeDefini tion

(from oc)

TimePeriod

(from resource)

Shaft

(from resource)

GroupRole

(from resource)

ResourceStatus

(from resource)

Calendar

(from resource)

ResourceGroup

(from resource)

Activity

(from resource)

MacroResource

(from resource)

ResourceRole

(from resource)

Employee

(from org)

WorkCenter

(from resource)

EntityDefinition

(from oc)

Configurable

(from entity)

AttributeValue

(from utils)

AttributeValues

(from utils)

Figure 50 Model integration

The class Configurable has an association with the class EntityDefinition.

Therefore, each configurable entity, which is defined as a direct or indirect subclass

of the class Configurable, has a semantic model associated. The class Configurable

also has an association with the class AttributeValues, which can hold a set of

attribute values because it has an aggregation relationship with the class

AttributeValue. The class EntityView enables the definition of a subset of attribute

Chapter 9 Prototype

129

definitions as a view. For the integration view, it can be observed that the class

Configurable is a bridge between semantic models and business object models. All

business entity classes in the resource model, product structure model and report

model are directly or indirectly extended from the class Configurable.

Consequently, these entities inherit the ability from the class Configurable to

support model driven configuration.

9.3 Semantic Model Organization

To achieve model driven enterprise systems, many system models need to be

represented as semantic models. In nature, these models are various XML

documents. These models have to be well organized and associated together so that

they can be effectively managed and used to drive the behavior of software

programs. This research employs the directory structure to organize semantic

model files, as shown in Figure 51. The conf directory contains a set of

subdirectories. A subdirectory may have its own subdirectories. Semantic model

files are organized into different subdirectories according to their logical relevance.

For example, this prototype organizes all semantic models for business objects into

the subdirectories of the enterprise directory. However, different enterprises may

have different preferences to organize these model files. In order to provide

flexibility for enterprises to freely design this structure, a model file name

configuration is introduced to achieve this goal. The model file name configuration

is an XML document which defines the name prefixes of semantic model files. For

example, the name of entity model files starts with entitydefinition; and the name of

semantic attribute definition files starts with attributedefinition. As shown in Figure

51, both attributedefinition_resource.xml and attributedefinition_family.xml (the

suffix .xml is not displayed) are semantic attribute definition files. When parsing

semantic models, the model parser recursively scans all subdirectories of the conf

directory. For instance, when parsing attribute definitions, the parser will collect all

files with a name starting with attributdefinition in any subdirectories of the conf

directory.

Chapter 9 Prototype

130

Model File

Prefix
Semantic Model

Directory

Structure

Semantic Entity

Definition

Semantic Model

Content

Semantic Model

Files for Resource

Semantic Model

Files for Product

Structure

Figure 51 Imposition configuration of a structured report

In such as way, by following the naming convention, enterprises can organize

model files in a structure they prefer. In addition, by using the model file name

configuration, enterprises can put non-model files together with model files, such

Chapter 9 Prototype

131

as readme and configuration guides when non-model file names have no conflicts

with prefixes defined. This can be easily avoided by giving names to non model

files starting with a special character, such as an underscore. This approach can

effectively organize all model files in a hierarchical structure and also offers the

flexibility for enterprises to define a structure based on their own preference.

9.4 System Architecture

Software system architecture is closely related to engineering. It provides a

blueprint which effectively facilitates software development. System architecture

enables complexity and risks to be well managed in the development of enterprise

systems. Hence, architecture is a critical factor decisive to the success of software

development. Generally, enterprise system architecture should be organized in a

way that supports reasoning about the structure, properties and behavior of the

system (David Chen, et al. 2008). The roles of architecture in software

development include: 1) providing a formal description of a system at a component

level; 2) defining the organizational structure of a system and components; 3)

identifying interactions and relationships of components; and 4) providing the

principles and guidelines governing system design and development. By

incorporating these considerations, the architecture is developed as shown in Figure

52. Main advantages of the architecture include: 1) centralized management of

semantic models, which motivates model consistency and reuse; 2) multi-layer

structure, which organizes functions into different layers for better sharing; and 3)

service based information sharing, which ensures information correctness and

consistency.

As illustrated in Figure 52, the backend of the system consists of semantic model

management, application services and system service. The system services provide

functions for security management, system administration and so on. The

application services are further separated into three layers: foundation layer,

functional layer and domain layer. The foundation layer provides fundamental

capabilities to interact with the database and semantic model management service.

The functional layer consists of common functions that can be shared by domain

Chapter 9 Prototype

132

services. The domain layer provides business functions to populate and associate

information based on business requirements.

Intranet

Firewall

Apache

WEB Serve

Authenticatio

n Service

Session

Service

Database

Entity

Service

Relationship

Service

Document

Service

Reporting

Service

Notification

Service

Persistenc

e Service

Project

Service

Product

Service

Resource

Service

Administration Service

Tomcat

(JSP Engine)
Authorization

Service

Inventory

Service

J
a

v
a

 R
M

I
R

e
m

o
te

 A
c
c
e

s
s

Internet

BrowserBrowser

BrowserBrowser

CBS Server

S
e

m
a

n
ti
c
 M

o
d

e
l
M

a
n

a
g

e
m

e
n

t

System Services

Applicaton Services

Functional Services

Foudation Services

JSP

Pages

Figure 52 System architecture

On the foundation layer, the entity service manages information entities based on

semantic models to support the persistence service. It also has the ability to

construct editing models based on semantic models to support the functional

service and the domain service. The relationship service provides functions to

support relationship management and relationship navigation based on semantic

relationship models. It guarantees data integrity and consistency by dynamically

interpreting semantic models. The persistence service acts as a gateway to access

the database. When storing information entities, it maps information entities to

corresponding tables based on semantic table mapping and field mapping. While

retrieving information from the database, it maps database records to entity objects.

Built on the top of the foundation layer, the functional layer provides more specific

functionalities to support the domain services. The document service manages

documents and their ownerships, such as engineering drawings and their

relationships with products, parts and designers. One of the main functions of the

service is to serialize documents as binary objects and desterilize binary objects as

documents to support the persistence service and the relationship service. Reports

are managed as a special type of documents. The report service provides functions

Chapter 9 Prototype

133

to generate reports based on semantic models. Generated reports are managed by

using the document service.

The functional deployment designed in this architecture enables some of the

service components to be easily replaced. It also effectively supports incremental

implementation. By clustering functions into different layers and components, the

architecture makes the foundation service generic and sharable to different

applications. As mentioned above, information sharing between different

applications is achieved via the services. Individual applications are motivated to

acquire shared information through services rather than direct database access. The

significance of this sharing mechanism is that the correctness and consistency of

shared information is ensured because the services take care of every aspect of data,

such as maturity, validity, integrity, consistency and security.

9.5 Semantic Model Management

In model driven enterprise systems, semantic models need to be well managed and

made ready for software programs to use. The semantic model management

framework is developed as shown in Figure 53. The semantic models are parsed

using SAX (Simple API for XML) APIs in Java. The object mapping bean converts

semantic models into Java objects, named model objects, based on the configurable

object model shown in Figure 50. Model objects are managed in pool. The model

service is an interface for software programs to retrieve model objects.

Figure 53 Semantic model management

Semantic Model Parser

Entity
Semantic

model

Relationship
model

Navigation
model

…

Java
Object
Model

Semantic Model Object Pool

Semantic Model Service

Relationship ServiceEntity Service

Object
Mapping Bean

SAX Java
API

Chapter 9 Prototype

134

Figure 54 shows the model of the semantic model management server. The class

Server represents the semantic model management server. The class

ServerManager has the capability to manage multiple instances of server. Each

server has a context associated, which is represented by the class CBDContext.

Meanwhile, the class CBDConext manages semantic models in a raw format. The

raw semantic models are basically XML documents. This enables to develop GUI

based tools to manipulate semantic models. The class CBDContext reads XML

documents using various XML parsers. Services, such as ObjectConfigService and

ModuleService, convert XML documents to semantic model objects based on the

object model shown in Figure 50. The semantic model objects are passed to the

semantic model service, represented by the class SemenaticModelService, and

managed in the object pool. The semantic model service provides an interface for

the foundation services and other services to retrieve semantic model objects.

Figure 55 illustrates the administration screen of the semantic model management

server. There are three instances associated with the server manager.

Figure 54 Service model of semantic model management

Chapter 9 Prototype

135

Figure 55 Screen of model management server

9.6 Expression Model

Expressions are widely used in model driven enterprise systems, such as query

model, value validation and reporting. Figure 56 illustrates the expression object

model. In the model, the class ExpressionConstant contains all reserved keywords,

such as function names. The class ExpressionOperatorTypes represents operators

as objects to facilitate expression evaluation. The class ExpressionParser is created

to read semantic expressions in XML. The class ExpressionService transforms

XML based expressions to model objects based on the class ExpressionConfig. The

semantic management model server further converts the expression model objects

to expression trees for other services to use. The expression calculator, represented

by the class ExpressionCalculator, traverses the entire expression tree to evaluate

expressions.

Chapter 9 Prototype

136

Figure 56 Expression object model

9.7 Entity Management

A framework to manage entities based on semantic models is developed, as shown

in Figure 57. This framework can interpret semantic models and manage

information entities based on semantic models. It is essential that the entity

management can present entity attributes based on semantic models. As shown in

the framework, various renderers, such as list renderer, tree renderer and table

renderer are modeled to achieve this goal. An adaptive property editing component

is developed to automatically present attributes as a 2-column table with suitable

editors for end users to view or edit attributes. The object initiator creates and

initializes entity instances based on semantic models. The process of initiating an

instance is shown in Figure 56.

The object initiator returns an instance of the class ObjectDataModel which is a

unified data structure to represent entity instances. The object initiator

automatically incorporates the corresponding semantic model into the instance of

ObjectDataModel. The property component is controlled by a property editing

Chapter 9 Prototype

137

model named PropertyModel. PropertyModel constructs suitable editors for entity

attributes according to semantic models. If there is no editing component

configured for an attribute, PropertyModel constructs a default editor based on the

value type and value source of the attribute. EditingProcessor is a connector to link

the property editing component with the editing property model and other

processors. The property editing component notifies the editing processor of value

changes. EditingProcessor triggers the value validation processor to do validation.

After validation, the editing processor notifies the property editing model to update

the value back to ObjectDataModel. Ultimately, this framework can effectively

present an editing environment to manage information entities according to

semantic models. EditingProcesssor links renderers, value source processor and

validation processor to ensure that each attribute has a proper editor and that the

attribute value assigned is correct, and value candidates are derived if the value

source is configured. To assist information presentations, various GUI components

are also developed with the ability to work based on semantic models, such as table,

tree and list.

Object Schema

Attribute N

...

Attribute 1

Definition

Validation

ValueSource

Properties

Attribute i

PropertyModel

Semantic

List Pattern

Editing

Processor

Validation

processor

...

Value soruce

processor

Object

Initializer

Renderer

Model

Generator

Table

Renderer

Tree

Renderer

Semantic

Tree Pattern

Table Model Tree Model

Entity

Model

Property Component

Milling Machine

Grinding Machine

Milling machine[MT-001]

Milling machine[MT-002]

True

FUNC-X25

MT-M-001

750mm

ValueAttribute

ID

Model

Length

Critical

OK CancelDeleteUpdate

TrueFUNC-X25MT-M-001 750mm

ModelID Length (mm) Critical

FalseMH-TX23MT-M-002 230mm

TrueFUNC-T42MT-M-003 450mm

TrueMH-TY33MT-M-004 510mm

Figure 57 Adaptive entity management environment

Chapter 9 Prototype

138

Start

Normal initiation

Is semantic model defined

Retrieve default

model view
Get view schema

Is view specified

Initiate

ObjectDataModel

Initiate

AttributeValue

Is an extended attribute

Update

AttributeValue

collection

Initiate modeled

attribute value

Has more attribute

End

Yes

Yes

No

Associate

ObjectDataModel

with the instance

No

No

Yes

No

Yes

Figure 58 Process of initiating an entity instance

9.8 Relationship Management

Similar to the entity management, an adaptive environment is also needed to

manage relationships based on semantic models. In relationship management,

relationships are classified into four types based on the cardinality and whether

attributes exist in link classes: one-to-one without link attributes, one-to-one with

link attributes, one-to-many without association attributes and one-to-many without

association attributes. As shown in Figure 59, objects involved in a relationship are

presented in a way similar to the entity management. The relationship manager

interacts with the relationship service to obtain semantic relationship models. It

also constructs various objects involved in a relationship. The relationship

Chapter 9 Prototype

139

management component dynamically presents a management environment by

communicating with the relationship manager at runtime. Figure 60 shows an

example GUI for managing relationship with properties in the link class.

Figure 59 Adaptive relationship management environment

Figure 60 Adaptive relationship management environment

Chapter 9 Prototype

140

9.9 Database Schema Generation Tool

Semantic models are central resources in the development of model driven

enterprise systems. They are not only used to control and guide software programs

but also can be used to generate database schema and entity classes. This enables

the synchronization of semantic models, platform specific classes, database schema

and other resources. The several tools are developed as the part of the prototype

system to demonstrate such benefits of model driven enterprise systems. Figure 61

illustrates a tool for generating database schema based on semantic models. Figure

62 shows the database schema generated based on semantic models for product

structure management. This tool itself is developed using the model driven

approach based on the object model shown Figure 63. Figure 64 is the semantic

model to control the GUI layout.

Figure 61 Database scheme generation tool

Chapter 9 Prototype

141

Figure 62 Generated database schema

Figure 63 Object model of database schema generation tool

Chapter 9 Prototype

142

Figure 64 Environment model for database schema generation tool

9.10 Product Structure Management

Figure 65 shows the product structure management functions implemented based

on the architecture developed using the model driven approach. Figure 66 and

Figure 67 illustrate the part family semantic model and semantic scenario models

developed for this function.

<conf type="environment" resourceLink="resource.com.comResource" title="Environment">
<environment resource="resource.com.comResource">

 <components>
 <component key="logoLabel">
 <type>label</type>
 

 <title>_localizedText(DB_GEN_LOGO_LABEL_TITLE)</title>
 </component>
 <component key="outputFile">
 <action>outputFile</action>
 <type>button</type>
 <auxiliaryCommand>selectDirectory</auxiliaryCommand>
 <propertyName>outputFile</propertyName>
 <editingModel>default</editingModel>
 <class>cbd.beans.bbeans.BButton</class>
 
 <statusManaged>true</statusManaged>

 <style>imageButton</style>
 </component>
 <component key="outputDir">
 <action>outputDir</action>
 <type>button</type>
 <auxiliaryCommand>selectDirectory</auxiliaryCommand>
 <propertyName>outputDir</propertyName>
 <editingModel>default</editingModel>
 <class>cbd.beans.bbeans.BButton</class>
 
 <statusManaged>true</statusManaged>

 <style>imageButton</style>
 </component>

…
 <layout direction="vertical" windowWidth="550" windowHeight="500" >

<split key="verticalSplit" direction="vertical" splitRatio="0.5">
 <componentGroup key="top" direction="horizontal" extending="both" >

 <split key="horizontalSplit" direction="horizontal" splitRatio="0.3">
 <componentGroup direction="vertical" extending="both" growingX>

 <component key="instances">
 <extending>both</extending>
 <growingX>1.0</growingX>

 <growingY>1.0</growingY>
 </component>

 </componentGroup>
 <componentGroup direction="vertical" extending="both>

 <componentGroup key="logoLabel" direction="horizontal" extending=both" >
 <component key="logoLabel">

 <extending>both</extending>
 <growingX>1.0</growingX>
 <growingY>1.0</growingY>
 </component>
 </componentGroup>
 …

Chapter 9 Prototype

143

Figure 65 Product structure management

Figure 66 Part family semantic model

<conf type="attributedefinition" resourceLink="attributedefinition_family"
title="attributedefinition_family">
 <object class="cbd.enterprise.family.IFamily">
 <attribute name="id">
 <type>VARCHAR</type>
 <required>true</required>
 <extended>false</extended>
 <title>id.1</title>
 <valueProperties type="text">
 <defaultValue>xxx</defaultValue>
 <compulsory/>
 <caseMode>none</caseMode>
 <spacePermitted>false</spacePermitted>
 <maximalLength>128</maximalLength>
 </valueProperties>
 </attribute>
 <attribute name="name">
 <type>VARCHAR</type>
 <extended>false</extended>
 <title>name.1</title>
 <valueProperties type="text">
 <caseMode>none</caseMode>
 <spacePermitted>false</spacePermitted>
 <maximalLength>128</maximalLength>
 </valueProperties>
 </attribute>
 </object>
 ...
 </object>
</conf>

Chapter 9 Prototype

144

Figure 67 Semantic scenario model of product structure management

9.11 Conclusions

This chapter briefly demonstrated a proof-of-concept system, key components and

a database scheme generation tool developed based on the concept of model driven

enterprise systems and semantic representations. It proves that semantic models can

be effectively interpreted by computers to control software programs. The system

architecture developed successfully separates semantic models and software

programs. It enables the semantic model service to manage semantic models well,

at a centralized place for applications to use. This makes semantic models sharable

to various applications.

Chapter 9 Prototype

145

9.11.1 Challenges in Development of Model Driven Enterprise System

Through the prototype development, the following two challenges can be identified

in the development of model driven enterprise systems:

 In the design phase, additional efforts are needed to investigate the

variability of business requirements and design semantic models to

support the variability. Since model driven enterprise systems do not work

directly based on particular business requirements, an extra level

abstraction is essential by transforming specific business requirements to

more general model instructions at the design. The degree of enterprise

system flexibility is tightly dependent on the level of the abstraction. Two

approaches can be adopted to achieve a better abstraction: 1) collect and

analyze business requirements from different companies, better from

different industrial sectors. This facilitates the design of semantic

representations that can support more variations; 2) study existing systems.

This approach can help design powerful semantic representations to

achieve more flexible GUI environments, information presentation and

functional layout.

 In the test phase, in addition to normal functions tests based on business

requirements, the ability of software programs to support different

variations of a semantic model also needs to be thoroughly tested. This

type of test can be very difficult because a semantic model can be varied

in many ways. Two approaches can be adopted to ease this type of test.

One is to use composite semantic models to challenge relevant software

programs. A composite semantic model is a hypothetic semantic model

which mimics the most complicated case of a semantic model. Another is

to use a test-driven development approach. The test driven development

approach has two purposes: 1) to ensure that software programs work as

assumed at the development stage by mocking up different inputs; and 2)

to check that code changes do not break exiting functions. By adopting the

test driven development approach, various variations of a semantic model

Chapter 9 Prototype

146

can be mocked up to test relevant software programs to achieve a higher

level of stability.

9.11.2 Advantages of Semantic Representations

The prototype proves that semantic representations are very effective to support the

development of model driven enterprise systems. Semantic representations provide

two main advantages in addition to controlling the behavior of software programs:

 Firstly, semantic models enable processing logic that needs to repeat again

and again to be unified. Taking reporting as an example, the processes to

create different reports are very similar. However, the piece of code for

creating one type of report can be not reused for another type of report

because information and report appearances are different. In this situation,

similar processes have to be implemented using different pieces of code

many times. It incurs a long development time and makes maintenance

difficult. By introducing a set of semantic models, different pieces of code

for different types of reports can be unified.

 Secondly, semantic representations can be used to develop generic GUI

components. For example, in enterprise systems, a common way to

present multiple entities for end users to select is to list a set of entities as

a table. Though there are some table components which are very generic,

different pieces of code are still needed when presenting different entities

due to the difference in attributes and table heads etc. By using semantic

representation, table heads and attributes to be displayed and can be

defined in a semantic model. In addition, attribute specifications are

available from semantic attribute definitions. Mapping models and pattern

models can be integrated to transform attribute values for display. As a

result, a very generic table component can be developed. When displaying

a set of entities, all the work that needs to be done is to pass the entities to

table and specify a semantic model. Such a table component can be used

to present any types of objects.

As a whole, semantic representations can be effectively used to unify similar

processing logic and generalize GUI components. Less code means less

Chapter 9 Prototype

147

development time and easier maintenance. The prototype development reveals

that semantic representations can be incrementally introduced to a software

system. A consequence is that semantic representations can be used to re-

engineer enterprise systems to incrementally increase their flexibility.

9.11.3 Limitations of Prototype

The primary objective of this prototype is to investigate a way to integrate semantic

models with business object models and a systematic approach to organize

semantic models for software programs to use. Due to the time constraint, the

following things have not been touched:

 Generating semantic models based on models established using other tools,

such as UML tools;

 A collection of semantic models needs to be constructed based on another

business domain to challenge the software programs developed in this

prototype;

 A fundamental guideline needs to be developed to assist the transform of

specific business requirements to generic semantic models;

 Various common semantic models can be identified, especially for GUI

components, such as list, tree, and table.

Chapter 10 Conclusions and Future Research

148

Chapter 10 Conclusions and Future Research

10.1 Research Summary

In the 1980s, enterprises started reforming their organizational structure, re-

engineering their business process and adopting information technology for the

flexibility to rapidly respond to internal and external changes. Throughout this

process, computers in enterprises have evolved from standalone facilities to

complicated, interconnected network systems. The goal of software applications

shifts, from assisting individuals, to connecting various functional units. The

enterprise itself transforms from relatively independent departments to an

interdependent environment. As a result, enterprise systems have been tightly

coupled with business operation. Business flexibility requires the support of

enterprise systems. Due to the lack of flexibility, enterprise systems cannot be

changed rapidly to catch up with business changes and often drag business behind.

Individualization of an enterprise system is resource intensive. Much effort is

needed to redesign and redevelop functions for specific needs. Flexible enterprise

systems are strongly desired to ease ongoing business needs quickly and effectively.

Enterprise system vendors are confronting the challenge to deliver flexible

enterprise systems. However, research on systematic methods for developing

flexible enterprise systems has not received enough attention.

Extensive literature has addressed this issue by identifying success or failure

factors, implementation approaches, and project management strategies. Those

efforts were aimed at learning lessons from post implementation experiences to

help future projects. This research looked into this issue from a different angle. It

addressed this issue by delivering a systematic method for developing flexible

Chapter 10 Conclusions and Future Research

149

enterprise systems which can be easily tailored for different business practices or

rapidly adapted when business practices change.

Chapter 3 initiated the concept of model-driven enterprise systems by leveraging

the convergence of MDA and workflow management. The novelty of the concept is

to separate system models from software programs. In such a system, models act as

instructors to guide and control software programs. Software programs play the

role of executives in completing processing functions according to instructions in

models. Since semantic models stay outside of programs, semantic models can be

changed or replaced. After models are changed, programs can behave in a different

way. This concept offers the opportunity to tailor enterprise systems by

reconstructing system models.

Based on the initiated concept, Chapter 4 identified various types of system models

that need to be extracted from software programs. These models need to be

represented in a language which can be easily understood and modified by human

beings and can also be effectively interpreted by computers. Various types of

semantic representations were investigated for constructing these system models.

To verify the concept and semantic representations, Chapter 5 developed a

comprehensive business process model based on the general practice of the

manufacturing industry. Based on this business process model, resource

management, product structure management and reporting are selected as study

cases.

Chapter 6, Chapter 7 and Chapter 8 developed a semantic resource model, semantic

product structure model and semantic reporting as case studies. These case studies

proved that semantic representations can be used to represent complex business

entities, relationships and business logic. Chapter 9 integrated business object

models developed in the case studies and developed a proof-of-concept prototype

system based on the concept of model-driven enterprise systems and semantic

representations. Lessons learnt from the prototype development were discussed.

Chapter 10 Conclusions and Future Research

150

10.2 Research Contributions

10.2.1 Concept of Model Driven Enterprise Systems

The concept of model driven enterprise systems is the primary contribution of this

research. Business requirements, design decisions and developers‘ thinking are

usually hard coded into enterprise systems throughout the development process. In

such a way, enterprise system models dissolve into software programs and cannot

stand independent of software programs. After a system is developed, system

models become intangible. This eliminates the possibility of adjusting enterprise

systems by changing system models. Changes to system models need to be

implemented by revising system source code. The concept of model driven

enterprise systems provides a novel paradigm to separate system models from

software programs and enables system models to stay outside of software programs.

The separation of system models from software programs exposes an opportunity

to mediate the behavior of enterprise systems through modifying system models.

This is critical to flexible enterprise systems.

10.2.2 Semantic Representations

Semantic representations are also a significant contribution of this research.

Traditionally, system models exist dependent of software programs. They are

reflected in system source code. Model driven enterprise systems require system

models to be extracted from software programs. This research has identified

various types of system models that need be extracted from software programs by

developing an abstraction model of enterprise systems. Then, various semantic

representations are developed, including semantic entity representation, entity

relationship representation, business logic representation, function layout

representation and GUI environment representations. With these semantic

representations, entity models and relationship models can be declared outside of

software programs; and business logic, function layout logic and information

presentations logic can be represented, described as semantic models. These system

models stay independent of, and loosely coupled with software programs. They can

be easily constructed by human beings. At the same time, they can also be

effectively interpreted by computers.

Chapter 10 Conclusions and Future Research

151

10.2.3 Promoting Role of System Models

Another key contribution of this research is the promotion of the role of system

models from guiding writing system source code to controlling the behavior of

enterprise systems. The software development lifecycle (SDLC) provides a

philosophy to manage the process of enterprise system development. In SDLC,

business requirement collection, system design and system coding are major steps

to ensure that an enterprise system is developed in line with business requirements.

Traditionally, software developers write system source code by understanding

business requirements and design decisions. After being developed, an enterprise

system works by following the way developers have defined. In other words,

developers‘ thinking is implanted into enterprise systems. Developers‘ thinking is

the understanding of business requirements and design decisions. Business

requirements and design decisions are usually represented as various system

models. Consequently, the major role system models play is to guide developers to

write system source code.

10.2.4 Advancement to MDA

The concept of model-driven enterprise systems moves MDA a big step forward.

From the model usage perspective, MDA uses models to generate platform specific

code. The key contribution MDA made to the area of enterprise system

development is the establishment of a direct connection between system models

and system source code. The concept of model-driven enterprise systems advances

MDA and promotes system models from guiding writing system source code to

controlling the behaviors of enterprise systems. From the model existence

perspective, system models in MDA dissolve into system source code. System

models stand independent of software programs. Graphical models are still there

after an enterprise system is developed but they are same as other documents. They

don‘t have a direct connection to software programs. In model-driven enterprise

systems, system models are loosely coupled with software programs to control and

guide the execution of software programs. They become a part of an enterprise

system. They are still tangible and can be modified to mediate the behaviors of

Chapter 10 Conclusions and Future Research

152

software programs. From the time perspective, system source code in MDA reflects

a snapshot of system models. System source code can be synchronized with system

models through running system generation tools after system models change. In

model-driven enterprise systems, software programs behave differently when

models are changed. Software programs can dynamically reflect changes to system

models. From the evolution paths of the system model role in enterprise systems, it

can be observed that the concept of model-driven, enterprise systems advances is a

big advancement of MDA:

 CASE prompted model-driven analysis. In CASE, system models are

mainly used for analysis and design decision making. No linkage between

system models and system code exists. System models exist as a type of

unstructured documents;

 MDA promoted model-driven development. System models are used for

system analysis and code generation. System source code is a snapshot of

system models. A static linkage is established between system models and

system source code. System models exist as a type of structured document;

 Model-driven enterprise systems promote system models to driven

software programs. A dynamic linkage is established between system

models and software programs. System models stay independent of, and

loosely coupled with software programs. System models are a part of

enterprise systems.

10.2.5 Enlarged Space for Enterprise System Flexibility

Traditionally, enterprise systems work by following developers‘ thinking.

Developers‘ thinking is the understanding of business requirements. Therefore,

business requirements are hard coded into enterprise systems. Though various

parameters can be introduced for adjusting the behavior of enterprise systems, all

options have to be predefined. In nature, parameter-based configuration is to

choose one of the predefined options. In the paradigm of model driven enterprise

systems, designers and developers are motivated to support more model

instructions. More model instructions imply to a larger degree, that the enterprise

Chapter 10 Conclusions and Future Research

153

system can vary. Such an enterprise system can accommodate more changes to

business practice changes. Consequently, high flexibility can be achieved.

10.3 Industrial Benefits

10.3.1 New Approach to System Implementation and Maintenance

A predominant approach of enterprise system implementation is customization

which is to redesign and redevelop functions to meet specific requirements. This is

a long-cycle process which involves different teams, vendors and third parties. The

process of implementing model-driven enterprise systems is mainly the iteration of

requirements analysis and model configuration/reconfiguration. Fewer chances

exist for developers to be involved because chances to change system source code

are very limited. At the system maintenance stage, to support ongoing business

changes, the primary work is to reconfigure system models. This is a significant

advantage of model-driven enterprise systems. Compared to current parameter

based configuration, model-driven enterprise systems provide a semantic and much

more intuitive context for constructing system models. Simplified implementation

and maintenance process and fewer teams imply lower cost and shorter cycle.

10.3.2 New Approach for Evaluating Enterprise Systems

The selection of enterprise systems needs to be carried out with extensive review

and evaluation. After a decision is made, the enterprise is supposed to couple with

the selected vendor for a long time. Some reports can be found in literature that

enterprise systems are implemented but original expectations could not be achieved.

The primary reason is that selected systems do not match business requirements

well. These enterprises either invest more to further customize the selected system

or simply accept the failure. Model-driven enterprise systems can be effectively

evaluated by using system models to check how specific requirements can be

satisfied. In the evaluation of model-driven enterprise systems, some preliminary

models can be constructed based on special requirements. The result can be seen as

soon as the models are incorporated. This enables enterprises to thoroughly

evaluate an enterprise system before making a decision. Traditional enterprise

systems do not provide this opportunity. To truly evaluate special requirements,

Chapter 10 Conclusions and Future Research

154

system source code needs to be changed. This is not possible in most situations.

The achievability of special requirements can only be estimated by evaluating the

development toolkit, supported language and exposed APIs by the systems.

10.3.3 Long Enterprise System Life

Because business environments and customer demands keep changing, enterprises

often have to change their business practices. Rigid enterprise systems are often

quickly phased out of production because they cannot support new business

practices. Since model driven enterprise systems provide higher flexibility, this

means that such enterprise systems can accommodate more changes. Therefore,

these systems can be used for a longer time and dramatically reduce business

running cost.

10.4 Future Research

This research initiated a concept of enterprise systems and then primarily

concentrated on developing semantic representations for system models. Semantic

representations are a key technique to enable model-driven enterprise systems.

Three main areas can be identified for future research. The outcome of this research

has great potential for developing configurable software components for enterprise

systems based on semantic models. It can also be adopted by enterprise vendors to

development semantic model based enterprise systems. To maximize the

commercial potential of the proposed method, further research in the following

area may need to be carried.

The first area is to integrate semantic representations with UML. UML is a

standardized general-purpose modeling language in the area of software

engineering. Various UML compliant tools have been developed for modeling

enterprise systems and business processes. As a notation based graphical language,

UML standardizes notations but not the format of electronic UML files. Each UML

tool has its own proprietary electronic format. Both semantic representations

developed in this research and UML are intended to describe the same thing, but

for different purposes. Potential is obvious in that semantic representations can be

integrated with UML tools. Semantic representations can be promoted as one of

Chapter 10 Conclusions and Future Research

155

standard output formats of UML tools. Many UML tools offer an open interface for

add-ons. A simple approach to integrate semantic representations with UML tools

is to develop add-ons for existing UML tools. Integration with UML enables

existing UML models to be reused to generate semantic representations. This can

speed up the construction of the semantic model in the development of model

driven enterprise systems. Such integration streamlines the development process of

model driven enterprise systems.

The second is to standardize semantic representations. Software development is

often compared with hardware development. In hardware development, there has

been much progress. For example, processor speed has grown exponentially in the

past twenty years. Hardware component replacement is a simple plug-and-play

process. However, this is not a case of upgrading and changing software systems.

High exchangeability in hardware comes from standardization. Compared to

hardware, standardization of software systems and components is far behind.

Currently, two types of standards exist in the software industry: API standards and

information exchange standards. API standards provide exchangeability within the

same platform. For example, the J2EE standard enables enterprises to change their

J2EE container from one vendor to another. However, the candidates of containers

have to be implemented in Java. One of the most famous standards for information

exchange is Web Services. Currently, little possibility exists for establishing

standards for the entire enterprise system. Semantic representations enable system

models to stay outside of software programs. This offers an opportunity to establish

standardized semantic representations for system models. A practical way to do it

is to separate system models into multiple levels so that standardization can be

done incrementally for each level. For example, at the GUI level, a standard can be

established for developing GUI components that can work based on semantic

models. From the entity representation perspective, XML tags and keywords can be

standardized for declaring attributes, entities and relationships.

The third area is to identify common processing logic and develop semantic

representations based on real industrial cases. This research has mainly investigated

mapping, pattern and expressions. These three types of logic representations were

Chapter 10 Conclusions and Future Research

156

widely used in various semantic representations for different purposes, such as

validation, query filtering and value transforming. Further logic representations can

be identified and developed to facilitate the development of model driven

enterprise systems.

Bibliography

157

Bibliography

Aagedal, J. Ø., Bézivin, J., and Linington, P. F. (2005), Model-Driven Development (Wmdd 2004)

(3344 ed.),

Aalst, W. M. P. v. d. (2002), Making Work Flow: On the Application of Petri Nets to Business

Process Management (2360 ed.),

Abdmouleh, A., and Spandoni, M. (2004), "Distributed Client/Server Architecture for Cimosa-

Based Enterprise Components," Computers in Industry, 55, 239-253.

Abeysinghe, G., and Phalp, K. (1997), "Combining Process Modelling Methods," Information and

Software Technology, 39, 107-124.

Agerfalk, P. J., "Towards Structured Flexibility in Information Systems Development: Devising a

Method for Method Configuration," Journal of database management, 20, 51.

Agostini, A., and Michelis, G. D. (2000), "Improving Flexibility of Workflow Management

Systems," Business Process Management, 1806.

Allen, B. R., and Boynton, A. (1991), "Information Architecture: In Search of Efficient

Flexibility.," MIS Quarterly.

Anonymous. (1999), "Survey: Business and the Internet: Erp Rip?," The Economist, 351.

Anonymous. (2004), "Enterprise Workflow," International Journal of Productivity and

Performance Management, 53, 561.

Applegate, L. M., McFarlan, F. W., and McKenney, J. L. (1999), Corporate Information Systems

Management - Text and Cases, 5th Edition, McGraw Hill.

Baker, R. P., and Maropoulos, P. G. (2000), "An Architecture for the Vertical Integration of Tooling

Considerations from Design to Process Planning," Robotics and Computer-Integrated

Manufacturing, 16, 121-131.

Barry, J., et al. (1998), "Niiip-Smart: An Investigation of Distributed Object Approaches to Support

Mes Development and Deployment in a Virtual Enterprise," in Enterprise Distributed Object

Computing Workshop, 1998. EDOC '98. Proceedings. Second International, pp. 366-377.

Bauer, B., Müller, J. P., and Roser, S. (2004), A Model-Driven Approach to Designing Cross-

Enterprise Business Processes (3292 ed.),

Bendoly, E., and Kaefer, F. (2004), "Business Technology Complementarities:

Impacts of the Presence and Strategic Timing of Erp on

B2b E-Commerce Technology Efficiencies," Omega, 32, 395–405.

Bernus, P., and Nemes, L. (1997), "Requirements of the Generic Enterprise Reference Architecture

and Methodology," Annual Reviews in Control, 21, 125-136.

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., and Shah, R. (2005), Service-Oriented

Architecture Compass: Business Value, Planning, and Enterprise Roadmap Prentice Hall PTR.

Boelcke, A. (2003), "What Is Analogical Reasoning," http://www.wisegeek.com/what-is-analogical-

reasoning.htm.

http://www.wisegeek.com/what-is-analogical-reasoning.htm
http://www.wisegeek.com/what-is-analogical-reasoning.htm

Bibliography

158

Botta-Genoulaz, V., Millet, P.-A., and Grabot, B. (2005), "A Survey on the Recent Research

Literature on Erp Systems," Computers in Industry, 56, 510-522

Bradford, M., and Florin, J. (2003), "Examining the Role of Innovation Diffusion Factors on the

Implementation Success of Enterprise Resource Planning Systems, International Journal of

Accounting," Information Systems, 4 205–225.

Brière-Côté, A., Rivest, L., and Desrochers, A. (2010), "Adaptive Generic Product Structure

Modelling for Design Reuse in Engineer-to-Order Products," Computers in Industry, 61, 53-65.

Brill, P. H., and M, M. (1990), "Measurement of Adaptivity and Flexibility in Production Systems,"

European Journal of Operational Research, 49, 325-332.

Brown, A. (2004), "An Introduction to Model Driven Architecture,"

http://www.ibm.com/developerworks/rational/library/3100.html.

Brown, A. W. (2000), Large-Scale, Component-Based Development, Prentice-Hall.

Browne, J., Dubois, D., Rathmill, K., Sethi, S. P., and Stecke, K. E. (1984), "Classification of

Flexible Manufactunng System, ," The FMS Magazine.

Calisir, F. (2004), "The Relation of Interface Usability Characteristics, Perceived Usefulness, and

Perceived Ease of Use to End-User Satisfaction with Enterprise Resource Planning (Erp)

Systems, ," Computers in Human Behavior, 20, 505–515.

Camarinha-Matos, L. M., and Afsarmanesh, H. (1999a), Infrastructures for Virtual Enterprises—

Networking Industrial Enterprises, Kluwer Academic Publishers.

Camarinha-Matos, L. M., and Afsarmanesh, H. (1999b), "Tendencies and General Requirements for

Virtual Enterprises," Proceedings of the IFIP TC5 WG5.3 / PRODNET Working Conference on

Infrastructures for Virtual Enterprises: Networking Industrial Enterprises, 153, 15-30.

Carlsson, B. (1989), "Flexibility and the Theory of the Firm," International Journal of Industrial

Organization, 7, 179-203.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1998), "Workflow Evolution," Data & Knowledge

Engineering, 24, 211-238.

CBDi Forum. (2001), "Application Integration," CBDi Forum.

Chalmeta, R., Campos, C., and Grangel, R. (2001), "References Architectures for Enterprise

Integration," Journal of Systems and Software, 57, 175-191.

Chalmeta, R., and Grangel, R. (2003), "Ardin Extension for Virtual Enterprise Integration," Journal

of Systems and Software, 67, 141-152.

Chambers, S. (1992), Flexibility in the Context of Manufacturing Strategy

 ed. C. A. Voss, Chapman & Hall, London.

Chen, R.-S., Sun, C.-M., and Jih, W.-J. (2009), "Factors Influencing Information System Flexibility:

An Interpretive Flexibility Perspective," International Journal of Enterprise Information

SystemsPerspective, 5.

Cheng, J. M. J., Simmons, J. E. L., and Ritchie, J. M. (1997), "Manufacturing System Flexibility:

The "Capability and Capacity" Approach," Integrated Manufacturing Systems, 8, 147-158.

Chung, C. H., and Chen, I. J. (1990), Managing Flexibility of Flexible Manufacturing Systems for

Competitive Edge, ed. M. J. Liberatore, Springer, Berlin.

http://www.ibm.com/developerworks/rational/library/3100.html

Bibliography

159

Clive, F., and Aiken, P. H. (1999), Building Cooperate Portals with Xml, USA: McGraw-Hill

Companies, Inc.

Correa, H., and Slack, N. (1996), "Framework to Analyze Flexibility and Unplanned Change in

Manufacturing Systems," Computer Integrated Manufacturing Systems

9.

Cowley, S. (2010), "Study: Bpm Market Primed for Growth," http://www.infoworld.com.

CTRC. (1999), "Enterprise Resource Planning: Integrating Applications and Business Process

across the Enterprise," Computer technology Research Corporation, USA.

Curtis, B., Kellner, M. I., and Over, J. (1992), "Process Modeling," Communications of the ACM, 35,

75.

D'Souza, D. E., and Williams, F. P. (2000), "Toward a Taxonomy of Manufacturing Flexibility

Dimensions," Journal of OperationsM anagement, I8, 577-593.

Das, T. K., and Elango, B. (1995), "Managing Strategic Flexibility: Key to Effective Performance,"

Journal of General Management, 20, 60-75.

Davenport, T. (1998), "Putting the Enterprise into the Enterprise System," Harvard Business Review,

76, 121–131.

David Chen, D., Doumeingts, G., and Vernadat, F. (2008), "Architectures for Enterprise Integration

and Interoperability: Past, Present and Future," Computers in Industry, 56, 647–659.

de Groote, X. (1994), "The Flexibility of Production Processes: A General Framework,"

Management Science, 40, 933-945.

De Leeuw, A., and Volberda, H. (1996), "On the Concept of Flexibility: A Dual Control

Perspective," International Journal of Management Science, 24, 121-139.

De Meyer, A., Nakane, J., Miller, J. G., and Ferdows, K. (1989), "Flexibility: The Next Competitive

Battle the Manufacturing Future Survey," Strategic Management Journal, 10, 135-144.

Denton, D. K. (1994), "The Power of Flexibility," Business Horizons, 37, 43-46.

Doumeingts, G., Ducq, Y., Vallespir, B., and Kleinhans, S. (2000), "Production Management and

Enterprise Modelling," Computers in Industry, 42, 245-263.

Dreiling, A., Rosemann, M., Aalst, W. v. d., Sadiq, W., and Khan, S. (2006), "Model-Driven

Process Configuration of Enterprise Systems," Advanced Information Systems Engineering - CAiSE

2006.

Du, X. F., Jiao, J. X., and Tseng, M. (2000), "Architecture of Product Family for Mass

Customization," in IEEE International Conference on Management of Innovation and Technology.

Edwards, G., Deng, G., Schmidt, D. C., Gokhale, A., and Natarajan, B. (2004), Model-Driven

Configuration and Deployment of Component Middleware Publish/Subscribe Services (3286 ed.),

Evans, J. S. (1991), "Strategic Flexibility for High Technology Manoeuvres: A Conceptual

Framework," Journal of Management Studies, 28, 69-89.

Eynard, B., Gallet, T., Nowak, P., and Roucoules, L. (2004), "Uml Based Specifications of Pdm

Product Structure and Workflow," Computers in Industry, 55, 301-316.

http://www.infoworld.com/

Bibliography

160

Fernandez, W. D., Lehmann, H. P., and Underwood, A. (2002), "Rigour and Relevance in Studies

of Is Innovation: A Grounded Theory Methodology Approach," Proceedings of the Xth

European Conference on Information Systems ECIS 2002: Information Systems and the Future of

the Digital Economy.

Fitzgerald, G. (1990), "Achieving Flexible Infon-Nation Systems: The Case for Improved

Analysis," Journal of Information Technology, 5, 5-11.

Footen, J., and Faust, J. (2008), "Service-Oriented Architecture: Definition, Concepts, and

Methodologies," in The Service-Oriented Media Enterprise, Boston: Focal Press, pp. 65-146.

Fujita, K. (2002), "Product Variety Optimization under Modular Architecture," Computer-Aided

Design, 34, 953-965.

Fuxin, F. (2005), "Configurable Product Views Based on Geometry User Requirements,"

Computer-Aided Design, 37, 957-966.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1998), Design Patterns, Addison Wesley.

Garavelli, A. C. (2003), "Flexibility Configurations for the Supply Chain Management,"

International Journal of Production Economics, 85, 141-153.

Gebauer, J., and Lee, L. (2008), "Enterprise System Flexibility and Implementation Strategies:

Aligning Theory with Evidence from a Case Study," Information Systems Management, 25, 71-82.

Gebauer, J., and Schober, F. (2006), "Information System Flexibility and the Cost Efficiency of

Business Processes," Journal of the Association for Information Systems, 7, 122-122.

Gerwin, D. (1987), "An Agenda for Research on the Flexibility of Manufacturing Processes,"

International Journal of Operations & Production Management, 7, 38-49.

Gerwin, D. (1993), "Manufacturing Flexibility: A Strategic Perspective," Management Science, 39,

395-410.

Golden, W., and Powell, P. (2000), "Towards a Definition of Flexibility: In Search

of the Holy Grail," Omega, 28, 373-384.

Gorod, A., Gandhi, S., Sauser, B., and Boardman, J. (2008), "Flexibility of System of Systems,"

Global Journal of Flexible Systems Management, 9, 21-31.

Goyal, J. (2006), "Challenges to Enterprise Systems Manufacturers: Delivering Flexibility,

Managing Complexity, and Providing Optimal Service,"

http://www.oracle.com/ocom/groups/public/@ocompublic/documents/webcontent/022563.pdf.

Gracanin, D., Singh, H. L., Bohner, S. A., and Hinchey, M. G. (2004), Model-Driven Architecture

for Agent-Based Systems (3228 ed.),

Gupta, D. (1993), "On Measurement and Valuation of Manufacturing Flexibility," International

Journal of Production Economics Research, 31, 2947-2958.

Gupta, D., and Buzacott, J. A. (1989a), "Impact of Flexible Machines on Automated Manufacturing

Systems," Annals of Operations Research, 15, 169-205.

Gupta, Y. P. (1989), "Human Aspects of Flexible Manufacturing Systems," Production and

Inventory Management Journal, 30-35.

Gupta, Y. P., and Goyal, S. (1989b), "Flexibility of Manufacturing Systems: Concepts and

Measurements," European Journal of Operational Research, 43, 119-135.

http://www.oracle.com/ocom/groups/public/@ocompublic/documents/webcontent/022563.pdf

Bibliography

161

Gupta, Y. P., and Somers, T. M. (1992), "The Measurement of Manufacturing Flexibility,"

European Journal of Operational Research, 60, 166-182.

Hameri, A., and Nihtila, J. (1998), "Product Data Management—Exploratory Study on State-of-the-

Art in One-of-a-Kind Industry," Computers in Industry, 35, 195-206.

Hammer, M. (2002), "Process Management and the Future of Six Sigma," IEEE Engineering

Management Review, 34, 56-63.

Hanneghan, M., Merabti, M., and Colquhoun, G. (2000), "A Viewpoint Analysis Reference Model

for Concurrent Engineering," Computers in Industry, 41, 35-49.

He, W., Ni, Q. F., and Lee, B. H. (2003), "Enterprise Business Information Management System

Based on Pdm Framework," in IEEE International Conference on Systems, Man & Cybernetics,

Washington, D.C., USA.

He, W., Ni, Q. F., Ming, X., and Lu, W. F. (2004), "Product Structure Management for Enterprise

Business Processes in Product Lifecycle," in 1th ISPE International Conference on Concurrent

Engineering, Beijing, China.

Heckel, R., and Lohmann, M. (2003), Model-Based Development of Web Applications Using

Graphical Reaction Rules (2621 ed.),

Heinl, P., et al. (1999), "A Comprehensive Approach to Flexibility in Workflow Management

Systems," in Proceedings of the International Joint Conference on Work Activities Coordination

and Collaboration, San Francisco, USA, pp. 79–88.

Henschen, D. (2005), "Business Process Management Is under Construction," Intelligent

enterprise(http://www.intelligententerprise.com/showArticle.jhtml?articleID=165700250&pgno=2).

Hill, T., and Chambers, S. (1991), "Flexibility -a Manufacturing Conundrum," International

Journal of Operations & Production Management, 11, 5-13.

Holland, C. P., and Light, B. (1990), "A Critical Success Factors Model for Erp Implementation,"

IEEE Software, 16, 30-36.

Holschke, O., Rake, J., Offermann, P., and Bub, U. (2010), "Improving Software Flexibility for

Business Process Changes," Business & Information Systems Engineering, 2, 3-13.

Hu, J., and Grefen, P. (2003), "Conceptual Framework and Architecture for Service Mediating

Workflow Management," Information and Software Technology, 45, 929–933.

Hyun, J. H., and Ahn, B. H. (1992), "A Unifying Framework for Manufacturing Flexibility,"

Manufacturing review, 5, 251-260.

Jablonski, S., and Bussler, C. (1996), Workflow Management : Modeling Concepts, Architecture

and Implementation, Sydney: International Thomson Computer Press.

Janitza, D., Lacher, M., Maurer, M., Pulm, U., and Rudolf, H. (2003), "A Product Model for Mass-

Customisation Products," Lecture Notes in Computer Science, 2774, 1023-1029.

Jensen, T., and Baumgartner, B. (2003), "A Flexible, Multimodality Structured Reporting System

Based on Medical and Networking Standards," International Congress Series, 1256, 893-899.

Kahn, C. E. (1998), "Self-Documenting Structured Reports Using Open Information Standards," in

Proceedings of the 9th World Congress on Medical Informatics, Amsterdam, Netherlands, pp. 403-

407.

http://www.intelligententerprise.com/showArticle.jhtml?articleID=165700250&pgno=2)

Bibliography

162

Kaim, W. E., Studer, P., and Muller, P.-A. (2003), Model Driven Architecture for Agile Web

Information System Engineering (2817 ed.),

Kathuria, R. (1998), "Managing for Flexibility: A Manufacturing Perspective," Industrial

Management & Data Systems, 98, 246-252.

Keller, G., and Teufel, T. (A. Weinland, trans.) (1998), Sap R/3 Process-Oriented Implementation,

England, UK: Addison-Wesley Longman.

Kent, S. (2002), Model Driven Engineering (2335 ed.),

Kim, C. (1991), "Issues on Manufacturing Flexibility," Journal of Production Research, 2, 4-13.

Kim, C., Kim, K., and Choi, I. (1993), "An Object-Oriented Information Modeling Methodology for

Manufacturing Information Systems," Computer Ind. Engng, 24, 337-353.

King, J. (1997), "Dell Zaps Sap," Computerworld, 2.

Koste, L., and Malhotra, M. K. (1999), "A Theoretical Framework for the Dimensions of

Manufacturing Flexibility," Journal of Operations Management, 18, 75-93.

Langlotz, C. P. (2000a), "Structured Reporting in Radiology," Technical.

Langlotz, C. P. (2000b), "Structured Reporting in Radiology, Society for Health Services Research

in Radiology," News [serial online].

Li, H., and Williams, T. J. (1997), "Some Extensions to the Purdue Enterprise Reference

Architecture (Pera): I. Explaining the Purdue Architecture and the Purdue Methodology Using the

Axioms of Engineering Design," Computers in Industry, 34, 247-259.

Li, H., Yang, Y., and Chen, T. Y. (2004), "Resource Constraints Analysis of Workflow

Specifications," Journal of Systems and Software, 73, 271-285.

Li, M., Wang, J., Wong, Y. S., and Lee, K. S. (2004), "A Collaborative Application Portal for the

Mould Industry," International Journal of Production Economics, 96, 233-247.

Lindsay, A., Downs, D., and Lunn, K. (2003), "Business Processes--Attempts to Find a Definition,"

Information and Software Technology, 45, 1015-1019.

Lings, B. (2009), "Linking Model-Driven Development and Software Architecture: A Case Study,"

IEEE transactions on software engineering, 35, 83.

Liu, C. Y., Wang, X. K., and He, Y. C. (2004)Material Process Technology 2004; 139(3):40-43,

139, 40-43.

Liu, S. (2003), "A Practical Framework for Distributing It Infrastructure," IT Professional, 14-20.

Luo, L., and Bai, X. (2005), "Web Services-Based Test Report Generation," Tsinghua Science

&Technology, 10, 282-287.

Lynch, R. L., and Cross, K. F. (1991), Measure Up! , Blackwell, Cambridge, MA.

MacCarthy, B., Brabazon, P. G., and Bramham, J. (2003), "Fundamental Modes of Operation for

Mass Customization," International Journal of Production Economics, 85, 289-304.

Maksimovic, R., and Lalic, B. (2008), "Flexibility and Complexity of Effective Enterprises,"

Strojniski Vestnik-Journal of Mechanical Engineering, 54, 768-782.

Bibliography

163

Mandelbaum, M., and Brill, P. H. (1989), "Examples of Measurement of Flexibility and Adaptivity

in Manufacturing Systems," The Journal of the Operational Research Society, 40, 603-609.

Mannisto, T., Peltonen, H., Martio, A., and Sulonen, R. (1998), "Modelling Generic Product

Structures in Step," Computer-Aided Design, 30, 1111-1118.

Margaria, T., and Steffen, B. (2009), "Continuous Model-Driven Engineering," Computer, 42, 106-

109.

Marshall, C., and Rossman, G. B. (1989), Designing Qualitative Research, Newbury

Park,California: Sage.

Martinho, R. (2010), "Goals and Requirements for Supporting Controlled Flexibility in Software

Processes," Information resources management journal, 23, 11-26.

McCarty, B., and Cassady-Dorin, L. (1999), Java Distributed Objects, USA: Macmillan Computer

Publishing.

Melia, K. M. (1996), "Rediscovering Glaser," Qualitative Health Research, 6, 368-378.

Nakane, J., and Hall, R. W. (1991), "Holonic Manufacturing: Flexibility - the Competitive Battle in

the 1990s. ," Production Planning and Control, 2, 2-13.

Narain, R., Yadav, R. Q., Sarkis, J., and Cordeiro, J. J. (2000), "The Strategic Implications of

Flexibility in Manufacturing Systems," International Journal of Agile Management Systems, 2, 202-

213.

Narendra, N. C. (2004), "Flexible Support and Management of Adaptive Workflow Processes,"

Information Systems Frontiers, 6, 247–262.

Nasirin, S., and Birks, D. (2002), "Factors Influencing the Employment of Grounded Theory

Approach in Understanding Is Project Implementation Process," European Conference on Research

Methodology for Business and Management Studies.

Ni, Q., Ming, X., and Lu, W. F. (2003), "Computer-Supported Collaborative Environment for

Distributed Product Development," in International Conference for Agile Manufacturing, Beijing,

Chian.

Ni, Y. (2007), "The Impact of Information Systems on Business Flexibility from the Managerial

Perspective: Multiple Cases of Enterprise Systems Enhancement and Ongoing Changes," The

University of Warwick, Warwick Business School.

Noran, O. (2003), "An Analysis of the Zachman Framework for Enterprise Architecture from the

Geram Perspective," Annual Reviews in Control, 27, 163-183.

Olexa, R. (2001), "The Father of the Second Industrial Revolution," Manufacturing Engineering,

127.

Oliver, A. C., Stampoultzis, G., and Sengupta, A. (2004), "Welcome to Poi - the Apache Software

Foundation," http://jakarta.apache.org/poi.

Ortiz, A., Lario, F., and Ros, L. (1999), "Enterprise Integration--Business Processes Integrated

Management: A Proposal for a Methodology to Develop Enterprise Integration Programs,"

Computers in Industry, 40, 155-171.

Ozer, M. (2002), "The Role of Flexibility in Online Business," Business Horizons, 61-69.

http://jakarta.apache.org/poi

Bibliography

164

Palanisamy, R., and Sushil. (2003), "Achieving Organizational Flexibility and Competitive

Advantage through Information Systems," Journal of Information & Knowledge Management, 2,

261-277.

Parker, R., and Wirth, A. (1999), "Manufacturing Flexibility: Measures and Relationships,"

European Journal of Operational Research, 118.

PTC (2000), Windchill Customization Guide for Windchill Release 6.2, USA:

Qiu, Z. M., and Wong, Y. S. (2007), "Dynamic Workflow Change in Pdm Systems," Computers in

Industry, 58, 453-463.

Robey, D., and Boudreau, M. C. (1999), "Accounting for the Contradictory Organizational

Consequences of Information Technology: Theoretical Directions and Methodological

Implications," Information Systems Research, 10, 167-185.

Robinson, W. N., and Pawlowski, S. D. (1999), "Managing Requirements Inconsistency with

Development Goal Monitors," IEEE Transactions on Software Engineering, 25, 816-835.

Rolland, C., and Prakash, N. (2000), "Bridging the Gap between Organisational Needs and Erp

Functionality," Requirements Engineering, 5, 180-193.

Ross, J. W., and Vitale, M. R. (2000), "The Erp Revolution: Surviving Vs. Thriving," Information

Systems Frontiers, 2, 233-241.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddi, F., and Lorensen, W. (1991), Object-Oriented

Modeling and Design, Prentice-Hall.

Sadiq, W., and Orlowska, M. E. (2000), "Analyzing Process Models Using Graph Reduction

Techniques," Information Systems, 25, 117-134.

Salimifard, K., and Wright, M. (2001), "Petri Net-Based Modelling of Workflow Systems: An

Overview," European Journal of Operational Research, 134, 664-676.

Sanchez, R., and Mahoney, J. T. (1996), "Modularity, Flexibility, and Knowledge Management in

Product and Organisation Design," Strategic Management Journal, 17, 63-76.

Sarker, B. R., Krishnamurthy, S., and Kuthethur, S. G. (1994), "A Survey and Critical Review of

Flexibility Measures in Manufacturing Systems," Production Planning and Control, 5, 512-523.

Sarker, S., and Lee, A. S. (2003), "Using a Case Study to Test the Role of Three Key Social

Enablers in Erp Implementation," Information & Management, 40, 813-829.

Sarkis, J., and Sundarraj, R. P. (2003), "Managing Large-Scale Global Enterprise Resource

Planning Systems: A Case Study at Texas Instruments," International Journal of Information

Management, 23, 431–442.

Schmenner, R. W., and Tatikonda, M. V. (2005), "Update Manufacturing Process Flexibility

Revisited," International Journal of Operations & Production Management, 25, 1183-1189.

Schmidt, D. C. (2006), "Model-Driven Engineering," IEEE Computer, 39, 25-31.

Schober, F., and Gebauer, J. (2008), "How Much to Spend on Flexibility? Determining the Value of

Information System Flexibility."

Scott, J. E., and Vessey, I. (2000), "Implementing Enterprise Resource Planning Systems: The Role

of Learning from Failure," Information Systems Frontiers, 2, 213-232.

Bibliography

165

Sethi, A. K., and Sethi, S. P. (1990), "Flexibility in Manufacturing: A Survey," International

Journal of Flexible Manufacturing Systems, 2, 289-328.

Shen, H., Wall, B., Zaremba, M., Chen, Y., and Browne, J. (2004), "Integration of Business

Modelling Methods for Enterprise Information System Analysis and User Requirements Gathering,"

Computers in Industry, 54, 307-323.

Shin, K., and Leem, C. S. (2002), "A Reference System for Internet Based Inter-Enterprise

Electronic Commerce," Journal of Systems and Software, 60, 195-209.

Shu, Q., and Wang, C. (2005), Information Modeling for Product Lifecycle Management (183 ed.),

Silver, M. S. (1991), Systems That Support Decision Makers: Description and Analysis Chichester,

United Kingdom:Wiley & Sons.

Slack, N. (1987), "The Flexibility of Manufacturing System," International Journal of Operations

& Production Managemen, 7, 35-45.

Slack, N. (1989), Focus on Flexibility, ed. R. Wild, Cassell Educational Ltd.

Smith, H., and Fingar, P. (2003), Business Process Management (Bpm): The Third Wave, Meghan-

Kiffer Press.

Stevenson, M., and Spring, M. (2009), "Supply Chain Flexibility: An Inter-Firm Empirical Study,"

International Journal of Operations & Production Management, 29, 946-971.

Stohr, E. A., and Zhao, J. L. (2001), "Workflow Automation: Overview and Research Issues,"

Information Systems Frontiers, 3, 281–296.

Sudarsan, R., Fenves, S. J., Sriram, R. D., and Wang, F. (2005), "A Product Information Modeling

Framework for Product Lifecycle Management," Computer-Aided Design, 37, 1399-1411.

Sun, H. (2000), "Current and Future Patterns of Using Advanced Manufacturing Technologies,"

Technovation, 20, 631-641.

Sun, P., and Jiang, C. (2009), "Analysis of Workflow Dynamic Changes Based on Petri Net,"

Information and Software Technology, 51, 284-292.

Tang, D. B. (2004), "An Agent-Based Collaborative Design System to Facilitate Active Die-Maker

Involvement in Stamping Part Design," International Journal of Production Economics, 54, 253 -

271.

ter Hofstede, A. H. M., Orlowska, M. E., and Rajapakse, J. (1998), "Verification Problems in

Conceptual Workflow Specifications," Data & Knowledge Engineering, 24, 239-256.

Thimm, G., Lee, S. G., and Ma, Y.-S. (2006), "Towards Unified Modelling of Product Life-Cycles,"

Computers in Industry, 57, 331-341.

Touzi, J., Benaben, F., Pingaud, H., and Lorré, J. P. (2009), "A Model-Driven Approach for

Collaborative Service-Oriented Architecture Design," International Journal of Production

Economics, 121, 5-20.

Umble, E. J., Haft, R R, and Umble, M. M. (2003a), "Enterprise Resource Planning:

Implementation Procedures and Critical Success Factors," European Journal of Operational

Research, 146, 241–257.

Bibliography

166

Umble, E. J., Haft, R. R., and Umble, M. M. (2003b), "Enterprise Resource Planning:

Implementation Procedures and Critical Success Factors," European Journal of Operational

Research, 146, 241-257.

Upton, D. M. (1994), "The Management of Manufacturing Flexibility," California Management

Review.

Upton, D. M. (1997), "Process Range in Manufacturing- an Empirical Study of Flexibility,"

Management Science, 43, 1079-1092.

van der Aalst, W. M. P. (1999), "Formalization and Verification of Event-Driven Process Chains,"

Information and Software Technology, 41, 639-650.

van der Aalst, W. M. P., and Basten, T. (2002), "Inheritance of Workflows: An Approach to

Tackling Problems Related to Change," Theoretical Computer Science, 270, 125-203.

Vinther, F. (2008), "Extreme Flexibility," InTech, 55, 38-41.

Vokurka, R. J., and O'Leary-Kelly, S. W. (2000), "A Review of Empirical Research on

Manufacturing Flexibility," Journal of Operations Management, 18, 485-501.

Volberda, H. W. (1996), "Toward the Flexible Form: How to Remain Vital in Hypercompetitive

Environments," Organizational Science, 7, 359-374.

Volberda, H. W. (1999), Building the Flexible Firm - How to Remain Competitive, Oxford

University Press.

Wada, H., Suzuki, J., and Oba, K. (2008), "A Model-Driven Development Framework for Non-

Functional Aspects in Service Oriented Architecture," International Journal of Web Services

Research, 5, 1-31.

Wallace, M., Schimpf, J., Shen, K., and Harvey, W. (2004), "On Benchmarking Constraint Logic

Programming Platforms. Response to Fernandez and Hill's 鈥淎 Comparative Study of Eight

Constraint Programming Languages over the Boolean and Finite Domains 鈥," Constraints, 9, 5-34.

Walsh, E. (2010), "Open Architecture: Versatility through Flexibility," United States Naval Institute.

Proceedings, 136, 86.

Wang, H., Huang, J. Z., Qu, Y., and Xie, J. (2004), "Web Services: Problems and Future

Directions," Web Semantics: Science, Services and Agents on the World Wide Web, 1, 309-320.

Whiting, R. (2003), "Money Machines," Informationweek, 34-44.

Whittingham, K. (1999), Openwater—White Paper, ed. I. R. Division, Zurich Research Laboratory.

Williamson, M. (1997), "From Sap to `Nuts!'," Computerworld, 45.

Xiao, L., and Greer, D. (2009), "Adaptive Agent Model: Software Adaptivity Using an Agent-

Oriented Model-Driven Architecture," Information and Software Technology, 51, 109-137.

Xu, Q., and Jiao, J. (2009a), "Modeling the Design Process of Product Variants with Timed Colored

Petri Nets," Journal of Mechanical Design, 131, 061009-061009.

Xu, Q., and Jiao, J. R. (2009b), "Design Project Modularization for Product Families," Journal of

Mechanical Design, 131, 071007-071010.

Yen, H. R., and Sheu, C. (2004), "Aligning Erp Implementation with Competitive Priorities of

Manufacturing Firms: An Exploratory Study," International Journal of Production Economics, 92,

207-220.

Bibliography

167

Zelenovich, D. M. (1982), "Flexibility: A Condition for Effective Production Systems,"

International Journal of Production Research, 20, 319-337.

Zhang, Q., and Cao, M. (2002), "Business Process Reengineering for Flexibility and Innovation in

Manufacturing," Industrial Management & Data Systems, 102, 146-152.

Zhang, Z., Lee, M. K. O., Huang, P., Zhang, L., and Huang, X. (2004), "A Framework of Erp

Systems Implementation Success in China: An Empirical Study," International Journal of

Production Economics.

Zhang, Z., Lee, M. K. O., Huang, P., Zhang, L., and Huang, X. (2005), "A Framework of Erp

Systems Implementation Success in China: An Empirical Study," International Journal of

Production Economics, 98, 56-80.

