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Abstract

We consider the problem of how to efficiently and safely design dose finding studies.
Both current and novel utility functions are explored using Bayesian adaptive design
methodology for the estimation of a maximum tolerated dose (MTD). In particular, we
explore widely adopted approaches such as the continual reassessment method and min-
imizing the variance of the estimate of an MTD. New utility functions are constructed
in the Bayesian framework and are evaluated against current approaches. To reduce
computing time, importance sampling is implemented to re-weight posterior samples
thus avoiding the need to draw samples using Markov chain Monte Carlo techniques.
Further, as such studies are generally first-in-man, the safety of patients is paramount.
We therefore explore methods for the incorporation of safety considerations into util-
ity functions to ensure that only safe and well-predicted doses are administered. The
amalgamation of Bayesian methodology, adaptive design and compound utility func-
tions is termed adaptive Bayesian compound design (ABCD). The performance of this
amalgamation of methodology is investigated via the simulation of dose finding studies.
The paper concludes with a discussion of results and extensions that could be included
into our approach.
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1. Introduction

Early clinical trials in humans are generally interested in describing the probability
of observing an adverse event for a range of doses, with the aim of estimating specific
parameters such as the maximum tolerated dose (MTD). Questions about efficacious
doses are not usually of interest but rather establishing a safe range of doses is important
since these are brought forward in later trials. Indeed, an estimated MTD has important
implications in drug development as this dose level may never be exceeded in subsequent
trials. Generally, doses are administered to patients or cohorts as single or multiple
ascending doses with all previous experimental information being available for selection
of the following dose. The design problem then involves choosing the next dose to
maximize the information about a parameter of interest (for example, an MTD) without
compromising patient health.

One of the first papers in this area dates back to Tsutakawa (1980) who considered
the estimation of a point on the logistic quantal response curve which could relate
to, for example, the probability of observing an adverse event given the MTD was
administered. A pragmatic approach to dose finding came from O’Quigley et al. (1990)
who proposed the continual reassessment method (CRM). This approach concentrates
experimental effort in the current best estimate of the area of interest. In terms of
dosing finding trials, this relates to dosing subjects at the estimated MTD. One of the
first Bayesian adaptive design procedures implemented within dose finding came from
Whitehead and Brunier (1995). Priors induced through elicited data were included and
doses were selected based on the gain in statistical information of an estimate. When
a comparison of their approach and CRM was performed, limitations of the CRM were
highlighted. Adaptive procedures were extended by Babb et al. (1998) who addressed
the ethical need to control the probability of dosing over an MTD. Their idea was to
approach dosing at the MTD whilst limiting the proportion of patients who receive an
‘overdose’. Similar to the CRM, this methodology was developed with phase I cancer
trials in mind. Haines et al. (2003) presented formal (Bayesian) optimal design theory
based on c- and D-optimality to estimate an MTD. They too imposed constraints to
keep a low probability of an administered dose exceeding some maximum acceptable
dose level and also extended their approach to adaptive trials. Other notable research
includes Whitehead and Williamson (1998); Whitehead et al. (2001, 2006a,b); Zhou
et al. (2006, 2008); Thall et al. (2008). A review of recent methods for designing phase
I clinical trials was given by Rosenberger and Haines (2002) and, more recently, a book
on statistical methods for dose finding by Chevret (2006). The general focus of the
above referenced material is either on the convergence to a quantile of interest or the
minimization of the variance of a quantile estimate.

An important consideration in the design of dose finding trials is the safety of the
patients. These trials are first-in-man, so there is the possibility of exposing patients to
highly toxic doses, leading to the possible suspension of the trial. Current approaches
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to design dose finding studies have been criticized for escalating too quickly (see Ratain
et al. (1993), Korn et al. (1994) and Goodman et al. (1995)). A well-designed exper-
iment should avoid, or at the very least minimize, the risk of administering a toxic
dose. The issue of safety has been addressed recently by Zhou et al. (2006) and Zhou
et al. (2008). In both papers, toxicity was controlled by bounding exposure to the drug,
that is, not administering a dose if the estimated exposure is larger than a pre-defined
tolerance level. Other approaches deal with the issue of safety by restricting the doses
available for administration (as mentioned above, see Babb et al. (1998) and Haines
et al. (2003)). Further examples include Dragalin et al. (2008), who developed a two-
stage design approach accounting for both efficacy and safety by only selecting doses
within a therapeutic range. Also, Biedermann et al. (2007) implemented (local) com-
pound optimal designs for estimating multiple percentiles on the dose response curve
where the design space was restricted due to ethical concerns over drug toxicity and/or
efficacy.

Our approach to this design problem considers compound design criteria (or util-
ity functions) in the context of Bayesian adaptive design for dual experimental goals
of estimating the MTD and addressing the safety of subjects. We have termed this
amalgamation of methodology adaptive Bayesian compound design (ABCD). Six util-
ity functions, denoted as  1 to  6, for estimation of the MTD will be considered.
Utility functions  1 to  3 are commonly found in the literature and are functions of
the expectation of the ‘new’ data point. The other three utilities ( 4 to  6) are evalu-
ated by averaging over the predictive probability distribution of the ‘new’ data point.
This requires additional computation, and importance sampling is used to substantially
‘lighten’ this burden. An indicator function is used to incorporate safety considerations
into the utilities so that the ‘best’ dose for estimation is selected amongst those that are
believed to be non-toxic (and therefore safe to administer). The sequential nature of
the trial means that dose availability will adapt between participants, and larger doses
will only be available if the probability of toxicity is well-predicted and relatively small.
The performance of current utilities, our new approach to constructing designs, and
the safety considerations will be evaluated via simulation studies under dose finding
scenarios.

The paper is set out as follows. Initially, details regarding the dose finding studies
are given in Section 2. This forms the basis for all utility functions and examples
considered. The utilities are defined in Section 3, as well as the ABCD procedures that
are implemented throughout the simulation studies. In Section 4, the results from the
simulation studies are explored to compare utility functions and evaluate the safety
provisions. The paper concludes with a discussion and suggestions for further research.

2. Dose finding studies

We consider a dose finding trial which could be, as given in Whitehead and Brunier
(1995), a study of healthy volunteers for an experimental compound that is intended as
a treatment for depression. The aim is to estimate the MTD denoted as D∗ such that
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P (Y = 1∣D∗) = p, the probability of observing an adverse event.
Consider the following logistic generalized linear model (GLM) (see McCullagh and

Nelder (1989)),

� = g(�, D) (1)

=
exp(�0 + �1D)

1 + exp(�0 + �1D)
, (2)

where � is the probability of observing an adverse event given drug dosage D and
� = (�0, �1)

′.
We assume an uninformative prior for � such that

[

�0
�1

]

∼ N

([

0
0

]

,

[

100 0
0 100

])

.

We assume there is a discrete set of doses D available for selection in each study
D ∈ {0.1, 0.2, . . . , 2}.

In order to explore the adaptive design of dose finding studies, a true model must
be assumed so that data can be generated for selected doses. Suppose the true value of
the model parameter is represented by �t = (�0t, �1t)

′, then the MTD (denoted as D∗)
can be found as follows

D∗ =
log

(

p
1−p

)

− �0t

�1t
. (3)

Any dose which yields a probability of an adverse event that is less than or equal
to (for example) p = 0.2 is considered safe. Similarly, doses which yield probabilities
larger than p are deemed toxic.

To initialize the ABCD dose finding procedure (discussed in the next section), several
‘pseudo’ observations need to be assumed (here we use two). Suggestions for this
initialization are given in Whitehead and Brunier (1995). In our implementation, two
doses (D−1 = 0.9 and D0 = 2.0) are selected and the probabilities of toxicity are
assumed to be elicited. These elicited probabilities enter the likelihood directly (i.e.
not as 0s or 1s). Consider the following likelihood for the pseudo data

p(�∣�) = Π0
i=−1�

�i(1− �)1−�i , (4)

where � is a function of � and D (see equation (1)), and �i are the elicited data for
i = −1, 0.

The induced prior for the study is compromised of two parts; the non-informative
prior on the parameters p(�) and the information obtained from the elicited data p(�∣�).
This induced prior is shown in Figure 1, with the predictions arising from the assumed
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true model. The 90% credible interval for the model predictions essentially covers the
entire interval [0, 1] for doses less than one. For doses larger than one, there is movement
away from the lower bound of zero.
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Figure 1: Model predictions (-) and 90% credible interval (- -) given the prior information and elicited
data.

3. Adaptive Bayesian compound design (ABCD)

Adaptive design has received much attention in the literature. The idea is to choose
the next dose (or design point) conditional on all current data. As more data become
available, there is less uncertainty about the true values of the parameters, leading
to a more efficient design. Chaudhuri and Mykland (1993) demonstrated this within
a nonlinear context. Specifically in regard to binary response data, Dixon and Mood
(1948) and Robbins and Monro (1951) presented the early work in this area. More recent
developments have come from Haines et al. (2003) and Dror and Steinberg (2008).

The ABCD procedure used for all examples is outlined in this section. The pro-
cedure is based on that given in Whitehead and Brunier (1995) who consider a gen-
eral adaptive design framework where each individual receives a single dose, and prior
information is updated for dose selection after each individual. In their research, a
conjugate-type prior was used for the experiment, and the expectation of the utility
function was approximated by evaluating the utility at the expectation of the unknown
parameters. Four key ingredients were discussed; the model, prior knowledge, set of
possible actions and a utility function. The first three ingredients for our work were
defined in Section 2, and will be considered in the examples that follow in Section 4.
For the final ingredient, six utility functions will be explored, and are defined later in
this section. Our work will extend the methodology of Whitehead and Brunier (1995)
to fully Bayesian techniques using MCMC methods to accommodate a flexible choice of
priors. Fully sequential simulation-based design has been explored previously by Müller
et al. (2007). Their approach, however, is generally only suitable (i.e. practical) when
the design set/decision set is small, such as whether to stop or continue the experiment.

Because of the lack of conjugacy of the model, we implemented a Metropolis-
Hastings (MH) algorithm to sample from posterior distributions. In our MH-algorithm,
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a proposal parameter, �(k), was generated conditional on its current value, �(k−1), from
the proposal distribution q(�(k)∣�(k−1)), for k = 1, . . . , nos where nos is the number
of particles in the posterior sample. An independent proposal was used based on a
bivariate normal distribution with mean and variance-covariance matrix determined by
a maximum likelihood fit to the current data. The proposal was updated each time a
new dose was selected, making it adaptive between patients.

Next, six utility functions are defined. The first three are functions of the expec-
tation of a new data point and have appeared in the literature. We denote these as
 1 (Whitehead and Brunier, 1995),  2 (O’Quigley et al., 1990) and  3 (McGree et al.,
2008). The remaining three utilities, denoted as  4 (trimmed posterior variance),  5

(posterior interquartile range) and  6 (posterior variance-covariance), are evaluated
by averaging over the predictive probability distribution of the new data point. For
these latter three utilities, importance sampling was used to reduce the computational
burden.

3.1. Variance of D̂∗

Whitehead and Brunier (1995) proposed a utility function which aimed to minimize
the variance of the estimate of the MTD. Let D∗ denote the true MTD and D̂∗ its
estimate. Suppose we are interested in the optimal choice of dose for the ith individual.
This choice will be based on y−1:i−1 which represents the elicited data and data up to
individual i − 1. Then under this utility, the next dose selected will be the D that
minimizes:

 1(D) = E�∣y
−1:i−1

{(� ′[M (�, D) +M (�,Do)]
−1� )},

where M (�, D) represents the expected Fisher information from dose D, M (�,Do)
represents the expected information from all previous doses Do, and � ′ = ∂D∗/∂�.
Here, � is a vector of partial derivatives of the functional expression for D∗ with respect
to � (defined in equation (3)). Hence, the utility is the minimization of the expectation
of the asymptotic (Delta-method) variance of D̂∗ over �.

3.2. Continuous Reassessment Method (CRM)

The CRM was proposed by O’Quigley et al. (1990) and is one of the original utility
functions for dose finding. The aim is to dose subjects at (or nearest to) the MTD.
Then, the dose chosen for the next subject i will minimize:

 2(D) = E�∣y
−1:i−1

{abs(g(�, D)− p)},

where g(�, D) is defined in equation (1).
Inherent in this utility is a safety consideration. Continual selection of the dose

which is closest to the MTD ensures that patients are never (knowingly) exposed to
highly toxic doses.
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3.3. Coefficient of variation of D̂∗

Similar to minimizing the variance of D̂∗, this utility function considers minimizing
the coefficient of variation of D̂∗ given the posterior sample. A coefficient of variation as
a utility function has been considered by McGree et al. (2008). The  3-optimal design
minimizes:

 3(D) = E�∣y
−1:i−1

{(� ′[M (�, D) +M(�,Do)]
−1� )1/2/D̂∗}.

This utility weights the measure of variability by the magnitude of the estimate.
Then, relatively large variances will be given less weight if the corresponding estimate
of the MTD is large.

3.4. Algorithm One: Bayesian adaptive design procedure for  1 to  3

The Bayesian adaptive design procedure implemented for  1 to  3 is outlined in
Algorithm 1. At the end of the trial, the median of the posterior distribution of D∗ is
taken as D̂∗. This estimate is based (only) on observed data. That is, the elicited data
has been removed.

3.5. Trimmed posterior variance

A Bayesian approach to adaptive design may seek to minimize the posterior variance
of D∗. Equation (3) shows how D∗ depends on �. Notice that a ratio of the parameters
needs to be computed in order to determine D∗. Consequently, when sampling from
the posterior distribution of the parameters, outliers may be produced and inflate the
estimate of the posterior variance of D∗. Therefore, a robust measure of variance is
preferred. In this paper, we consider a trimmed variance based on the middle 98% of
the data.

Suppose we have y−1:i−1, and need to choose an optimal dose for the next individual
i. Given a sample from p(D∗(�)∣y−1:i−1), we require to find the dose D that minimizes
the expectation of the trimmed posterior variance of D∗(�), that is

 4(D) =
1

∑

ỹ=0

pD,ỹVART[D
∗(�)∣y−1:i−1, ỹ, D)].

This utility estimates the average posterior variance of the MTD over the predictive
probability distribution pD,ỹ. This is somewhat straightforward to perform in a binary
setting as there are only two possible outcomes for a given dose (toxicity or no toxicity),
ỹ = 0, 1. As the proposals in the MH-algorithm are based on a maximum likelihood
fit, the maximum likelihood estimates for � are available. These were used to estimate
pD,ỹ.
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Algorithm 1 General dose finding procedure

1: %% Loop over the number of subjects %%
2: for i = 1 : N do
3: if i = 1 then
4: %% Initially choose lowest dose %%
5: Dopt = Da(i)
6: else
7: %% All data up to individual i− 1 including elicited data %%
8: Let y−1:i−1 = (y′

1:i−1, y0, y−1)
′

9: %% Sample � from p(�∣y−1:i−1) %%
10: Draw nos of � ∼ p(�∣y−1:i−1)
11: %% Loop over available doses %%
12: for j = 1 : length(Da) do
13: Let D = Da(j)
14: %% Evaluate criterion value for D %%
15: Evaluate  (D) given �

16: end for
17: %% Choose D that minimizes criterion %%
18: Dopt = argmin

D∈Da

 (D)

19: %% Simulate data given D and true model %%
20: Draw yi ∼ Bern(g(�t, Dopt))
21: end if
22: end for
23: %% Sample � from p(�∣y1:N ) %%
24: Draw � ∼ p(�∣y1:N)
25: Find p(D∗(�)∣y1:N)
26: %% Estimate D∗ as the median of the posterior distribution for D∗ %%
27: D̂∗ = median[D∗(�)∣y1:N)]
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3.6. Posterior interquartile range

As an alternative to minimizing the trimmed posterior variance, one may also min-
imize the interquartile range of the posterior distribution for D∗. When estimated by
simulation, this alternative measure of spread is more robust to outliers than the vari-
ance. This utility function is also motivated by the shape of the posterior distribution
of D∗. Despite p(�∣D) appearing quite normal (stable), the posterior distribution of
D∗ may become skewed and longtailed due to D∗ involving the ratio of two approxi-
mate normal random variables. Accordingly, the variance of such distributions may not
be the ideal summary for spread. This utility is similarly defined (to  4) as one that
minimizes the following:

 5(D) =
1

∑

ỹ=0

pD,ỹIQR[D∗(�)∣y−1:i−1, ỹ, D)].

3.7. Posterior variance-covariance

The final utility function considered is an extension of  1 with the posterior variance-
covariance inserted instead of the inverse of the Fisher information. Consider minimiz-
ing the following:

 6(D) =
1

∑

ỹ=0

pD,ỹ�
′V (�, [y−1:i−1, ỹ, D)])� ,

where V (�, [y−1:i−1, ỹ, D)]) denotes the posterior variance-covariance matrix given
all previous data points, the supposed new data point ỹ and dose D.

3.8. Algorithm Two: Bayesian adaptive design procedure for  4 to  6

The utilities  4 to  6 can be implemented using Algorithm 1, but this can be
computationally intensive as we are required to sample from a large number of posterior
distributions. That is, each time a new dose is selected, a new sample from a posterior
distribution must be found. Moreover, for each individual dose allocation, we need
to re-compute the posterior distribution for each possible dose as part of the dose
selection phases. We perform this using importance sampling, thereby avoiding a costly
Metropolis-Hastings run for each possible dose. Importance sampling is typically used
as an estimator based on independent, identically distributed samples. This has been
extended to dependent samples (see Tierney (1994)).

Consider the pseudo data and data up to individual i − 1, denoted as y−1:i−1, for
which we have samples from the posterior distribution of the parameter, p(�∣y−1:i−1).
We use this posterior as the importance distribution. The target distribution is p(�∣y−1:i−1, ỹ),
where ỹ is the new data point given dose D. By importance sampling, the current pos-
terior samples can be weighted to reflect our target with unnormalized importance
weights given by
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wk =
p(�(k)∣y−1:i−1, ỹ)

p(�(k)∣y−1:i−1)
∝

p(y−1:i−1, ỹ∣�
(k))p(�(k))

p(y−1:i−1)∣�
(k))p(�(k))

= p(ỹ∣�(k)),

where �(k) is the kth sample from p(�∣y−1:i−1). Following a normalization of the

weights, Wk = wk/
∑

j wj, the set {�(k),Wk}
nos
k=1 represents a weighted sample from

p(�∣y−1:i−1, ỹ). We calculate the values of our utilities using this weighted sample.
Whilst importance sampling was used in the dose selection stage, Metropolis-Hastings
was still utilized to obtain the new posterior distribution after the new data point has
been observed.

For illustrative purposes, consider  4. To select the optimal dose for the ith indi-
vidual, we have particles �(k) (k = 1, . . . , nos) as a posterior sample from p(�∣y−1:i−1).
Then, for all D ∈ Da

1. Let pD,1 = g(�̂, D) and pD,0 = 1− pD,1

2. For ỹ = 0, 1,

∙ Find weights w
(k)
ỹ = p(ỹ∣�(k), D) and normalize

∙ For middle 98% of p(D∗(�)∣y−1:i−1), compute

D̄∗
ỹ(�, D) =

∑

k

w
(k)
ỹ D∗(�(k))

 4(D, ỹ) =
∑

k

w
(k)
ỹ (D∗(�(k))− D̄∗

ỹ(�, D))2

3. Estimate expectation of utility given D with  4(D) =
∑1

ỹ=0 pD,ỹ 4(D, ỹ)

4. Optimal dose minimizes  4(D)

The algorithm for implementing utility functions  4 to  6 is outlined in Algorithm
2. As in Algorithm 1, the median of the posterior distribution of D∗ is taken as D̂∗,
and this estimate is solely based on prior information p(�) and data collected.

3.9. Safety

All utility functions discussed focus on the estimation of the MTD. With the ex-
ception of the CRM, no utility functions have any safety precautions incorporated into
their specification, meaning that a highly toxic dose could potentially be given to a
patient in instances where little information has become available. To include safety
considerations into all utilities, we consider the posterior predictive distribution of the
probability of observing a toxic event, given a specific dose. Given these distributions
(one for each dose), we were only interested in the upper bounds, that is, how large the
probability of toxicity could be. Hence, we only allow doses to be available for selection
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Algorithm 2 Dose finding procedure with importance sampling

1: %% Loop over the number of subjects %%
2: for i = 1 : N do
3: if i = 1 then
4: %% Initially choose lowest dose %%
5: Dopt = Da(i)
6: else
7: %% All data up to individual i− 1 including elicited data %%
8: Let y−1:i−1 = (y′

1:i−1, y0, y−1)
′

9: %% Sample � from p(�∣y−1:i−1) %%
10: Draw nos of � ∼ p(�∣y−1:i−1)
11: %% Find the maximum likelihood estimates (MLEs) of � %%
12: Let �̂ be the MLEs given y

13: %% Loop over available doses %%
14: for j = 1 : length(Da) do
15: Let D = Da(j)
16: %% Estimate the probability distribution of the data %%
17: Let pD,1 = g(�̂, D), pD,0 = 1− pD,1

18: for ỹ = 0 : 1 do
19: %% Find ‘new’ weights and normalize %%
20: w

(k)
ỹ = p(ỹ∣�(k), D) and normalize

21: %% Evaluate weighted criterion %%
22: Evaluate  (D, ỹ)
23: end for
24: %% Average criterion value over the distribution of predicted data %%
25: Estimate  (D) =

∑1
ỹ=0 pD,ỹ (D, ỹ)

26: end for
27: %% Choose D that minimizes (weighted) criterion %%
28: Dopt = argmin

D∈Da

 (D)

29: %% Simulate data given D and true model %%
30: Draw yi ∼ Bern(g(�t, Dopt))
31: end if
32: end for
33: %% Sample � from p(�∣y1:N ) %%
34: Draw � ∼ p(�∣y1:N)
35: Find p(D∗(�)∣y1:N)
36: %% Estimate D∗ as the median of the posterior distribution for D∗ %%
37: D̂∗ = median[D∗(�)∣y1:N)]
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if, say, the 95th percentile of the posterior predictive probability was less than a cer-
tain tolerance level tol. Importantly, as more information becomes available, a higher
level of certainty regarding which doses can be administered will result. Consider the
following decision rule:

ID =

{

1, if prctile[g(�∣y, D), ] < tol
0, otherwise,

where prctile[g(�∣y, D), ] denotes the 100th percentile of the posterior predictive
distribution of the probability of toxicity given dose D for  ∈ [0, 1].

ID indicates if dose D is currently considered safe ‘enough’ to administer. That is,
if ID = 0 for a given dose, then it will not be available for administration. Importantly,
this approach to safety incorporates the uncertainty regarding the predicted probability
of an adverse event for a given dose.

4. Results

Given the dependence of optimal designs on prior information and, to a certain ex-
tent, simulated data, the examples provided throughout are intended to be illustrative,
rather than comprehensive. In what follows, different dose finding scenarios are defined,
and the performance of each of the six utility functions (Section 3) are explored. Two
MTDs are considered that are motivated by the incidence of toxic events in past trials.
For example, the incidence rate of cardiac events for rofecoxib is less than 5% (see Bre-
salier et al. (2005)). Further, Whitehead and Brunier (1995) considered drugs intended
for the treatment of conditions of moderate seriousness such as ischaemic heart disease,
depression and arthritis. Mild adverse reactions occurred with incidence of about 20%.
As such, the results shown in this section are presented in two scenarios with p = 0.05
and 0.20 each with N = 50 patients. As a comparison, a simulation study also con-
ducted for an incidence of 10% with less doses available (D ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}).
Given the results were similar for this incidence, these are presented in Appendix A.

For each incidence considered, three versions of the dose finding trial were simulated.
The first is where estimation of the MTD is the sole purpose of the trial (that is, no
safety considerations). The second version restricts dose availability. Only the current
dose and doses one step up and one step down will be available for administration.
Obviously, this is not possible at the boundaries of the design space, so only two doses
will be considered when this occurs. This dosing regimen should be safer for patients as
larger doses will only be administered once information about lower doses is available.
Lastly, the third version considers the restricted dose availability with the approach
to safety outlined in Section 3.9. The tolerance level for both scenarios was set to
tol = 0.50. We note that this is quite flexible for Scenario 1 where p = 0.05 and
considerably less so for Scenario 2 where p = 0.20. In practice, one would probably
lower the tolerance level in Scenario 1, but for comparative purposes (between scenarios)
this was kept fixed.
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For each scenario, 500 dose finding studies were simulated for each utility function
and the estimated MTD and selected doses were recorded. Binary responses for each
patient were randomly generated given doses selected by the utility and the assumed
true model. The MCMC chains were run with a burnin of 10,000 and 40,000 draws
were kept as posterior samples. Given we used an efficient and independent proposal
distributions within our Metropolis-Hastings step, low serial correlation was observed,
hence, no thinning was necessary. Summary statistics (shown in Tables 1 and 2) were
then used to evaluate and compare utility functions. Results for the additional run
where p = 0.1 with fewer doses being available can be seen in Table 3.

4.1. Scenario 1: p = 0.05

In this scenario, we consider the estimation of the MTD which relates to p = 0.05.
Under the assumption that �t = (−5, 5)′, the true MTD = 0.4111. The summary
statistics for the sampling distribution of the estimate of D∗ are given in Table 1.

In all versions of Scenario 1, it was found to be quite difficult to estimate the MTD.
Indeed, all estimates were consistently larger than the true MTD. This is particularly
evident when the dose availability is restricted and when safety measures are included.
The CRM ( 2) seems to suffer the least from this overestimation problem. This is
highlighted in Trial 1.2, where the mean and median of the estimates is noticeably
less than those produced by all other criteria. This provides empirical evidence to
support using the CRM ( 2). It is difficult to draw any conclusions from comparing
the variability of the estimates as there does not appear to be any consistency across
trials/versions. Alternatively, the MSE shows that utilities  1 to  3 perform well across
all versions of the trial. Utility functions  4 to  6 seem to, on occasions, suffer from
extreme estimates of D∗ and consequently have inflated standard deviations.

4.2. Scenario 2: p = 0.20

In this scenario, we consider the estimation of the MTD which relates to p = 0.20.
Again, under the assumption that �t = (−5, 5)′, the true MTD is 0.7227. The summary
statistics for the sampling distribution of the estimate of D∗ are given in Table 2.

Estimation of the location of the MTD via the mean and median appears to be
similar across all utility functions within the three versions of the dose finding trial.
The problem of overestimating the MTD as seen in Scenario 1 does not seem to be an
issue here. In terms of variability of estimates, there are no discernible differences in the
performance of utility functions in different versions of the trial. When the mean square
error (MSE) is compared, however,  1 to  3 perform particularly and consistently well
in comparison with  4 to  6. This difference in the MSE seems to be due to inflated
standard deviations for  4 to  6 suggesting that some extreme estimates were obtained
using these utilities.

As a comparison to the prior shown in Figure 1, this plot was reproduced for one
of the simulation studies (after all 50 data points were collected) using utility  1. The
predicted probabilities (with 90% credible intervals) and the true model are shown in
Figure 2. As can be seen, there is close agreement between the true and estimated
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Table 1: Summary statistics for the sampling distribution of the estimates of D∗ for Scenario 1
(p = 0.05, MTD = 0.4111, N = 50). The scenario is considered in three trials; No safety (Trial 1.1),
restricted dose availability (Trial 1.2) and restricted dose availability with safety considerations (Trial
1.3) Here, D ∈ {0.1, 0.2, . . . , 2.0}.

Scenario Utility Mean Median SD IQR MSE
Trial 1.1  1 0.4413 0.4558 0.1271 0.1586 0.0171

 2 0.4332 0.4412 0.1160 0.1493 0.0139
 3 0.4358 0.4477 0.1354 0.1593 0.0189
 4 0.4403 0.4558 0.1238 0.1723 0.0162
 5 0.4148 0.4369 0.1895 0.1577 0.0359
 6 0.4146 0.4376 0.1902 0.1573 0.0362

Trial 1.2  1 0.4938 0.4892 0.1507 0.1716 0.0296
 2 0.4293 0.4431 0.1240 0.1700 0.0157
 3 0.4945 0.4868 0.1551 0.2001 0.0310
 4 0.5005 0.4901 0.1695 0.2434 0.0367
 5 0.4837 0.4855 0.1499 0.1713 0.0277
 6 0.4998 0.4847 0.1276 0.1349 0.0242

Trial 1.3  1 0.4560 0.4665 0.1086 0.1396 0.0138
 2 0.4300 0.4417 0.1254 0.1733 0.0161
 3 0.4459 0.4572 0.1110 0.1505 0.0135
 4 0.5014 0.4920 0.1696 0.2446 0.0369
 5 0.4839 0.4847 0.1517 0.1799 0.0283
 6 0.4767 0.4754 0.0872 0.1121 0.0119
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Figure 2: Model predictions under the true model (-) and the model predictions (⋅) and 90% credible
intervals (- -) given data collected from 50 patients under utility function  1.

probabilities close to the MTD. Further, there has been a substantial increase in the
precision of the estimation of the MTD after 50 observations. The credible intervals
in this region are tighter than that shown for higher doses highlighting that the utility
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was focusing on estimation in this particular area.

Table 2: Summary statistics for the sampling distribution of the estimates of D∗ for Scenario 2
(p = 0.20, MTD = 0.7227, N = 50). The scenario is considered in three trials; No safety (Trial 2.1),
restricted dose availability (Trial 2.2) and restricted dose availability with safety considerations (Trial
2.3). Here, D ∈ {0.1, 0.2, . . . , 2.0}.

Scenario Utility Mean Median SD IQR MSE
Trial 2.1  1 0.7304 0.7347 0.0766 0.0963 0.0059

 2 0.7239 0.7267 0.0766 0.0951 0.0059
 3 0.7308 0.7304 0.0721 0.1025 0.0053
 4 0.7311 0.7322 0.0778 0.1074 0.0061
 5 0.7261 0.7390 0.1123 0.1070 0.0126
 6 0.7208 0.7322 0.1184 0.1042 0.0140

Trial 2.2  1 0.7328 0.7275 0.0737 0.1013 0.0055
 2 0.7240 0.7293 0.0755 0.0999 0.0057
 3 0.7316 0.7313 0.0758 0.1038 0.0058
 4 0.7311 0.7322 0.0778 0.1074 0.0061
 5 0.7292 0.7369 0.0911 0.1085 0.0083
 6 0.7219 0.7304 0.0967 0.0961 0.0094

Trial 2.3  1 0.7189 0.7177 0.0750 0.0883 0.0056
 2 0.7165 0.7174 0.0813 0.0863 0.0066
 3 0.7174 0.7151 0.0805 0.1033 0.0065
 4 0.7135 0.7164 0.1012 0.1070 0.0103
 5 0.7167 0.7150 0.0873 0.1022 0.0077
 6 0.7073 0.7149 0.1053 0.1078 0.0113

4.3. Safety exploration

Our approach to addressing safety in dose-finding trials is evaluated in this section.
Figures 3 and 4 show the median and 90% credible intervals for the doses selected across
500 trials for all patients where p = 0.05 and 0.20, respectively.

The three rows of Figure 3 relate to three utility functions ( 1,  2 and  6) while
the three columns represent the different versions of the scenarios; no safety, restricted
dose availability and restricted dose availability with safety considerations. Only results
from three utilities are shown as the other results are similar. As expected, the CRM
generally selects lower doses compared to the other utilities when safety is not included.
The other utilities can often select doses much larger than the MTD when no safety
considerations were incorporated. This is particularly noticeable for  6 where the se-
lection of extremely high doses is not uncommon. In fact, under the true model, these
doses relate to a probability of toxicity greater than 0.9. When safety is included as a
compound criterion, large doses are not common for any utility. This is demonstrated
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by the upper bound for the 90% credible intervals of doses selected never exceeding
D = 1.0 for any patient under any utility. This shows that, despite the tolerance level
being much larger than the probability of toxicity relating to the MTD, there is a no-
ticeable reduction in the selection of large doses when safety provisions are included. In
fact, the selection of large doses in situations where safety is not considered may be a
result of the estimation criteria preferring to observe some adverse events. Dosing near
the MTD will only observe toxicity one in every twenty patients (on average).
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Figure 3: 5th, 50th and 95th percentiles of doses selected by utility functions  1,  2 and  6 over
500 simulated dose trials for Scenario 1 where the MTD is 0.4111. The x-axis ‘Subject’ refers to the
number of patients currently in the study.

Figure 4 is similar in presentation to Figure 3. In this scenario, the tolerance level
is closer to the probability of toxicity relating to the MTD. Moreover, p is larger in
this scenario in that we expect one in every five patients to observe an adverse event
if dosed at the MTD. This may explain the decrease in the selection of large doses
(in general) compared to Scenario 1. As before, when safety was included, the upper
bound of the 90% credible interval for doses selected never exceeded D = 1.0. In fact,
the dosing profiles appear to be similar across the utilities when safety is included. The
percentages of doses selected above D = 0.7, 0.8 and 0.9 were approximately the same
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across all utilities (when safety was included) at about 22%, 4% and 0.3%, respectively.
In comparison, these percentages without safety were largest for  6 which recorded
75%, 47% and 31%, respectively. The smallest percentages (without safety) were seen
for the CRM ( 2) at 45%, 13% and 3%. This demonstrates how the inclusion of safety
provisions into the CRM ( 2) may be beneficial. Furthermore, our safety measures
yielded safe dosing regimens, despite the variety of dosing profiles that were given by
different estimation criteria.
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Figure 4: 5th, 50th and 95th percentiles of doses selected by utility functions  1,  2 and  6 over
500 simulated dose trials for Scenario 2 where the MTD is 0.7227. The x-axis ‘Subject’ refers to the
number of patients currently in the study.

5. Discussion

This paper considered methodology for Bayesian adaptive design with compound
optimal design utilities. The application of our work was to dose finding studies and
we explored novel design criteria for dose selection and the use of importance sampling
for computational convenience. Various MTDs were considered, and scenarios were
constructed to explore and compare our methodology.
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Two of the examples considered a low (p = 0.05) and high (p = 0.20) incidence of
observing an adverse event. The MTD for the high incidence example was generally
well estimated by all utility functions, even when safety precautions were included.
However, in the low incidence example, the MTD was generally overestimated with
comparatively large uncertainty. It seems reasonable that an MTD relating to a low
incidence of an adverse event will be more difficult to estimate than an MTD relating
to a high incidence. This suggests that ‘large’ sample sizes may be required to obtain
precise estimates of MTDs relating to a low incidence of adverse events.

Our approach to safety only allowed well-predicted doses to be available for admin-
istration. With this safety constraint, precise estimates of the MTD generally prevailed,
highlighting the general applicability of our safety methodology. Placing restrictions on
dose availability will generally affect the precision of the estimates, but this is compen-
sated by the benefits of administering a safe dosing regimen. Moreover, the tolerance
level in the safety provision allows the experimenter to control the level of safety of the
study. Despite the CRM having inherent safety features, our approach to dealing with
safety is still relevant and applicable. This is due to the fact that the CRM does not
consider the uncertainty about the estimate of a probability of toxicity. In fact, plots of
the doses selected over the 500 simulations demonstrate how the presence and absence
of safety considerations can yield different designs for the CRM. The safe dosing reg-
imen provided by incorporating a tolerance level ensures that doses higher than those
already administered are only given to patients when sufficient information is provided
regarding the probability of toxicity. This reduces the chance of exposing patients to
highly toxic doses, and ensures safe dose finding studies.

This research included the development of utility functions, as well as the use of
importance sampling to avoid the large computational burden that MCMC simulations
present. There was little evidence to suggest using these new utility functions performed
any ‘better’ than those in the literature. However, these utility functions may prove
beneficial when expressions for the Fisher information are not available (or are based on
the linearization of the model). This is not uncommon for mixed effects or hierarchical
models, and our utilities offer a solution to this design problem.

The examples explored in this paper present a simplified dose finding study, and
other concerns may be included. For example, the design space considered consisted of
equally spaced doses. It may be more appropriate to assume a smaller dose increment
at higher dose levels than at lower doses. For example, a modified Fibonacci sequence
could be applied. Our assumptions regarding the design space are not a requirement for
the methodology presented. In fact, any spacing between doses could be implemented
within this framework.

An important consideration when designing dose finding trials is the possibility of
early termination of the study due to the drug being unsafe or there being sufficient
information for the location of the MTD. For example, O’Quigley and Reiner (1998)
propose a binary tree approach to cease the trial once all possible outcomes for the
remaining patients lead to no change in the current estimate of the MTD. Although
stopping rules were not explored in this paper, this approach (and others) may read-
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ily be incorporated. Indeed, after a patient’s response is observed, a binary tree from
O’Quigley and Reiner (1998) could be constructed, and a decision about the continu-
ation of the study could be made. Alternatively, other stopping rules, such as those
given by Zhou and Whitehead (2003), could be included.
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A. Addition scenario

Table 3: Summary statistics for the sampling distribution of the estimates of D∗ for Scenario 3
(p = 0.10, MTD = 0.5606, N = 50). The scenario is considered in three trials; No safety (Trial 3.1),
restricted dose availability (Trial 3.2) and restricted dose availability with safety considerations (Trial
3.3). Here, D ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}.

Scenario Utility Mean Median SD IQR MSE
Trial 3.1  1 0.5740 0.5855 0.0993 0.1298 0.0100

 2 0.5667 0.5746 0.0994 0.1232 0.0099
 3 0.5738 0.5809 0.1001 0.1263 0.0102
 4 0.5752 0.5794 0.0973 0.1320 0.0097
 5 0.5851 0.5805 0.1342 0.1398 0.0186
 6 0.5779 0.5785 0.1355 0.1189 0.0186

Trial 3.2  1 0.5837 0.5889 0.0980 0.1167 0.0101
 2 0.5669 0.5807 0.1001 0.1304 0.0101
 3 0.5748 0.5800 0.0984 0.1179 0.0099
 4 0.6028 0.5980 0.1391 0.1799 0.0211
 5 0.5785 0.5868 0.0950 0.1157 0.0093
 6 0.5972 0.5942 0.1095 0.1089 0.0133

Trial 3.3  1 0.5658 0.5730 0.0933 0.1109 0.0087
 2 0.5579 0.5711 0.1030 0.1219 0.0106
 3 0.5624 0.5694 0.0978 0.1184 0.0096
 4 0.5579 0.5667 0.1027 0.1279 0.0105
 5 0.5646 0.5704 0.0983 0.1106 0.0097
 6 0.5646 0.5722 0.0953 0.1218 0.0091
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