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ABSTRACT 

It is known that the depth of focus (DOF) of the human eye can be affected by the 

higher order aberrations. We estimated the optimal combinations of primary and 

secondary Zernike spherical aberration to expand the DOF and evaluated their 

efficiency in real eyes using an adaptive optics system. The ratio between increased 

DOF and loss of visual acuity was used as the performance indicator. The results 

indicate that primary or secondary spherical aberration alone shows similar 

effectiveness in extending the DOF. However, combinations of primary and secondary 

spherical aberration with different signs provide better efficiency for expanding the 

DOF. This finding suggests that the optimal combinations of primary and secondary 

spherical aberration may be useful in the design of optical presbyopic corrections. 

 

Keywords: depth of focus, higher order aberrations, retinal image quality metric, 

adaptive optics. 

 

1. Introduction 

The depth of focus (DOF) of the human eye serves a mechanism of blur tolerance. As 

long as the target image remains within the DOF in the image space, the eye will still 

perceive the image as being clear. A large DOF is especially important for presbyopic 

patients with partial or complete loss of accommodation, since this helps them to 
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obtain an acceptable retinal image when viewing a target moving through a range of 

near to intermediate distances. 

The DOF of the human eye can be affected by a variety of optical and neural factors 

(Wang & Ciuffreda, 2006). Higher order aberrations (HOA) are one of the important 

optical factors that influence DOF. Nio et al. (2002) found that HOA helps to increase 

the DOF, while at the same time lowering the modulation transfer at higher 

frequencies. Recently, Rocha et al. (2009) investigated the different effect of 

individual 3rd and 4th order Zernike polynomial coefficients (spherical aberration, 

coma and trefoil) on DOF using an adaptive optics (AO) system. It was found that 

certain amounts of spherical aberration can significantly enhance the DOF, while 

other HOAs only had minimal effect on DOF. Using adaptive optics, Benard et al 

(2010) also reported an increased DOF with primary spherical aberration (
0

4Z ) and 

further enhanced DOF with some combinations of primary ( 0

4Z ) and secondary ( 0

6Z ) 

spherical aberration.  

The structure of HOA in the human eye is not static. Studies of wavefront aberrations 

during accommodation have revealed significant changes in HOA of young eyes 

under different accommodation levels (Atchison et al., 1995; He et al., 2000; 

Ninimiya et al., 2002; Cheng et al., 2004a). These changes dynamically alter the 

structure of HOA of the eye and affect most noticeably the Zernike coefficient terms 

of primary,
0

4Z , spherical aberration (Ninomiya et al., 2002; Cheng et al., 2004a;). 

Ninomiya et al. (2002) compared the monochromatic wavefront aberrations of young 

adults measured with far viewing (0 D) and at a 3.0 D accommodative level. They 

found significant changes of both 
0

4Z and 0

6Z  during accommodation. In the study of 

Cheng et al. (2004a), the wavefront aberrations in a large young adult population were 

studied for accommodative stimuli up to 6.0 D. The authors reported a significant 

negative shift of 
0

4Z as the accommodative level increased, while the 0

6Z showed a 

trend (not significant) towards more positive values. Similar findings were also 
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reported by Lopéz-Gil and Fernández-Sánchez (2010), who performed theoretical and 

ray-tracing calculations on an accommodative eye model, and wavefront 

measurements in real eyes. A decrease of primary,
0

4Z , and an increase of secondary, 

0

6Z , spherical aberration were found in both conditions.  

In this study, we aimed to investigate the effect of primary spherical aberration, 

secondary spherical aberration and their various combinations on DOF and visual 

acuity by using an adaptive optics system. The effects of
0

4Z , 0

6Z and their 

combinations on the DOF of a simulated diffraction-limited model eye were 

investigated using a through-focus simulation algorithm, and optimal combinations of 

0

4Z and 0

6Z  were estimated. Then, the effect of those combinations of 
0

4Z and 0

6Z on 

the DOF and visual acuity of real eyes was investigated through the use of an AO 

system.  

 

2. Methods 

2.1 Extending the DOF in a simulated model eye 

To understand the effect of primary and secondary spherical aberration on the 

through-focus performance of the eye and to estimate a set of optimal combinations 

for extending the DOF in an experiment with the AO system described later, we first 

studied the DOF in an unaberrated diffraction-limited eye model. 

A dedicated simulation program was written from first principles in MATLAB (The 

MathWorks, Inc., Natick, MA) to theoretically apply a number of possible 

combinations of 
0

4Z  and 0

6Z  to a model eye and to calculate the DOF based on an 

image quality metric (IQM). The algorithm of the through-focus calculation (Steps 1 

to 7) was presented in detail in our earlier study (Yi, Iskander & Collins, 2010). Here 

the algorithm is extended to include secondary spherical aberration. 

The flow chart of the simulation program is shown in Figure 1a and an example of the 

simulation output is shown in Figure 1b. A set of Zernike polynomials from the 
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wavefront data of one myopic subject was used here as an example to illustrate the 

output of the through-focus simulation. The pupil diameter used for analysis was 

5 mm and the total HOA RMS of the subject was 0.28 µm. The major higher order 

aberration components of the original wavefront include -0.14 µm of vertical trefoil 

( 3

3Z ), 0.19 um of vertical coma ( 1

3Z ), 0.05 µm of horizontal coma ( 1

3Z ) and 0.08 µm 

of tetrafoil at zero degree ( 4

4Z ). The modified through-focus VSOTF curve was 

obtained after an arbitrary level of 0.3 µm of primary spherical aberration ( 0

4Z ) was 

added to the subject’s original wavefront pattern. The introduction of different levels of 

0

4Z  and 0

6Z  may change the characteristics of the subject’s though-focus IQM and 

therefore affect the predicted DOF. A shift of centre of focus (COF) could also occur 

due to the interaction of defocus and the induced HOA.   

 

2.1.1 Through-focus algorithm to calculate the DOF of a simulated model eye 

 

In the algorithm, DOF is theoretically defined as the range of defocus error which 

degrades the retinal image quality to a certain level of the maximum possible value. 

We chose the visual Strehl ratio based on the optical transfer function (VSOTF) to 

estimate the retinal image quality, since it is currently considered as one of the best 

descriptors of visual performance that can be directly derived from wavefront 

aberrations (Marsack et al., 2004). It was also reported as a retinal image quality 

metric that correlated well with the through-focus visual acuity (VA) defined in 

logMAR in healthy eyes (Cheng et al., 2004b). We use the augmented version of 

VSOTF (Iskander, 2006) defined as  

yxyxDLyxN

yxyxyxN

dfdfffOTFffCSF

dfdfffOTFffCSF
VSOTF

,,(

,Re,
             (1) 

where 
yxDL ffOTF ,  denotes the diffraction limited optical transfer function, 

yxN ffCSF ,  is the neural contrast sensitivity function, and yx ff ,  are the spatial 
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frequency coordinates. Here the VSOTF was based on calculated optical transfer 

function across all spatial frequencies up to 60 cycles per degree (Iskander, 2006). 

 

(Insert Figure 1 here) 

  

 

2.1.2 Image quality threshold 

It is important for the human eye to maintain an acceptable level of retinal image 

quality after any potential extension of DOF. However, in a linear optical system, the 

extension of DOF always comes at the price of lower image quality producing a 

compromise between image quality (calculated by an IQM such as VSOTF, for 

example) and the potential increase in DOF.  

In an earlier study conducted by Plakitsi and Charman (1995), the authors chose a 

visual acuity (VA) level of 0.3 logMAR to define the DOF, which was treated as an 

adequate standard of distant vision for driving. For daily activities, involving near 

work and visually intensive tasks such as reading, a modest level of VA loss will also 

lead to significant loss of performance. In a study of visual acuity and contrast 

sensitivity including 2520 older subjects, West et al (2002) found that about 50% of 

the studied population with visual acuity worse than 0.2 logMAR had a difficulty of 

reading. Using a method similar to Plakitsi and Charman (1995), Collins and 

coauthors (2002) adopted the level of 0.2 logMAR VA to measure the “absolute” DOF 

for a group of young adult subjects wearing contact lenses (with various levels of 

spherical aberration). The “absolute” DOF was defined as the range of defocus over 

which the VA is within the 0.2 logMAR of the subject’s best possible acuity. 

Therefore an absolute VA level of 0.2 logMAR was adopted as a preset image quality 

threshold, which should be maintained as DOF of the eye is extended. In the 

through-focus algorithm, the 0.2 logMAR level corresponds to VSOTF of 

approximately 0.12 (see Figure 1b) based on estimates from the results obtained by 

Cheng, Bradley and Thibos (2004). The theoretical DOF can be then estimated as the 
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range of defocus error (positive and negative) that degrades the through-focus VSOTF 

value to 0.12 under the influence of various combinations of 0

4Z  and 0

6Z . While the 

0.2 logMAR (VSOTF = 0.12) criterion has been adopted for all through-focus 

simulations in this study, the same methods can be used for any chosen value of 

logMAR or VSOTF. 

 

2.1.3 Estimation of the optimal levels of 
0

4Z  and 0

6Z combination 

The influence of different levels of 0

4Z  and 0

6Z  on the theoretical DOF of the 

diffraction-limited model eye with a 6 mm pupil is shown in Figure 2, derived from 

the through-focus algorithm illustrated in Figure 1a. The range of simulation was set 

based on the HOA RMS which can be stably generated by the Mirao52 deformable 

mirror (Sabesan et al, 2007), which include 0

4Z  ranged from 0.8 m to 0.8 m in 

0.1 m steps (17 levels), and the 0

6Z , ranged from 0.25 m to 0.25 m in 0.05 m 

steps (11 levels). DOF is defined as the difference between the DOF achieved for a 

particular non-zero combination of 
0

4Z  and 0

6Z  and the DOF for 
0

4Z  = 0 and 

0

6Z  = 0. Higher levels of spherical aberration than those shown in Figure 2 were not 

considered, since they decreased the image quality metric below the defined level of 

0.2 logMAR (VSOTF < 0.12). Figure 2a shows the response of DOF as a function of 

different combinations of 0

4Z and 0

6Z  (a total of 187 combinations). The area with a 

lighter shade of grey indicated the wavefront combination providing a larger increase 

of DOF of the model eye. Figures 2b and 2c show the two dimensional “slices” from 

Figure 2a and represent the DOF at zero- 0

6Z  and zero- 0

4Z  levels, respectively.  

The maximum VSOTF value only occurs when 
0

4Z and 0

6Z  are both zero. It is 

evident that combinations of 
0

4Z  and 0

6Z  with opposite sign can significantly 

extend the DOF of the model eye, within the constraints of not reducing VSOTF 
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below 0.12 (i.e., equivalent to 0.2 logMAR loss). On the other hand, introducing 
0

4Z  

and 0

6Z  of the same sign is not as effective at extending DOF. For example, if we 

take 0.2 microns of 
0

4Z  and 0

6Z  with opposite signs, we find a predicted increase of 

DOF of 2.2 D (Figure 2a). Whereas if we take 0.2 microns of 
0

4Z  and 0

6Z  with the 

same sign, we find a predicted increase of DOF of 1.5 D (Figure 2a). 

To further reduce the number of possible combinations of 0

4Z and 0

6Z , from the total 

of 17 × 11 = 187, a radial sampling procedure of the DOF matrix (Figure 2a) starting 

from the point of 0

4Z = 0 and 0

6Z = 0 was performed to determine the wavefront 

combinations which theoretically provide largest extension of DOF at different 

combined wavefront RMS levels, defined by:  

2

60

2

40 ZZTotal RMSRMSRMS . 

Eighteen such wavefront combination of 0

4Z and 0

6Z were obtained from the radial 

sampling procedure. Thirteen levels of pure 0

4Z ranging from -0.6 to +0.6µm with a step 

of 0.1µm, and 10 levels of pure 0

6Z ranging from -0.25 to +0.25µm with a step of 

0.05µm were also included. This procedure reduced the number of candidate 

combinations to 41, which are indicated in Figure 2a by the overlaid box shape.  

 

(Insert Figure 2 here) 

 

2.2 Measurement of DOF in real eyes 

 

After investigating the effect of different combinations of 
0

4Z  and 0

6Z  on DOF with 

a diffraction limited model eye, these 41 pre-determined wavefront combinations of 

0

4Z  and 0

6Z  were then applied to a group of human eyes using an adaptive optics 

system and the effect on DOF was measured.  
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2.2.1 Subjects    

Six students (3 males and 3 females) from the School of Optometry, Queensland 

University of Technology participated in this study. The mean age of the subjects was 

29, ranging from 26 to 33 years. The group had a mean spherical equivalent refractive 

error of –1.0 ±2.0 D, (ranging from 5.0 to 0 D) and a mean astigmatism of 

0.21 ±0.25 D (ranging from 0.5 to 0 D) in the tested eyes. All subjects had good 

ocular health with best-corrected Snellen visual acuity of at least 6/6 in the tested eye. 

The value of higher order ocular aberrations were measured with a Complete 

Ophthalmic Analysis System (COAS, Wavefront Science Inc.) from the left eye of the 

six subjects and analyzed for a 6 mm pupil diameter. For each subject, a series of 4 x 

30 dynamic wavefront measurements were acquired at the sampling rate of about 10 

Hz. The average wavefront aberration was then calculated for each of the subjects. 

Analysis of the wavefront aberrations was conducted up to the 6th radial order using 

two radial orders lower than the original wavefront fit (Neal et al., 2005). The RMS of 

total HOA from the six eyes was 0.37 ±0.10 µm for a 6 mm pupil. The mean value of 

0

4Z  was 0.13 ±0.09 µm, which was more than 10 times larger than the mean value of  

0

6Z  at 0.01 ±0.01 µm. These values for total HOA and 0

4Z are within the normal 

ranges of value reported by Porter et al (2001) and Wang and Koch (2003). 

The study followed the requirements of the university human research ethics 

committee and was conducted in accordance with the tenets of the Declaration of 

Helsinki. Informed consent was obtained from all subjects who participated in the 

study.  

 

2.2.2 Apparatus 

A customized AO system was constructed for the experiment. The AO system was 

capable of measuring and changing the wavefront aberration of the eye and of 

measuring the DOF under the influence of different combinations of HOA. The 

system was based on two major components: the HASO32
TM

 Hartmann Shack 
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wavefront sensor and the Mirao52
TM

 deformable mirror (both from Imagine Eyes, 

Orsay, France). In a pilot study, the HASO32
TM

 wavefront sensor was first calibrated 

with a model eye with known levels of aberration and then benchmarked against a 

Complete Ophthalmic Analysis System (COAS
TM

, Wavefront Science, Inc) with 10 

cyclopleged human eyes. The results between sensors showed reasonable correlation 

and good repeatability. Performance of the Mirao52
TM

 deformable mirror to generate 

single wavefront modes up to the 5th and 6th Zernike radial order was earlier 

evaluated by Fernández et al (2006) and Sabesan et al (2007). In a pilot study, the 

mirror’s capability of generating combinations of primary and secondary spherical 

aberration was investigated. Within the calibration range ( 0

4Z =-0.8 to 0.8 µm, 

0

6Z =-0.25 to 0.25 µm), good correlation was observed between the predicted and 

generated wavefront ( )0,4(ZR =0.97 and )0,6(ZR =0.98) and the generation of 0

4Z  and 

0

6Z  was found to be independent to each other. However, limited by actuator stroke, 

more wavefront combinations can be generated when 
0

4Z  and 0

6Z  coefficients have 

different signs rather than when they have the same sign.    
  

 

(Insert Figure 3 here) 

 

The optical layout of the AO system conjugates the exit pupil plane of the subject with 

the surface of deformable mirror and the Hartmann Shack wavefront sensor (Figure 3). 

A 10-D achromatic lens L1 is placed in front of the eye, with its back focal point 

located at the eye’s entrance pupil. Two pairs of relay lenses L5 and L4 as well as L3 

and L2 are set up in an afocal form. Through the two sets of lenses the fixation target 

forms an image at the back focal point of L2, which acts as the object of Badal lens 

L1 and its distance to L1 is controlled by the movement of the Badal stage. In this 

configuration, every 1 cm movement of the object brings approximately 1 D of 

change in the target vergence. The fixation target consists of a logMAR letter chart 

printed on a sheet of clear plastic. Two different letter charts were used to measure the 
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subject’s visual acuity to reduce learning effects. A distant white LED light source 

was used to back illuminate the target through a diffuser. The target’s contrast was 

80% with an overall luminance of 120 cd/m
2
. The letter size on the chart was scaled to 

provide a range of visual angles from 20 min of arc (0.6 logMAR detail, the top line 

of chart) to 2.5 min of arc ( 0.3 logMAR detail, the bottom line of chart) when 

viewed through the AO system optics.   

The position of the subject’s pupil was continuously monitored and controlled. The 

CASAO control software (Imagine Eyes, Orsay, France) was used to check and 

realign the subject’s pupil position at the beginning and the end of each measurement 

section when a different wavefront combination was induced. A customized heavy 

head rest was used to position the subject’s head. Its position with respect to the 

wavefront sensing system could be adjusted when a displacement of larger than 

0.3 mm was observed. 

 

2.2.3 Protocol 

All subjects were experienced with visual psychophysics experiments requiring 

viewing of targets through a Badal optical system. To allow the subjects to become 

familiar with the task of recognizing the “objectionable blur” level (Atchison et al., 

2005), each of them was given a short training on the AO system with different levels 

of induced defocus. Following this, the subject’s tested eye was cyclopleged and 

dilated by 2 drops of cyclopentolate (1% Minims, 0.5 ml, Bausch & Lomb Australia). 

The measurements started about 30 minutes later after the full effect of cycloplegia 

was reached (Manny et al., 1993). 

Under full cycloplegia and pupillary dilation, the subject was instructed to fixate on 

the 0.2 logMAR line on the displayed Bailey-Lovie letter chart through a 6 mm 

artificial pupil, with the fellow eye occluded by a black eye patch. The subject’s 

defocus level was controlled by moving the Badal stage and the astigmatism derived 

from the individual subjective refraction was corrected using a trial lens mounted in 

front of the artificial pupil. Using a static correction mode in the AO system, the 
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operator corrected the natural 
0

4Z  in the subject’s eye before any combination of 

additional wavefront error was input, while the other HOAs (aside from 
0

4Z ) were 

left uncorrected. A comprehensive correction of the HOAs other than 0

4Z  may 

provide useful information for customized phase design without the interaction 

between the subject’s original wavefront aberration and induced aberrations. However, 

this procedure will also consume more stroke of the actuators of the Mirao52 

deformable mirror and limit its ability to generate a high amount of 0

6Z (up to 

0.25 µm) and combinations of 0

4Z and 0

6Z . The subject was asked to identify the 

“clearest” position (centre of focus), which corresponds to the subjective best focus, 

and “objectionable blur” in both directions when the Badal stage was moved towards 

and away from the eye (representing the positive and negative direction, respectively). 

To measure the subjective DOF, the operator first adjusted the location of the Badal 

stage to allow the subject to find the “clearest” position. The scale reading of the 

Badal stage corresponding to the “clearest” position and the visual acuity of the 

subject was recorded. The operator then slowly moved the Badal stage in one 

direction (toward or away from the eye) which was randomly selected, until the 

subject noticed the appearance of “objectionable blur”. The scale reading of the Badal 

stage was recorded by the operator. The same procedure was repeated as the operator 

moved the Badal stage in the opposite direction. The two recorded limits of Badal 

stage reading corresponding to the two locations where “objectionable blur” was 

observed constituted one measurement of DOF. It would have been preferable to have 

measured the DOF using both clear-to-blur and then blur-to-clear directions. However 

we compromised by using only the clear-to-blur direction to halve the testing time. 

Five sets of such measurements were performed for each set of 
0

4Z  and 0

6Z  

combination introduced to the eye. The moving speed of the Badal stage was always 

kept lower than 0.2 D/s. For each subject a total of 41 0

4Z  and 0

6Z  combinations 

were tested. The introduction of wavefront combinations was performed in a 
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randomized order. The whole measurement for one subject took approximately two 

hours to finish, including a 20-minute break after half of the wavefront combinations 

had been tested.   

3. Results 

3.1 Effect of different combinations of 
0

4Z  and 0

6Z  on the DOF and visual 

acuity of real eyes 

The individual and group mean changes in DOF of the six subjects caused by 

different combinations of 0

4Z  and 0

6Z  are shown in Figure 4. Increased DOF was 

obtained through inducing combinations of 
0

4Z  and 0

6Z
 
to the eye. An 

approximately linear increase of DOF was observed with increasing levels of
0

4Z , for 

both positive and negative coefficients up to 0.6 µm, as shown in Figure 4a. The 

averaged increase in DOF was about 0.80 D for each 0.6 µm of 
0

4Z  coefficient. 

Adding positive 0

6Z
 
showed slightly better efficiency in extending the DOF, with a 

group mean increase in DOF of 0.87 D for +0.25 µm of 0

6Z , whereas the increase in 

DOF was 0.70 D when -0.25 µm of 0

6Z was added to the eyes (Figure 4b). The 

combination of 
0

4Z  and 0

6Z of different coefficient signs to the eye’s wavefront 

produced some significant increases in DOF at relatively low levels of aberrations, 

compared with the 
0

4Z  and 0

6Z
 
terms in isolation (Figure 4c).  

Introduction of 
0

4Z and 0

6Z also decreased the visual acuity. The group mean decrease 

of VA in logMAR is shown in Figure 5. Introduction of pure 0

4Z up to 0.6 µm, either 

positive or negative, reduced the group mean of VA linearly at about 0.30 logMAR 

per µm (logMAR/µm). Inducing pure 0

6Z up to 0.25 µm, either positive or negative, 

reduced the group mean of VA at about 0.83 logMAR/µm. The tested combination of 

0

4Z  and 0

6Z with different signs induced a decrease of group mean VA at about 0.40 

logMAR/µm.  
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(Insert Figure 4 here) 

 

(Insert Figure 5 here) 

 

 

(Insert Figure 6 here) 

 

In Figure 6, the increase of DOF has been plotted against the loss of VA caused by 

0

4Z  alone, 0

6Z  alone and combinations of the two Zernike coefficients with opposite 

signs. Simple 
0

4Z  and 0

6Z  helped to expand the DOF on average by 0.27 D and 

0.24 D per 0.1 logMAR loss of VA (Pearson’s correlation R
2
=0.21 and R

2
=0.18 

respectively). However the combination of 
0

4Z  and 0

6Z  was found to provide a 

steeper slope for DOF expansion with 0.40 D increase in DOF for every 0.1 logMAR 

loss of VA (Pearson’s correlation R
2
=0.23).  

 

3.2 Effect of combinations of 
0

4Z  and 0

6Z  on centre of focus (COF) 

Introducing combinations of 
0

4Z  and 0

6Z also caused a shift of the centre of focus 

(COF) as determined by the subject using the Badal system adjustment. An 

approximately linear shift of COF was observed when 
0

4Z was induced with an 

average change of 2.9 D shift of centre of focus per micron of 
0

4Z  (D/µm) (Figure 

7a). The introduction of 0

6Z  also caused a shift of the COF by approximately 3.5 

D/µm. The tested combinations of 
0

4Z  and 0

6Z of different signs caused larger shifts 

of COF than using 
0

4Z  or 0

6Z alone, with a shift of 3.9 D/µm of combined wavefront 

RMS (Figure 7c). 

 

(Insert Figure 7 here) 
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4. Discussion and conclusion 

The introduction of controlled levels of primary spherical aberration to the eye has 

been utilized clinically as a passive approach to help presbyopic patients to regain part 

of their near vision with multifocal contact lenses and intraocular lenses (Plakitsi & 

Charman, 1995; Schmidinger et al., 2006). However, the understanding of the effect 

on DOF of secondary spherical aberration ( 0

6Z ) and combinations of 0

4Z and 0

6Z , 

which are naturally present in the human eye, are still limited. In this study, the ratio 

of increase of DOF and change of retinal image quality was used to help determine 

the potential optimal wavefront combinations of 0

6Z  and 
0

4Z . The average DOF 

defined by the range of “objectionable blur” measured in six subjects was 2.59 

±0.52 D with their natural HOAs. This is a higher average value (2.59±0.52 D) 

compared to the value of Atchison et al (1.77 D, 2005; 1.62 D, 2009) and Legras et al 

(1.67D, 2010) who also used the “objectionable blur” criterion. Due to the limited 

number of subjects (six subjects) used in this study, it was not surprising to observe 

this difference in results. The requirement of subjective judgement of blur can 

produce significant inter-subject variance in DOF measurement. In an earlier study of 

Yi et al (2010), the authors reported a mean subjective DOF value of 0.79±0.15 D 

(ranging from 0.55 to 1.05 D) in 17 subjects, defined by the blur criterion of “just 

noticeable blur”. A significant between-subject effect was also reported by Atchison et 

al (2009) on blur limits. The authors reported the most insensitive subject had a blur 

limit (“objectionable blur”) 3.1 times larger than the most sensitive subject in their 

study involving seven subjects. The most insensitive subject in our study had a DOF 

value 1.8 times in relative to the DOF of the most sensitive subject. The magnitude of 

DOF defined by “objectionable blur” was found to be 2.3-2.9 times larger than the 

value defined by “just noticeable blur” (Atchison et al, 2005, 2009).In an earlier study, 

Tucker and Charman (1975) measured a DOF of a subject of approximately 2.5 D 

with a 6 mm pupil, using a 50% recognition criterion of 0.2 to 0.3 logMAR letter size 

(derived from the 6 mm curve of figure 6 of Tucker & Charman). Therefore, the mean 

value of 2.59±0.52 D found in this study could be regarded as at the higher end of the 
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range of DOF defined by the “objectionable blur”. Since we were measuring DOF 

using only a clear-to-blur direction of measurement, this may also skew the result 

towards a slightly higher value. 

 

When larger amounts of 
0

4Z  (up to 0.6µm) or 0

6Z  (up to 0.25µm), either positive or 

negative, were induced in the subject’s optics, a larger DOF was generally observed. 

Using a similar blur criterion of “acceptable vision”, Benard, Lopez-Gil and Legras 

(2010) reported an increase of DOF of about 1.41 dioptres per micron (D/ µm) when 

0.3 and 0.6 µm of 
0

4Z were induced to the eye. In our experiment, inducing 
0

4Z  or 

0

6Z  alone increased, on average, the DOF by approximately 1.36 D/µm and 

3.14 D/µm, respectively. When the total wavefront RMS was kept at a level less than 

0.45 µm, the combined wavefront of 
0

4Z  and 0

6Z  with opposite signs extended the 

DOF, on average, by 2.52 D/µm, compared to 3.31 D/µm reported by Benard, 

Lopez-Gil and Legras (2010).  

Previous studies have shown that the visual system has the capacity to adapt to 

different levels of blur to improve discrimination (Webster et al, 2002; Elliott et al, 

2011). A possible neural adaptation of the subject to their original HOAs was proposed 

by Artal et al (2004) and Chen et al (2007). Artal et al (2004) exposed the subjects with 

modified aberration patterns for up to five minutes, but did not observe any significant 

neural adaptation effect, while Chen et al (2007) suggested it could take up to 15 

minutes. Sabesan & Yoon (2010) also suggested that the improvement in spatial vision 

was unlikely to be caused by temporally induced adaptation to HOAs. In present study, 

each induced wavefront combination was exposed to the eye for less than 3 minutes. 

The subject was never left to look through the static wavefront pattern for a continuous 

period, but was exposed to a through-focus procedure with the rate of change of 

defocus controlled by the experiment operator. At the end of each section of 

measurement, the subject was allowed to close their eyes for about 30 seconds before 

their pupil position was realigned for the next measurement. Therefore, the subjects 
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should not have been exposed to any particular combination of HOA and defocus for 

long enough for substantial adaptation to occur. 

DOF obtained under the influence of different wavefront combinations would depend 

on the criteria of blur adopted (Atchison et al., 2005) and spatial frequency detail of 

the target used (Tucker & Charman, 1975). In this study, the “objectionable blur” 

criterion was adopted to define the DOF. This criterion was reported to produce a 

DOF approximately 2.3 to 2.9 times larger than the “just noticeable blur” limits 

(Atchison et al., 2005, 2009). The measured DOF would also be expected to increase 

when a larger letter size is used for the test (Tucker & Charman, 1975; Atchison et al., 

1997).  

The interaction between defocus 
0

2Z and primary spherical aberration 
0

4Z  was earlier 

investigated by Thibos et al (2002) and Applegate et al (2003b). They found that by 

adding 
0

2Z  to 
0

4Z  in the appropriate proportions, the peak-to-valley of wavefront 

error in the centre of the pupil can be markedly reduced, which would help to improve 

the retinal image quality. The authors also suggested the similar balancing between 

other HOAs could influence visual performance. In our experiment, we found that 

combinations of 0

4Z  and 0

6Z  with different signs can significantly expand the DOF, 

while combinations of the same sign seem to have a lower potential of improving 

DOF according to our numerical simulation. This finding agrees with Benard and 

Legras (2010), who tested 25 combinations of 0

4Z and 0

6Z , and found the combinations 

more effective in extending DOF when introduced to the eye with opposite signs. This 

phenomenon may be explained by the interaction between the two wavefront 

aberrations. The Zernike polynomials describing the primary (
0

4Z ) and secondary 

spherical aberrations ( 0

6Z ) are defined as 

1665 240

4Z  

11230207 2460

6Z
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In a wavefront combination that consists of 
0

4Z  and 0

6Z  with the same sign, their 

common components of 
4
and 

2
compensate each other and create a flatter shape 

in the centre of the combined wavefront, and hence diminish the bifocal effect of the 

wavefront (Figure 8a). However with a combination of 
0

4Z  and 0

6Z  of different 

signs, the multifocal feature is enhanced, as shown in Figure 8b (i.e. the peak to valley 

is greater).  

(Insert Figure 8 here) 

 

Using HOAs to extend the DOF also causes a trade-off between the increase of DOF 

and lowered VA (Piers et al., 2004; Marcos et al., 2005; Rocha et al., 2007; Rocha et 

al., 2009). Applegate et al (2003a) showed 
0

4Z reduced VA linearly at about 0.43 

logMAR per micron (logMAR/µm) when subjects viewing a high contrast target. The 

authors limited the effect of subject’s natural HOA by the use of a 3 mm artificial 

pupil and the VA measurement was achieved by viewing computer-generated 

aberrated images. Rouger et al (2010) reported an average loss of about 0.45 

logMAR/µm of high contrast VA when subjects were tested with different levels of 

primary spherical aberrations through an AO visual stimulus. A much higher impact of 

0

4Z to VA of 0.81 logMAR/µm was found by Rocha et al (2007) when up to 0.9µm 

0

4Z was induced. In our experiment, introduction of pure 
0

4Z  and 0

6Z  in a 6 mm 

pupil degraded the VA, on average, at 0.30 logMAR/µm and 0.83 logMAR/µm, 

respectively. While the combined wavefront of 
0

4Z  and 0

6Z  reduced the VA at a rate 

of 0.40 logMAR/µm. The combinations of 
0

4Z  and 0

6Z  of opposite signs were 

found to provide less impact on VA to extend the subject’s DOF. For the loss of every 

0.1 logMAR VA, there was an increase of 0.40 D in DOF, compared to 0.27 and 

0.24 D/0.1 logMAR for 
0

4Z  and 0

6Z  alone.    

The shifting centre of focus (COF) under the influence of spherical aberration is 

important for the design of presbyopic optical corrections, since this will influence the 
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optimal level of the spherical component of the refractive correction. A linear shift of 

COF averaging 2.9 dioptres per micron (D/µm) was observed when up to 0.6 µm of 

0

4Z  (either positive or negative) was induced. This result was similar to that reported 

by Rocha et al (2009), who found an average shift of COF of 2.6 D/µm for
0

4Z , while 

Benard, Lopez-Gil & Legras (2010) reported a smaller value of 2.0 D/µm. The use of 

0

6Z  alone shifted the COF by approximately -3.5 D/µm. The combinations of 
0

4Z  

and 0

6Z  of different signs produced larger shifts of COF than when either individual 

wavefront component was induced.  

In conclusion, the results in this study show that systematic introduction of a targeted 

amount of both 
0

4Z  and 0

6Z  can significantly improve the DOF. The use of 

wavefront combinations of 
0

4Z  and 0

6Z  with opposite signs can further expand the 

DOF, than using 
0

4Z  or 0

6Z  alone. It is important to determine the balance between 

the loss of visual quality and expanded DOF under different clinical and daily life 

conditions. The optimal combinations of 
0

4Z  and 0

6Z  provided a better balance of 

DOF expansion and relatively smaller decreases in VA, which could be useful in the 

design of presbyopic optical corrections such as multifocal contact lenses and 

intraocular lenses.   
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Captions to Figures 

Fig. 1. (a) A flow chart of the through-focus simulation algorithm to theoretically 

estimate the DOF with different combinations of 
0

4Z  and 0

6Z  Zernike polynomials 

terms. (b) An example of the output of the through-focus simulation. The modified 

through-focus VSOTF curve was obtained after an arbitrary level of 0.3 µm of primary 

spherical aberration ( 0

4Z ) was added to the subject’s original wavefront pattern.  

Fig. 2. The theoretical effect of combinations of primary and secondary spherical 

aberrations on the DOF of a simulated diffraction-limited model eye. (a) The effect of 

a total of 187 wavefront combinations has been simulated. The area of a lighter shade 

of grey indicates a larger increase of theoretical DOF. The boxes imposed in (a) 

represent the 41 wavefront combinations chosen for experimental measurement. (b) 

Simulated effect of pure 0

4Z on the model eye’s DOF. (c) Simulated effect of pure 

0

6Z on the model eye’s DOF. 

Fig. 3. Optical layout of the AO system. HASO 32 is the Hartmann Shack wavefront 

sensor and Mirao52 is the deformable mirror. 

Fig. 4. Effect on individuals and group mean of DOF by introduction of (a) 
0

4Z  

alone (b) 0

6Z  alone, and (c) combinations of 
0

4Z  and 0

6Z . The combined value of 

0

4Z and 0

6Z was derived as the total RMS of the two coefficients.  

Fig. 5. Decrease in VA [logMAR] of real eyes with the introduction of (a) 
0

4Z  alone 

(b) 0

6Z  alone, and (c) combinations of 
0

4Z  and 0

6Z  with opposite signs. The 

combined value of 0

4Z and 0

6Z was derived as the total RMS of the two coefficients.  

Fig. 6. ∆DOF versus ∆VA induced by (a) 
0

4Z  alone; (b) 0

6Z  alone; (c) combinations 

of 
0

4Z  and 0

6Z . (d) linear fittings of all three conditions above.  

Fig. 7. Shifting of COF caused by introduction of (a) Z(4,0) alone; (b) Z(6,0) alone, 

and (c) combinations of Z(4,0) and Z(6,0). The combined value of 0

4Z and 0

6Z was 
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derived as the total RMS of the two coefficients. 

Fig. 8. (a) Wavefront combination of 0.4 µm of 
0

4Z  and 0.2 µm of 0

6Z , and ; (b) 

Wavefront combination of 0.4 µm of 
0

4Z  and 0.2 µm of 0

6Z . 
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