

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Cejka, Jiri, Sejkora, Jiri, Plasil, Jakub, Bahfenne, Silmarilly, Palmer, Sarah J., Rintoul, Llew, & Frost, Ray L. (2011) A vibrational spectroscopic study of hydrated Fe3+ hydroxyl-sulphates; polymorphic minerals butlerite and parabutlerite. *Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy*, *79*, pp. 1356-1363.

This file was downloaded from: http://eprints.qut.edu.au/42530/

© Copyright 2011 Elsevier BV

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1016./j.saa2011.04.069

1	A vibrational spectroscopic study of hydrated Fe ³⁺ hydroxyl-sulphates; polymorphic
2	minerals butlerite and parabutlerite
3	
4	
5	Jiří Čejka, ^{1,2} Jiří Sejkora, ^{2.} Jakub Plášil, ² Silmarilly Bahfenne, ¹ Sara J. Palmer, ¹
6	Llew Rintoul and Ray L. Frost ¹ •
7	
8	¹ Chemistry Discipline, Faculty of Science and Technology, Queensland University of
9	Technology, GPO Box 2434, Brisbane Queensland 4001, Australia.
10	
11	² National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic.
12	
13	
14	ABSTRACT
15	
16	Raman and infrared spectra of two polymorphous minerals with the chemical formula
17	Fe ³⁺ (SO ₄)(OH)·2H ₂ O, monoclinic butlerite and orthorhombic parabutlerite, are studied and
18	the spectra assigned. Observed bands are attributed to the (SO ₄) ²⁻ stretching and bending
19	vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl
20	ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending
21	vibrations and lattice vibrations. The O-HO hydrogen bond lengths in the structures of both
22	minerals are calculated from the wavenumbers of the stretching vibrations. One
23	symmetrically distinct $(SO_4)^{2-}$ unit in the structure of butlerite and two symmetrically distinct
24	$(SO_4)^{2-}$ units in the structure of parabutlerite are inferred from the Raman and infrared
25	spectra. This conclusion agrees with the published crystal structures of both mineral phases.
26	
27	Keywords: butlerite, parabutlerite, iron(III) sulphates, Raman spectroscopy, infrared
28	spectroscopy, hydroxyl ions, molecular water, hydrogen bonds
29	

[•] Author to whom correspondence should be addressed (r.frost@qut.edu.au)

- **30 INTRODUCTION**
- 31

32 The Fe^{2+} and Fe^{3+} sulfates are the main products of weathering of iron sulphides and 33 Fe-containing alloys under oxidation conditions with different activity of sulfate ions and pH 34 values [1]. Recently, the sulphates of iron were observed on the Mars surface [2] and their 35 abundant occurrences are found in some evaporite deposits [3-4], especially when found in an 36 arid environment.

37

38 Butlerite [5,6] and parabutlerite [5,7] are two dimorphous hydrated ferric hydroxylsulfate minerals of formula Fe³⁺(SO₄)(OH)·2H₂O. Butlerite is monoclinic, a 6.44-6.50, b 39 7.31-7.38, c 5.84-5.87 Å, $\beta 108^{\circ}23(5)$ '- 108°28(20)' with space group $P2_1/m$, Z = 2, while 40 parabutlerite is orthorhombic, a 7.38, b 20.13, c 7.22 with space group *Pmnb*, Z = 8 [5-11]. 41 42 The minerals are formed in the oxidation zones of pyrite ores but may also be formed under 43 fumarolic conditions such as with volcanos and mine fires [12]. No doubt, the minerals are 44 involved in paragenetic relationships with other ferrous and ferric sulphates. Bandy [13] in 45 his classic description of the sulfate deposits of Chile described sequences of the ferric and 46 ferrous/ferric sulfate minerals at these mine sites. A number of factors including temperature, 47 relative humidity, sulphuric acid concentration and the presence of other cations determine 48 which ferrous or ferric sulfate mineral is formed.

49

50 Williams [4] described the complex phase equilibria involving SO_3 , Fe_2O_3 and H_2O . He showed there is a specific phase region in which monoclinic butlerite is found in the 51 52 triangular phase diagram for the system Fe₂O₃-H₂O-SO₃ at 50 °C. The crystal structure of butlerite was solved by Fanfani et al. [6], while that of parabutlerite was determined by 53 54 Borène [7]. According to Hawthorne et al. [14-17], the $[M(S\phi_4)\phi_3]$ chain is the basis of crystal structure of butlerite, $[Fe^{3+}(OH)(H_2O)_2(SO_4)]$, and parabutlerite, 55 $[Fe^{3+}(OH)(H_2O)_2(SO_4)]$, where $\phi = (OH)^-$, $(O)^{2-}$, H_2O . In this chain, the $(SO_4)^{2-}$ tetrahedra 56 alternate along the chain and link to trans vertices of the (Fe^{3+ ϕ_6}) octahedra. In butlerite and 57 parabutlerite, the $[Fe^{3+}(OH)(H_2O)_2(SO_4)]$ chains are linked solely by hydrogen bonds. No 58 59 interstitial cations are present in the structure. The chains in butlerite and parabutlerite 60 structures are extremely similar. The principal structural difference is in the relative 61 disposition of adjacent chains [14]. In the crystal structure of butlerite there is one crystallographically distinct Fe^{3+} and one crystallographically distinct S^{6+} [6]. One unique 62

63	Fe ³⁺ site and two crystallographically distinct S ⁶⁺ sites were found in the crystal structure of
64	parabutlerite [7]. In both crystal structures, the Fe^{3+} octahedra ($Fe^{3+}\phi_6$) contain two (O) ²⁻ , two
65	(OH) ⁻ and two water molecules, which are coordinated by oxygens to the cations [6,7].
66	[Fe(OH)(H ₂ O) ₂ SO ₄] spiral chains observed in the structure of fibroferrite are a stereoisomer
67	variant of the hydroxo-bridged linear chains in the structure of butlerite and parabutlerite
68	[18]. Only Raman spectrum of parabutlerite is available in the RRUFF database (parabutlerite
69	R070547) but without any details of wavenumbers and interpretation.
70	
71	As part of our on-going research into supergene mineral formation [19-20], this paper
72	reports the Raman spectra of butlerite and parabutlerite and relates the spectra to the
73	molecular structure of both sulfate minerals studied [21-22].
74	
75	
76	EXPERIMENTAL
77	
78	Minerals
79	
80	The mineral samples of butlerite and parabutlerite were obtained from the
81	mineralogical collections of the National Museum Prague, Czech Republic. Both minerals
82	originated from the Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province,
83	Antofagasta, Chile. Butlerite is light yellow with fine-grained aggregates (some cm in size),
84	and were found in association with anhydrite, copiapite and botryogen. Parabutlerite forms
85	pale orange prismatic crystals, up to some mm in size, in cavities of sulfate (copiapite,
86	botryogen and anhydrite) matrixes. Both minerals were analysed for phase purity by X-ray
87	powder diffraction, and no significant impurities were found. The measured X-ray powder
88	diffraction patterns of both minerals agree very well with the published data. The refined
89	unit-cell parameters for butlerite are: <i>a</i> 6.527(2), <i>b</i> 7.376(1), <i>c</i> 5.860(2) Å, β 108.57(1) ^o and <i>V</i>
90	267.4(1) Å ³ (monoclinic space group $P2_1/m$), which agrees very well with parameters from
91	single-crystal measurements [6]. The refined unit-cell parameters for parabutlerite are: a
92	
	7.398(2), <i>b</i> 20.170(4), <i>c</i> 7.230(1) Å, <i>V</i> 1073.5(5) Å ³ (orthorhombic space group <i>Pmnb</i>),
93	7.398(2), <i>b</i> 20.170(4), <i>c</i> 7.230(1) Å, <i>V</i> 1073.5(5) Å ³ (orthorhombic space group <i>Pmnb</i>), which also agrees well with parameters from single-crystal measurements [7].

95	Both samples were quantitatively analysed by Cameca SX 100 microprobe system in
96	wavelength dispersion mode for chemical composition. The samples were mounted onto the
97	epoxide resin and polished. The polished surface was coated with a carbon layer of 250 Å.
98	An acceleration voltage of 15 kV, a specimen current of 10 nA, a beam diameter of 10 μ m
99	and a suite of well-defined natural and synthetic standards were used. The raw intensities
100	were converted to the concentrations using the automatic PAP matrix correction software
101	package. The H ₂ O content was calculated from charge balance and theoretical contents of
102	water molecules. The chemical composition of butlerite was Fe ₂ O ₃ 38.96, Al ₂ O ₃ 0.04, SiO ₂
103	0.18, SO ₃ 36.88, H ₂ O _{calc.} 21.51, sum 97.57 wt. % and empirical formula on the basis 1 (S+Si)
104	<i>apfu</i> is $\text{Fe}^{3+}_{1.05}[(\text{SO}_4)_{0.99}(\text{SiO}_4)_{0.01}]_{\Sigma_{1.00}}(\text{OH})_{1.15} \cdot 2\text{H}_2\text{O}$ (mean of 4 point analyses). The
105	chemical composition of parabutlerite was Fe ₂ O ₃ 39.42, Al ₂ O ₃ 0.05, SiO ₂ 0.05, SO ₃ 37.24,
106	H ₂ O _{calc.} 21.75, sum 98.52 wt. % and empirical formula on the basis 1 (S+Si) apfu is
107	$Fe^{3+}_{1.06}(SO_4)_{1.00}(OH)_{1.18} \cdot 2H_2O$ (mean of 6 point analyses).
108	
109	Raman and infrared spectroscopy
110	
111	Crystals of butlerite and parabutlerite were placed on a polished metal surface on the
112	stage of an Olympus BHSM microscope, which is equipped with 10x, 20x, and 50x
113	objectives. The microscope is part of a Renishaw 1000 Raman microscope system, which
114	also includes a monochromator, a filter system and a CCD detector (1024 pixels). The Raman
115	spectra were excited by a Spectra-Physics model 127 He-Ne laser producing highly polarised
116	light at 633 nm and collected at a nominal resolution of 2 cm ⁻¹ and a precision of ± 1 cm ⁻¹ in
117	the range between 200 and 4000 cm ⁻¹ . Repeated acquisition on the crystals using the highest
118	magnification (50x) were accumulated to improve the signal to noise ratio of the spectra.
119	Spectra were calibrated using the 520.5 cm ⁻¹ line of a silicon wafer. Previous studies by the
120	authors provide more details of the experimental technique. Alignment of all crystals in a
121	similar orientation has been attempted and achieved. However, differences in intensity may
122	be observed due to minor differences in the crystal orientation.
123	
124	Infrared spectra were obtained using a Nicolet 6700 FTIR spectrometer with a single bounce
125	diamond GladATR (PIKE) cell. Spectra over the 4000-400 cm ⁻¹ range were obtained by the
126	co-addition of 128 scans with a resolution of 4 cm ⁻¹ and a mirror velocity of 0.63 cm/s.
127	Spectra were co-added to improve the signal to noise ratio.

129 Spectral manipulation such as baseline correction/adjustment and smoothing were 130 performed using the Spectracalc software package GRAMS (Galactic Industries Corporation, 131 NH, USA). Band component analysis was undertaken using the Jandel 'Peakfit' software 132 package that enabled the type of fitting function to be selected and allows specific parameters 133 to be fixed or varied accordingly. Band fitting was done using a Lorentzian-Gaussian cross-134 product function with the minimum number of component bands used for the fitting process. 135 The Gaussian-Lorentzian ratio was maintained at values greater than 0.7 and fitting was undertaken until reproducible results were obtained with squared correlations of r^2 greater 136 137 than 0.995.

138

128

139 RESULTS AND DISCUSSION

140

141 Spectroscopy background

142

Free sulfate, $(SO_4)^{2-}$, of Td symmetry, exhibits four fundamental vibrations: the v₁ 143 (A_1) symmetric stretching vibration – Raman active, the v₂ (E) doubly degenerate symmetric 144 145 bending vibration – Raman active, the v_3 (F₂) triply degenerate antisymmetric stretching vibration – infrared and Raman active, and the v_4 (F₂) triply degenerate antisymmetric 146 bending vibration – infrared and Raman active [23-25]. According to Myneni [23], variation 147 148 in salvation (coordination of water molecules at different oxygen atoms of sulfate ion), metal 149 complexation, and protonation of sulfate can modify the S-O bond lengths, and cause 150 changes in symmetry from T_d to either C_{3v}/C_3 (monodentate, corner-sharing), C_{2v}/C_2 (edgesharing, bidentate binuclear), or C_1/C_s (corner-sharing, edge-sharing, bidentate binuclear, 151 152 multidentate). Myneni writes that such changes may shift the vibrational bands to different energies and cause the degenerate vibrations to become nondegenerate [23]. In dilute aqueous 153 solutions of pH > 3.0, $(SO_4)^{2-}$ occurs primarily as a tetrahedral species and exhibits 154 corresponding stretching and bending vibrations at 983, 450, 1105 and 611 cm⁻¹ [23,24]. 155 156

Factor group analysis of the sulfate for the sites and crystal symmetries found in bultlerite and parabutlerite, respectively, is summarised in Table 1. The sulfate symmetric stretch in butlerite is expected to give rise to one Raman active band and one IR active band, whereas two Raman and two IR bands are predicted for each of the 2 unique sulfates in

- 161 parabutlerite to give a total of 4 Raman and 4 IR bands. The triply degenerate modes such as
- 162 the antisymmetric stretch and deformation of sulfate lose their degeneracy owing to the Cs
- 163 site symmetry in both minerals. Crystal splitting leads to mutual exclusion between the IR
- and Raman and thus 3 Raman and 3 IR bands are expected for butlerite. With 2 unique
- sulfate groups, the situation is somewhat complicated in parabutlerite where a total of 12
- 166 Raman bands and 12 IR bands are expected for the antisymmetric F₂ modes.
- 167
- The (OH)⁻ ions display stretching, bending, librational (restricted rotation) and translational 168 vibrations. The OH stretching modes range from 3700 to 3550 cm⁻¹ in the case of hydroxyls, 169 which are not involve in hydrogen bonds, and 3570 to 3200 cm⁻¹ for hydroxyls involved in 170 171 hydrogen bonding. The OH bending vibrations are located up to approximately 1700 cm⁻¹ and over a wide range below this value. The OH librational modes are observed from 1000 to 172 300 cm⁻¹ and lattice vibrations involving (OH)⁻ ion motions are found from 400 to 150 cm⁻¹ 173 174 [25,26]. Molecular water is characterized by three fundamentals, the v_1 (A₁) symmetric stretching vibration and the v_3 (B₁) antisymmetric stretching vibration, both in the range of 175 3600 to 2900 cm⁻¹, and the v_2 (δ) (A₁) bending vibration, located approximately from 1590 to 176 1700 cm⁻¹. Some shifting of the stretching vibrations to lower wavenumbers and the bending 177 178 vibrations to higher wavenumbers are observed when water molecules are involved in 179 stronger hydrogen bonding. In this case, libration modes can occur approximately in the range from 900 to 300 cm⁻¹. All stretching and bending vibrations are infrared and Raman 180 181 active [25]. Factor group analysis of the (OH)⁻ ions predicts 2 Raman bands and 2 IR bands 182 for each of the OH stretch and OH libration in parabutlerite (4 Raman and 4 IR bands in total) 183 but only 1 Raman and 1 IR band for butlerite.
- 184

The Raman spectra of butlerite and parabutlerite are displayed in Figs. 1a and 1b, 185 186 respectively, while Table 2 gives a summary of band positions and assignments. The Raman spectrum of butlerite in the 900 to 1300 cm⁻¹ region shows an intense Raman band at 1024 187 cm⁻¹ assigned to the v_1 (SO₄)²⁻ symmetric stretching mode. The band shows some asymmetry 188 on the low wavenumber side. Band fitting results reveal weak bands at 1014, 1036 and a 189 very weak peak at 983 cm⁻¹, yet factor group analysis predicts only one band for the 190 191 symmetric sulfate stretch. In contrast, in the Raman spectrum of parabutlerite, two Raman bands are found at 1014 and 1026 cm⁻¹ and are attributed to $v_1 (SO_4)^{2-}$ symmetric stretching 192 193 modes. Both bands are strong and very sharp. The observation of two bands provides further

194 evidence for the non-equivalence of the sulfate units in the parabutlerite structure. Other bands are observed at 1044 and 990 cm⁻¹. Factor group analysis predicts that the two unique 195 SO_4^{-2} groups gives rise to 2 bands in the symmetric stretching region, in apparent agreement 196 with the number observed. However, in the case of butlerite and parabutlerite, some of bands 197 198 in this region may be in fact related to the Fe-OH bending vibrations. This would account for 199 one of the additional bands observed in the butlerite spectrum. It should be noted that the sharp strong band of parabutlerite at 1014 cm⁻¹ corresponds to one of the additional bands in 200 201 butlerite.

202

In butlerite Raman bands are also found at 1088, 1109, 1145, 1198 and 1225 cm⁻¹ and 203 are attributed to the split triply degenerate $v_3 (SO_4)^2$ antisymmetric stretching mode. Factor 204 group analysis only predicts 3 bands in this region. In contrast, in the Raman spectrum of 205 parabutlerite, four Raman bands are observed at 1095, 1109, 1164 and 1202 cm⁻¹. These 206 bands are also assigned to the split triply degenerate $v_3 (SO_4)^{2-}$ antisymmetric stretching 207 vibrations. The presence of one symmetrically distinct $(SO_4)^{2-1}$ unit in the structure of butlerite 208 and two symmetrically distinct $(SO_4)^{2-}$ units in the structure of parabutlerite, inferred from the 209 Raman spectra, is in agreement with the X-ray single crystal structures of butlerite [6] and 210 parabutlerite [7]. 211

212

The infrared spectra of butlerite and parabutlerite in the 1300 to 700 cm⁻¹ region are 213 214 displayed in Figs. 2a and 2b. The spectra show considerable band overlap. However, through band component analysis, component bands may be resolved (Table 3). Infrared 215 216 bands and shoulders are observed for butlerite at 950, 998, 1050, 1099, 1175 and 1225 cm⁻¹. Infrared bands and shoulders are observed for parabutlerite at 956, 994, 1051, 1097, 1131, 217 1173 and 1228 cm⁻¹. The infrared band at 998 cm⁻¹ for butlerite and at 994 cm⁻¹ for 218 parabutlerite are attributed to the $(SO_4)^{2-}$ v₁ symmetric stretching mode. The infrared bands of 219 butlerite at 1050, 1099, 1175 and 1225 cm⁻¹ and at 1051, 1097, 1131, 1173 and 1228 cm⁻¹ for 220 parabutlerite are assigned to the split triply degenerate $v_3 (SO_4)^{2-}$ antisymmetric stretching 221 vibrations. The infrared shoulders at 950 cm⁻¹ for butlerite and at 956 cm⁻¹ for parabutlerite 222 are assigned to the Fe-OH bending vibrations, which appeared as a shoulder at 990 cm⁻¹ in 223 224 the Raman spectrum of parabutlerite. 225

The Raman spectra of butlerite and parabutlerite in the 100 to 800 cm⁻¹ region are 226 displayed in Figs. 3a and 3b, respectively. Ross [27] has reported the infrared bands of the v_4 227 SO₄²⁻ bending modes at 595, 618 and 680 cm⁻¹. The Raman bands and/or shoulders for 228 butlerite at 543, 600 and 617 cm⁻¹ are ascribed to the $v_4 (SO_4)^{2-}$ bending modes. The 229 observation of multiple bands suggests that the symmetry of the SO_4^{2-} tetrahedra has been 230 reduced from T_d to a much lower symmetry C_{2v} or C_1 . The Raman spectrum of parabutlerite 231 shows bands and/or shoulders at 550, 614 and 655 cm⁻¹, which are also attributed to the v_4 232 $(SO_4)^{2-}$ bending modes. However, some of these bands may be connected with the libration 233 modes of water molecules. Ross [27], based upon the infrared spectrum of römerite, defined 234 the $v_2 (SO_4)^2$ bending modes at 460 and 494 cm⁻¹. Two Raman bands at 408 and 469 cm⁻¹ 235 and shoulders at 374 and 450 cm⁻¹ are attributed to the $v_2 (SO_4)^{2-}$ bending modes, molecular 236 water and hydroxyl ion libration modes in the butlerite spectrum. The spectrum of 237 parabutlerite appears less complex for this spectral region with three Raman bands at 368, 238 406, and 468 cm⁻¹ assigned to the $v_2 (SO_4)^{2-}$ bending modes and molecular water or hydroxyl 239 ion libration modes. Bands observed at lower wavenumbers than 300 cm⁻¹ (154, 181, 221, 240 247 and 294 cm⁻¹ for butlerite, and 155, 186, 214, 237 and 263 cm⁻¹ for parabutlerite) are 241 assigned to the Fe-O and Fe-OH stretching vibrations and lattice vibrations [26]. 242

243

The infrared spectra of butlerite and parabutlerite in the 700 to 400 cm⁻¹ region are 244 245 displayed in Figs. 4a and 4b. Strong infrared bands and shoulders are observed at 454, 492, 580, 594 and 657 cm⁻¹ for butlerite and at 468, 503, 597, 621 and 657 cm⁻¹ for parabutlerite. 246 The latter three bands and shoulders for butlerite and parabutlerite are ascribed to the v_4 247 $(SO_4)^{2-}$ bending modes. The observation of multiple bands suggests that the symmetry of the 248 SO₄²⁻ tetrahedra has been reduced as was observed in the Raman spectrum. The two infrared 249 bands and shoulders at 454 and 492 cm⁻¹ for butlerite and at 468 and 503 cm-1 are attributed 250 to the $v_2(SO_4)^{2-}$ bending modes. The observation of multiple bands supports the concept of a 251 252 reduction in symmetry of the sulfate anion.

253

The Raman spectra of butlerite and parabutlerite in the OH stretching region are reported in Figs. 5a and 5b, respectively. In the Raman spectrum of butlerite, bands are observed at 3310 and 3469 cm⁻¹ with additional bands resolved at 3155 and 3012 cm⁻¹. The band at 3469 cm⁻¹ is assigned to the v OH stretching vibration of relatively weakly hydrogen bonded hydroxyl ions. The other three bands (3310, 3155 and 3012 cm⁻¹) are attributed to the 259 v OH stretching vibrations of hydrogen bonded water molecules and hydroxyls. The Raman spectrum of parabutlerite is similar with Raman bands resolved at 3133, 3200, 3316 and 3504 260 cm^{-1} . Similarly, as in the case of butlerite, the band at 3504 cm^{-1} is assigned to the v OH 261 262 stretching vibrations of relatively weakly hydrogen bonded hydroxyls, while the remaining three bands (3316, 3200 and 3133 cm^{-1}) are assigned to the v OH stretching vibrations of 263 264 hydrogen bonded water molecules and hydroxyls. According to Libowitzky empirical 265 equation [28], O-H...O hydrogen bond lengths vary in the range from 2.87 to 2.66 Å (butlerite) and from 2.90 to 2.69 Å (parabutlerite). These values are comparable with 2.86-266 267 2.60 Å for butlerite [6] and 2.93-2.61 Å [7], inferred from their X-ray single crystal structure

- analysis.
- 269

270 In contrast, the infrared spectra of butlerite and parabutlerite in the OH stretching region show a broad band with minimal features. The infrared spectra of butlerite and 271 parabutlerite in the 3800 to 2300 cm⁻¹ region are displayed in Figs. 6a and 6b. Infrared bands 272 and shoulders are resolved at 2632, 2823, 3039, 3195, 3336 and 3476 cm⁻¹ for butlerite and at 273 2814, 3021, 3177, 3335 and 3487 cm^{-1} for parabutlerite. The infrared shoulders at 3476 and 274 275 3487 cm⁻¹ are connected with only weakly hydrogen-bonded hydroxyls, respectively. The 276 other infrared bands and shoulders observed in this region are assigned to hydrogen-bonded 277 water molecules and probably also hydroxyls in the case of both minerals studied. Inferred O-278 H...O hydrogen bond lengths [28] vary in the range 2.59-2.87 Å for butlerite and 2.62-2.88 Å 279 for parabutlerite. This is also in agreement with X-ray single crystal structural analysis data 280 for both minerals studied. The infrared spectra of butlerite and parabutlerite in the 1800 to 1300 cm⁻¹ region are displayed in Figs. 7a and 7b. The spectra show strong asymmetry on 281 the low wavenumber side. Infrared bands are observed at 1440, 1577, 1633 and 1644 cm⁻¹ 282 for butlerite and at 1502, 1615, 1651 and 1671 cm⁻¹ for parabutlerite. The infrared bands at 283 1633 and 1664 cm⁻¹ for butlerite and 1651 and 1671 cm⁻¹ for parabutlerite are assigned to the 284 water bending modes. The observation of bands in these positions provides evidence for 285 286 water being strongly hydrogen bonded in the structure. The observation of two bands 287 provides evidence for the non-equivalence of water in the butlerite and parabutlerite structure. The infrared bands at 1440 and 1577 cm⁻¹ for butlerite and that at 1502 cm⁻¹ for 288 289 parabutlerite may probably be assigned to the overtones, combination bands or δ Fe-OH 290 bending vibrations.

292 CONCLUSIONS

- 293
- (1) Raman and infrared spectra of two polymorphous minerals monoclinic butlerite and
 orthorhombic parabutlerite, both having the same chemical formula
 Fe³⁺(SO₄)(OH)·2H₂O, are recorded and interpreted.
- (2) Observed Raman and infrared bands and shoulders are assigned to the (SO₄)²⁻
 stretching and bending vibrations, hydrogen bonded water molecules, hydroxyl ion
 stretching and bending vibrations, and libration modes of water molecules and
 hydroxyl ions. Low wavenumber bands are assigned to Fe-O and Fe-OH stretching
 vibrations, Fe-OH bending vibrations and lattice vibrations.
- 302 (3) O-H...O hydrogen bond lengths inferred from the Raman spectra 2.87 to 2.66 Å
 303 (butlerite) and 2.90 to 2.69 Å (parabutlerite) and from the infrared spectra 2.87 to 2.59
 304 Å (butlerite) and 2.88 to 2.62 Å (parabutlerite) are comparable with ones calculated
 305 from the crystal structure refinement.
- 306 (4) Observed Raman and infrared bands and shoulders of butlerite and parabutlerite are 307 similar but not identical. The presence of one symmetrically distinct $(SO_4)^{2-}$ unit in 308 the structure of butlerite and two symmetrically distinct $(SO_4)^{2-}$ units in the structure 309 of parabutlerite are distinctly expressed, especially from their Raman spectra.
- 310
- 311

312 Acknowledgements

- 313
- The financial and infra-structure support of the Queensland University of Technology Chemistry Discipline of the Faculty of Science and Technology is gratefully acknowledged.
- 316 The Australian Research Council (ARC) is thanked for funding the instrumentation. This
- 317 work was financially supported by Ministry of Culture of the Czech Republic
- 318 (MK00002327201) to Jiří Sejkora and Jakub Plášil.
- 319
- 320

321 Table 1 Factor group analysis

322

Butlerite

 $Fe(SO_4)(OH) \cdot 2H_2O$ Z = 2

Number of fundamental modes = 3n - 3 = 81

 ${\rm SO}_4$

Cs	C2h
A'	Ag + Bu
A' + A''	Ag + Bu + Bg + Au
2A' + A"	2Ag + 2Bu + Bg + Au
2A' + A"	2Ag + 2Bu + Bg + Au
	Cs A' A' + A" 2A' + A" 2A' + A"

Parabutlerite

 $Fe(SO_4)(OH) \cdot 2H_2O$ Z = 8

Number of fundamental modes = 3n - 3 = 333

 $2 \ x \ SO_4$

	Td	Cs	D2h
	A1	A'	Ag + B3g + B1u + B2u
	Е	A' + A''	Ag + B3g + B1u + B2u + B1g + B2g + Au + B3u
	F2	2A' + A"	2Ag + 2B3g + 2B1u + 2B2u + B1g + B2g + Au + B3u
	F2	2A' + A"	2Ag + 2B3g + 2B1u + 2B2u + B1g + B2g + Au + B3u
323			
324			
325			
326			
327			
328			

330 Table 2. Results of the Raman spectra of butlerite and parabutlerite (cm⁻¹)

butlerite	parabutlerite	assignment
3469	3504	v OH stretch of (OH) ⁻ ions
3310, 3155, 3012	3316, 3200, 3133	v OH stretch of H_2O and $(OH)^-$ ions
1225, 1198,	1202, 1164, 1109,	$v_3 (SO_4)^{2-}$ antisymmetric stretch
1145, 1109, 1088	1095	
1024	1044, 1026, 1014	$v_1 (SO_4)^{2-}$ symmetric stretch
	990	Fe-OH bend
617, 600, 543	655, 614, 550	$v_4 (SO_4)^{2-}$ antisymmetric bend
469, 450, 408,	468, 406, 368	$v_2 (SO_4)^{2-}$ symmetric bend and water molecules
374		and/or (OH) ⁻ libration modes
294, 247, 221,	263, 237, 214,	Fe-O and Fe-OH stretch and lattice vibrations
181, 154	186, 155	

Table 3. Results of the infrared spectra of butlerite and parabutlerite (cm⁻¹)

butlerite	parabutlerite	assignment
3476	3487	v OH stretch of weakly hydrogen
		bonded(OH) ⁻ ions
3336, 3195, 3039	3335, 3177,3021	v OH stretch of hydrogen bonded H_2O and
		(OH) ions
2822, 2632	2814	v OH stretch of hydrogen bonded H_2O and
		(OH) ions
1664, 1633	1671, 1651, 1615	v_2 (δ) H ₂ O bend
1577, 1440	1502	overtones(?), combination bands(?), δ Fe-OH
		bend(?)
1225, 1175, 1099,	1228, 1173, 1131, 1097,	$v_3 (SO_4)^{2-}$ antisymmetric stretch
1050	1051	
998	994	v_1 (SO ₄) ²⁻ symmetric stretch
950	956	δ Fe-OH bend
657, 594, 580	657, 621, 597	$v_4 (SO_4)^{2-}$ bend
492, 454	468	$v_2 (SO_4)^{2-}$ bend

341 342 343 344		
345 346	Refe	rences
347	[1]	Maizlan I. Navrotsky, A. McCleskey, B. Albers, C.N. Fur, I. Mineral, 182 (2006)
348	175-1	86
349	[2]	Klingelhöfer G Morris RV Bernhardt B Schröder C Rodinov DS De Souza PA
350	Yen A	A. Gellert R. Evlanov EN. Zubkov B. Foh J. Bonnes U. Kankeleit E. Gütlich P. Ming
351	DW,	Renz F, Wdowiak t, Squyres SW, Arvidson RE, Science 306 (2004), 1740-1745.
352	[3]	T. Buckby, S. Black, M.L. Coleman, M.E. Hodson, Mineral. Mag. 67 (2003) 263-278.
353	[4]	P. A. Williams, Oxide Zone Geochemistry, Ellis Horwood Ltd, Chichester, West
354		Sussex, England, 1990.
355	[5]	F. Cesbron, Bull. Soc. Franç. Minér. Crist. 87 (1964) 125-143.
356	[6]	L. Fanfani, A. Nunzi, P. F. Zanazzi, Am. Mineral. 56 (1971) 751-757.
357	[7]	J. Borène, Bull. Soc. Franç. Minéral. Crist. 93 (1970) 185-189.
358	[8]	J. W. Anthony, R. A. Bideaux, R. W. Bladh, M. C. Nichols, Handbook of Mineralogy,
359		Vol. V, Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona
360		2003.
361	[9]	C. Sabelli, R. Trosti-Ferroni, Periodico Mineral. 54 (1985) 1-46.
362	[10]	D. Yu. Pushcharovsky, J. Lima-de-Faria, R. K. Rastsvetaeva, Z. Kristallogr. 213
363		(1998) 141-150.
364	[11]	L. F. Aristarian, Rev. Mus. Argentina Cienc. Nat., n. s. 1 (2) (1999) 145-150.
365	[12]	D. A. Cole, G. W. Simmons, R. G. Herman, K. Klier, I. Czako-Nagy, Fuel 66 (1987)
366		1240-1248.
367	[13]	M. C. Brandy, Am. Mineral. 23 (1938) 669-760.
368	[14]	F.C. Hawthorne, Acta Crystallogr. B50 (1994) 481-510.
369	[15]	F. C. Hawthorne, EMU Notes in Mineralogy 1 (1997) 373-429.
370	[16]	F. C. Hawthorne, S. V. Krivovichev, P. C. Burns, Rev. Mineral. Geochem. 40 (2000)
371		1-112.
372	[17]	M Schindler, D.M.C. Huminicki, F.C. Hawthorne, Can. Mineral. 44 (2006) 1403-
373		1429.
374	[18]	F. Scordari, Tschermaks Mineral. Petrogr. Mitt. 28 (1981) 17-29.
375	[19]	J. Sejkora, J. Škovíra, J. Čejka, J. Plášil, J. Geosci. 54 (2009), 355-371.

- 376 [20] J. Sejkora, D. Ozdín, R. Ďuďa, J. Geosci. 55 (2010), 149-160.
- 377 [21] R. L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, J. Plášil, S. J. Palmer, J. Raman
- 378 Spectrosc. 41 (2010), 814-819.
- 379 [22] R. L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, S. J. Palmer, R. Škoda, J. Raman
- 380 Spectrosc. 41 (2010), 690-693.
- 381 [23] S.C.B. Myneni, Rev. Mineral. Geoch. 40 (2000) 113-172.
- 382 [24] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds.
- 383 John Wiley & Sons, New York 1986.
- 384 [25] V.C. Farmer (Ed.), The infrared spectra of minerals, The Mineralogical Society, London
 385 1974.
- 386 [26] H.D. Lutz, Structure Bond. 82 (1995) 85-103.
- 387 [27] S.D. Ross in The Infrared Spectra of Minerals (V.C. Farmer, Ed.), p. 423-444. The
 388 Mineralogical Society London 1974.
- 389 [28] E. Libowitzky, Monatsh. Chem. 130 (1999) 1047-1059.

391	List of Figures
392	
393	Fig. 1. Raman spectra of (a) butlerite and (b) parabutlerite in the 1300 to
394	900 cm ⁻¹ region.
395	
396	Fig. 2. Infrared spectra of (a) butlerite and (b) parabutlerite in the 1300 to
397	700 cm ⁻¹ region.
398	
399	Fig. 3. Raman spectra of (a) butlerite and (b) parabutlerite in the 800 to
400	100 cm ⁻¹ region.
401	
402	Fig. 4. Infrared spectra of (a) butlerite and (b) parabutlerite in the 700 to
403	400 cm ⁻¹ region.
404	
405	Fig. 5. Raman spectra of (a) butlerite and (b) parabutlerite in the 3800 to
406	2600 cm ⁻¹ region.
407	
408	Fig. 6. Infrared spectra of (a) butlerite and (b) parabutlerite in the 3800 to
409	2300 cm ⁻¹ region.
410	
411	Fig. 7. Infrared spectra of (a) butlerite and (b) parabutlerite in the 1800 to
412	1300 cm ⁻¹ region.
413	
414	

Figure 1a Raman spectrum of butlerite in the 1300 to 900 cm⁻¹ region.

Figure 1b Raman spectrum of parabutlerite in the 1300 to 900 cm⁻¹ region.

418

419

Figure 2a Infrared spectrum of butlerite in the 1300 to 700 cm⁻¹ region.

Figure 3a Raman spectrum of butlerite
in the 800 to 100 cm⁻¹ region.Figure 3b Raman spectrum of
parabutlerite in the 800 to 100
cm⁻¹ region.

Figure 4a Infrared spectrum of butlerite in the 700 to 400 cm⁻¹ region.

Figure 4b Infrared spectrum of parabutlerite in the 700 to 400 cm⁻¹ region.

435

436

Figure 5a Raman spectrum of butlerite in the 3600 to 2800 cm⁻¹ region.

Figure 5b Raman spectrum of parabutlerite in the 3700 to 2600 cm⁻¹ region.

Figure 6a Infrared spectrum of butlerite in the 2300 to 3800 cm⁻¹ region.

Figure 6b Infrared spectrum of parabutlerite 2600 to 3800 cm⁻¹ region.

Figure 7a Infrared spectrum of butlerite in
the 1300 to 1800 cm⁻¹ region.Figure 7b Infrared spectrum of
parabutlerite 1300 to 180

parabutlerite 1300 to 1800 cm⁻¹ region.