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Abstract: In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as 
slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large 
deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance 
random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We 
prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution. 
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1 INTRODUCTION 

It is well known that MIMO (multiple-input, multiple-output) 
systems are capable of producing high spectral efficiencies with the 
added advantage of multipath diversity. In recent times cooperative 
systems where source node is assisted by other nodes in 
transmitting a message to the destination have been investigated in 
order to understand whether they provide the same results as that of 
the MIMO systems. A key element in analysing such systems is to 
investigate the eigenvalue distribution of the sample covariance 
random matrix HH† where H is the channel matrix for the 
transmission model Y = HX + Z; X, Y and Z being the input, 
output and the complex white Gaussian noise vectors respectively 
while H† denotes the Hermitian adjoint of H. Apart from the case 
of MIMO systems for which the elements of the H matrix are 
independent and identically distributed (i.i.d) random variables 
eigenvalue distributions for other types of random matrices that 
occur in communication theory still remain unknown. Examples of 
such matrices are: the non-orthogonal amplify-and-forward system 
and orthogonal amplify-and-forward system. 

Recently some new developments has surfaced in the field of 
Random Matrix Theory (RMT) in application to problems that 
arise in relation to communication theory, notable works being 
(Fawaz, Zarifi, Debbah, & Gesbert, 2008; Hachem, Khorunzhiy, 
Loubaton, Najim, & Pastur, 2008; Levy, Somekh, Shamai, & 
Zeitouni, 2009). Authors of (Hachem et al., 2008) analyse the n×m 
MIMO channels with correlated antenna paths, using perturbation 
formulas and Poincare-Nash inequality and have proved that the 
rescaled mutual information variable converges to a Gaussian 
random variable with unit variance as m,n→∞. In (Fawaz et al., 
2008) once again a closed form expression for the end-to-end 
mutual information for a multi-hopped relay network is derived 
using the tools of free-probability theory. The application 
considered in (Levy et al., 2009) involves the soft-handover 
procedure encountered by a mobile in a cellular network and the 
system model is analysed using product random matrices and the 
theory of Harris Markov Chains. 

Cooperative communication systems, in particular relay assisted 
communication has become a heavily researched area in recent 
times with regard to communication theory, the most popular 
relaying methods being amplify-and-forward and decode-and-
forward although recently these simple protocols has been vastly 
modified, one such being the slotted amplify-and-forward protocol 
that we consider here. The major factor of benchmarking the 
performance of such systems is the Shannon capacity, and as 
already noted above a major ingredient necessary for obtaining 
bounds for the expected value of this random variable is the 

empirical eigenvalue distribution of the sample covariance matrix 
HH† where H is the channel matrix. 

It has been noticed that the channel model of most of the 
transmission models of cooperative protocols can be proven to be 
band random matrices where the band width is finite. If one can 
obtain the limiting eigenvalue distribution of such matrices as 
matrix dimensions grow infinitely large, a direct consequence 
would be ―asymptotic‖ results for the expected value of the 
channel capacity random variable as shown in (Tulino & Verdu, 
2004). By the term ―asymptotic‖ we mean that the system 
dimension grows infinitely large. For a MIMO system the growth 
factors would be the number of transmit and receive antennas, 
while for cooperative communication this may be the number of 
cooperative time-slots or the number of participating relays. 

Although the applications of band-random matrices have found 
their application in communication theory quite recently they are 
not new topics among the theoretical physics research community. 
These types of matrices have been studied in relation to 
applications found in areas like statistical mechanics of disordered 
systems, quantum chaos theory, solid state physics and quantum 
field theory (Crisanti, Paladin, & Vulpiani, 1993; Guhr, Muller-
Groeling, & Weidenmuller, 1998; Khorunzhy & Kirsch, 2002). But 
most cases investigated involve the form of n×n square matrices 
which are of the form b/n→c, c>0, b,n→∞ where b represents the 
number of diagonals which are non-zero, i.e. the band width. 

The organization of the paper is as follows. First we discuss the 
system model of the slotted amplify-and-forward protocol with 
multiple relays transmitting in one slot and derive the state 
equations for the model. Thereafter we state our main result and 
outline the proof of this before finally we discuss in brief 
consequences of this result. 

2 SYSTEM MODEL AND ANALYSIS 

2.1 Operation of the Slotted Amplify-and-Forward 
Protocol 

In this section we explain the operational details of the slotted-and-
forward method investigated in (Sheng & Belfiore, 2007) which 
was shown to reach the asymptotic multiple-input single-output 
(MISO) diversity multiplexing trade-off bound when the number of 
relays aiding the source grows asymptotically large. A MISO 
scheme is defined as a transmission system where the source is 
equipped with multiple antennas but the destination possesses only 
one antenna. Furthermore in a MISO system the link between the 
source and the destination is direct. We lay out the system 
equations of the scheme we intend analyse below and before that it 
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is needed to briefly describe the system model. 

 A cooperation frame is composed of N slots each of l 
symbols, denoted by 1, 1, , ;l

ix C i N   

 During the ith slot, the source s transmits xi and the p-1 

relays , 1, , 1ijr j p  transmits 1
,j

l
r ix C    and another 

set of (p-1) relays listen in this slot. 

 Assuming that the relays are isolated up to the extent that 
inter-relay gain is zero, meaning that the transmission of one relay 
does not interfere with the source-transmitted signal reception of 
another relay, the received symbols at the jth relay and at the  
destination are given by,  1

, ,
j

l
r i iy y C   respectively, with ; 

 

 

 

 

where g0
(i) denotes the source to destination link channel gain 

assumed to be a complex circularly symmetric Gaussian random 
variable with real and imaginary parts distributed i.i.d with zero 
mean and variance 1. For two timeslots i and j of a cooperative 
frame, source to destination channel gains are assumed to be 
independent that is we assume the cooperative frame time-slots to 
be considerably long. Furthermore gj

(j) and hj
(j) represent the source 

to jth relay, and jth relay to destination gains in the ith slot 
respectively which are also assumed to be independent complex 
circularly symmetric Gaussian random variables with real and 
imaginary parts identically and independently distributed with  
mean zero and variance 1. 1

,j

l
r iz C  denotes additive white  

Gaussian noise components which are i.i.d with zero mean and 
variance 1. Furthermore bj,i denotes the amplifying factors of the jth 
relay at the ith timeslot. 

 The transmitted signals xi and xi-1 are subjected to short term 
power constraint; 

 

 

where SNR is the signal to noise ratio which is kept constant. 

 Solving the equations (1.a) and (1.b) we obtain the relations 
(3.a) and (3.b); 

 

 

 

 

 Now since each of the signal models (3.a) and (3.b) denote 
the signal model for one slot and the cooperative frame consists of 
N slots we may convert the equations (3.a) and (3.b) into the  
vector form given by (4.a) and (4.b) following the same lines of 
reasoning as in (Sheng & Belfiore, 2007). 

 

 

 

where ,                   , ( )
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ia g and u is defined as; 

 

 

 

and c is defined by  

 

 Hence finally from 4.a and 4.b we finally obtain the vector 
channel 

 

where, H is defined by 

 

 

 

 It is evident that the equivalent channel matrix H of the 
transmission model forms a lower triangular bi-diagonal matrix. 
Furthermore we may consider that the amplification factors bj,i-1 to 
be constant for analysis purposes. Furthermore we may write down 
this matrix in the following form (9) as well. 

 

 

 

 

 

 Now we are in a position to carry out our main analysis, 
which is the empirical eigenvalue distribution analysis of this 
model as the number of relays transmitting in a cooperative 
timeslot and the number of slots in the cooperative phase are very 
large, i.e. p, N→∞. 

2.2 Analysis of the Empirical Eigenvalue Distribution for 
the SAF protocol 

2.2.1 Main Result 

Our main result concerns the empirical eigenvalue distribution of 
the random matrix (9). We show that the Stieltjes transform ρ(z) 
given by (10) of this distribution is similar to the Stieltjes transform 
of the Marcenko-Pastur distribution. 

 

 

Theorem-1: 

Let H be defined as in (9) and consider the normalized trace m(z) = 
(1/N)Tr(G(z)) of its resolvent G(z)=(H-z)-1. Then for small δ, we 
have 

 

where, 

 

 

with high probability where r=N/p as p ,N→∞, mρ(z) given by (12)  

being the Stieltjes transform of the Marcenko-Pastur distribution.  

That is, as p,N→∞, with r=N/p<1 the eigenvalue distribution of 
HH† with H given by (9) tends to the Marcenko-Pastur 
distribution. 
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2.2.2 Outline of the Proof 

Consider the resolvent defined by ( ) 1 ( )z z G H . First part 
of the proof is to expand the resolvent of the matrix using its 
minors to obtain a self-consistent formula for

( ) (1 ) ( ( ))nm z n Tr z G . The resulting formula is close to 
the final expression except for an additional term Y(j). Our next step 
is to apply large deviation techniques to obtain a bound for this 
term. In other words by studying the stability of the self-consistent 
equation obtained by applying perturbation methods we prove that 
for large N the empirical eigenvalue distribution of matrix (9) tends 
to (12) with high probability. 

Denote the first column of H as h1 (h1
* stand for the conjugate 

transpose vector) and B as the ( 1)N N  obtained by ordering 
the last 1N   columns of H. Thus we may write A=HH† as, 

 

 

 

Denote the first column of the resolvent G as (G11, G12 …, G1N)T = 
(x, w)T where x = G11, then we have, 

 

 

 

From (14.b) we have                                where G(1)  is the 
resolvent of the matrix BB†, after which this being substituted to 
(14.a) we have, 

 

 

 

Now let us define the normalized eigenvectors and the non-zero 
eigenvalues of BB† as vα and μα respectively with α = (1,..,N-1). 
Clearly we have the matrix elements of BB† given by, 

 

 

Thus using (16) we can rewrite (15) as, 

 

 

 

 

where ξα = p|h1vα|2, and note that E[ξα] = 1, i.e.  

 

 

 

                                                                            

 

Now we may generalize the result for G(1,1) as given in (14) to 
obtain an expression for the normalized trace as, 
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Note that since E[ξα] = 1, E[X(j)] = 0. Let, 

 

 

 

Defining r = N/p<1 we may rewrite (19) as, 
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Now given that,                              is small we can expand (22) as,  
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We can clearly see that (24) is very much close to the quadratic 
equation for the Stieltjes transform of the Marcenko-Pastur density 
function. Now we shall obtain a rough bound for Y(j). It is evident 
that, 

 

 

 

Now recalling the fact that E[h1h†]=1 we may use proposition-1 of 
Appendix-A.1 (Erdos, Schlein, & Yau, 2010a) which yields, 

 

 

for some large fixed K. 

Furthermore we notice that the eigenvalues of HH† and BB† are 
interlaced hence, 

 

 

We have used here the trivial bounds, 

 

 

where, ε -1 = Im(G(z)). Now we obtain a bound for X(j). 

 

 

 

Recall that the eigenvectors are normalized and E[|hj|2]=1. Now 
noting that the eigenvectors vα

(j) and hj are independent we may 
write (29) as, 
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Now taking into account the trivial bound (28) we can see that, 

 

 

 

Now again using proposition-1 of Appendix-A for small δ we 
have, 

 

 

Hence together with (26), (27) and (33) for some large fixed K and 
small enough δ, 

 

 

Consider the equation, 

 

 

Now we can apply Lemma-2 (Appendix-A.2) to obtain a bound on 
the stability of the equation (24) as follows. From (24) for a certain  

Y = Δ small enough such that, 

 

 

We can compute the stability of (24) as, 

 

 

for κ > 0, which proves Theorem-1. 

2.3 Discussion 

We note that the Stieltjes transform of the eigenvalue distribution 
of the random matrix model we have considered which tends to a 
non-random limit with high probability is closer to the Marcenko-
Pastur distribution with one exception. Although the Marcenko-
Pastur distribution takes the form of (11) with r = M/N and M<N 
for a sample covariance matrix HH†, H being an MxN matrix, for 
the matrix we considered here r=N/p with p<N. This difference is 
due to the channel being in the form of multiple-input, single-
output (MISO) as opposed to the transmission model of a multiple-
input, multiple-output (MIMO) system of which the empirical 
eigenvalue distribution becomes the Marcenko-Pastur distribution. 
Another interesting scenario is the case when out of p relays q 
number of relays may be available for cooperation for a certain 
timeslot. We call this partial availability. Assume each relay is 
available for relaying for a particular slot with probability 
distribution, 

 

 

 

Then equation (9) may be rewritten as, 

 

 

 

 

 

It is easy to verify that the single entry distribution still obeys an 
exponential decay due to Rayleigh fading and given that fq(q), yet 
E[ξα] is not equal to unity thus the analysis becomes more 
complicated. We intend to address this problem in future work. 

3 CONCLUSION 

In this paper we have analysed the eigenvalue distribution of a 
random matrix model one encounters when studying cooperative 
communication, particularly with regards to amplify-and-forward 
protocols and obtained the Stieltjes transform of the eigenvalue 
distribution of the resulting random matrix. This result would 
facilitate the investigation of the Shannon capacity of this protocol 
and obtain an upper bound for it.  
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APPENDIX 

Below we note down a large deviation result and a perturbation theory result that we have used in our analysis. The reader is referred to the 
mentioned references for the proofs of these results. 

A.1 Proposition-1, ((Erdos, Schlein, & Yau, 2010a) Lemma-4.2) 

Let z = γ + iε, with γ>0. Suppose that vα and λα are the eigenvectors and eigenvalues of an NxN random Hermitian matrix B with the single 
entry distribution satisfying sub-exponential decay. Let,  

 

 

where components of b are i.i.d random variables, independent of B and also satisfying exponential decay. Then there exists a positive 
constant c depending on γ so that for every δ > 0, 

 

 

A2. Lemma-2 ((Erdos, Schlein, & Yau, 2010b), Lemma-8.4) 

Let X+ and X- be the solutions of the equation, 

 

 

For small enough Δ depending on r and large κ(γ) where z = γ + iε,  

 

 

where S+ and S- are the solutions of the quadratic equation for the Stieltjes transform of the Marcenko-Pastur distribution. 




