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Abstract It is a big challenge to clearly identify the boundary between positive and negative
streams for information filtering systems. Several attempts have used negative feedback to
solve this challenge; however, there are two issues for using negative relevance feedback to
improve the effectiveness of information filtering. The first one is how to select constructive
negative samples in order to reduce the space of negative documents. The second issue is
how to decide noisy extracted features that should be updated based on the selected nega-
tive samples. This paper proposes a pattern mining based approach to select some offenders
from the negative documents, where an offender can be used to reduce the side effects of
noisy features. It also classifies extracted features (i.e., terms) into three categories: posi-
tive specific terms, general terms, and negative specific terms. In this way, multiple revising
strategies can be used to update extracted features. An iterative learning algorithm is also
proposed to implement this approach on the RCV1 data collection, and substantial experi-
ments show that the proposed approach achieves encouraging performance and the perfor-
mance is also consistent for adaptive filtering as well.

Keywords Pattern mining · Relevance feedback · Information filtering.

1 Introduction

Traditional information filtering (IF) models were developed based on a term-based user
profile approach (see [20,23,15]). The advantage of term-based profiles is efficient compu-
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tational performance as well as mature theories for term weighting, which have emerged
over the last couple of decades from the information retrieval (IR) and machine learning
communities. However, term-based profiles suffer from the problems of polysemy and syn-
onymy. As IF systems are sensitive to data sets, it is still a challenging issue to significantly
improve the effectiveness of IF systems.

Over the years, people have often held the hypothesis that phrases would perform better
than words, as phrases are more discriminative and arguably carry more “semantics”. This
hypothesis has not fared too well in the history of IR [11,27,28] in the beginning. Recently,
language modeling approaches went beyond the term based model that underlies BM25 by
considering term dependencies in phrases (N-grams) for information retrieval [18,35]. Al-
though phrases are less ambiguous and more discriminative than individual terms, the likely
reasons for the discouraging performance include: (i) phrases have inferior statistical prop-
erties to words since they have low frequency of occurrence, (ii) the theory of computing
probabilities based on term dependencies is not practical, (iii) some language model-based
feedback methods cannot naturally handle negative feedback, and (iv) there are large num-
bers of redundant and noisy phrases among them.

To overcome the limitations of term-based approaches, pattern mining based techniques
have been used for information filtering since data mining has developed some techniques
(e.g., maximal patterns, closed patterns and master patterns) for removing redundant and
noisy patterns. One special filtering task was to extract usage patterns from Web logs [4,
47]. Other promising techniques were pattern taxonomy models (PTM) [32,37] that discov-
ered closed sequential patterns in text documents, where a pattern was a set of terms that
frequently appeared in paragraphs.

Pattern based approaches have shown encouraging improvements on effectiveness [36].
However, two challenging issues have arisen when pattern mining techniques were intro-
duced for IF systems. The first one is how to deal with low frequency patterns because the
measures used for data mining (e.g., “support” and “confidence”) to learn the patterns turn
out be not suitable in the filtering stage [15]. The second issue is how to effectively use
negative feedback to revise extracted features (including patterns and terms) for information
filtering.

Many people believe that there are plenty negative information available and negative
documents are very useful because they can help users to search for accurate informa-
tion [35]. However, whether negative feedback can indeed largely improve filtering accuracy
is still an open question. The existing methods of using both positive and negative feedback
for IF can be grouped into two approaches. The first approach is to revise terms that appear
in both positive samples and negative samples (e.g., Rocchio based models and SVM [23]
based filtering models). This heuristics is obvious when people assume that terms are iso-
lated atoms. The second approach is based on how often terms appear or do not appear
in positive samples and negative samples (e.g., probabilistic models [2], and BM25 [23]).
However, usually people view terms in multiple perspectives when they attempt to find what
they want. They normally use two dimensions (“specificity” and “exhaustivity”) for decid-
ing the relevance of documents, paragraphes or terms. For example, “JDK” is a specific term
for “Java Language”, and “LIB” is more general than “JDK” because it is also frequently
used for C and C++ as well.

Based on this observation, this paper proposes a pattern mining based approach for using
both positive and negative feedback. It firstly extracts an initial list of terms from positive
documents and selects some constructive negative documents (or called offenders). It then
extracts terms from negative patterns in selected negative documents. It also classifies all
terms into three categories: the positive specific terms, general terms, and negative specific
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terms. In this way, multiple revising strategies are used for terms in different categories.
In the implementation, it recommends to increment positive specific terms’ weights only
and declines negative specific terms’ weights based on their occurrences in discovered neg-
ative patterns. Substantial experiments show that the proposed approach achieves exciting
performance.

The remainder of this paper is organized as follows. Section 2 introduces a detailed
overview of the related works. Section 3 reviews the concepts of pattern taxonomy mining.
Section 4 introduces the equations for evaluating term weights based on discovered patterns.
Section 5 describes the proposed method of using negative feedback. The empirical results
and discussion are reported in Section 6, and the last section describes concluding remarks.

2 Related Work

Different from IR systems, IF systems were commonly personalized to support long-term
information needs of users [3]. The main distinct difference between IR and IF was that
IR systems used “queries” but IF systems used “user profiles”. The tasks of the filtering
included adaptive filtering, and batch or routing filtering. In this paper, the focus is on the
breakthrough for batch or routing filtering. Adaptive filtering involves feedback to dynami-
cally adapt IF systems [9,44,33,42,17]. The popular way is to update training sets in a batch
classifier fashion. In this paper, we also evaluate the performance of the proposed approach
for adaptive filtering.

Normally, IF systems tended to learn a map rank : D → R such that rank(d) corre-
sponded to the relevance of a document d, where D denoted a set of documents, R was the
set of real numbers. In [20], rank was divided into two functions, such that rank = f1 ◦ f2,
where f1 (f1 : D → {C1, . . . , Cm}) and f2 (f2 : {C1, . . . , Cm} → R) were maps, re-
spectively; and C1, C2, . . . , Cm were clusters. This method used a set of clusters based on a
kind of classification method, e.g., the neural network [19]. The aim of the filtering track in
TREC [23] was to measure the ability of IF systems to build profiles using sets of training
documents to separate relevant and non-relevant documents. The basic term-based IF mod-
els used in TREC 2002 were SVM, Rocchio’s algorithm, probabilistic models, and BM25.

Feedback techniques are frequently used in IR community to improve the accuracy of
filtering. Normally, there are different strategies for considering users feedback information
for information retrieval. They are relevance feedback, pesudo-relevance feedback, implicit
feedback and negative feedback [6,38,29,34]. One of the common objectives of these strate-
gies is to design IR models in order to obtain more accurate term weights based on user
feedback for a given query.

Term-based models are most widely used approaches. A term-based model is based on
the bag of words or N-grams, which uses terms as elements and evaluates term weights
based on terms’ appearances or frequencies in feedback. For example, Rocchio-style clas-
sifiers [12], ranking SVM [22]; and BM25 for structured documents [25] are popular IF
systems. They can also naturally handle both positive and negative feedback information.
However, the research on term-based models has arguably hit somewhat of a wall in terms
of effectiveness improvement possibly due to the ambiguity problem mentioned earlier. In
addition, modeling the real dependencies between terms is very difficult.

Language models have been developed for considering term dependencies. In a lan-
guage model, the key elements are the probabilities of word sequences which include both
terms and phrases (or sentences) [31]. They are often approximated by N-gram models,
such as Unigram, Bigram or Trigram, for considering term dependencies easily. Language
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modeling approaches include model-based methods, and relevance models [18]. The former
finds models that can best describe the features in positive documents while considering a
background model [45]. The later tries to model the notation of relevance in a more gener-
alized level [10]. Language modeling approaches have been well developed for information
retrieval, especially for query expansion techniques [39,18,35]. They are also quite effec-
tive for exploiting positive feedback information. However, they cannot naturally handle
negative feedback.

Pattern mining has been extensively studied in data mining communities for many years.
A variety of efficient algorithms such as Apriori-like algorithms [1], PrefixSpan [21], and
FP-tree [5] have been proposed. These research works have mainly focused on developing
efficient mining algorithms for discovering patterns in databases. Usually, the existing data
mining techniques return numerous discovered patterns (e.g., sets of terms) from a training
set, but large number of them are redundant patterns [40]. Nevertheless, the challenging
issue is how to effectively deal with the large amount of discovered patterns and terms with
a lot of noises.

Closed patterns have turned out to be a promising alternative to phrases [32,7] because
patterns enjoy good statistical properties like terms. To effectively use closed patterns for
information filtering, closed sequential patterns have been used in pattern taxonomy models
(PTM) [32,37,36], which deployed closed sequential patterns into a vector that included a
set of terms and a term-weight distribution. The pattern deploying method has shown en-
couraging improvements on effectiveness in comparing with traditional probabilistic mod-
els, Rocchio based method and N-gram. The similar research also appeared in [41] for
developing a new methodology of post-processing of pattern mining, pattern summariza-
tion, which grouped patterns into some clusters and then composed patterns in the same
cluster into a master pattern that consists of a set of terms and a term-weight distribution.

These approaches introduced data mining techniques to information filtering; however,
too many noisy patterns adversely affect PTM systems [15]. The major research issue is
how to use both positive and negative feedback to significantly reduce the effects of noisy
patterns. Traditional data mining techniques can only achieve a little progress for the effec-
tiveness because they can only discuss this problem at the pattern level. This paper starts to
consider human being’s perspective about relevance and uses a two-dimension concept to
classify terms into three groups: positive specific terms, general terms and negative specific
terms. In this perspective, term weights can be evaluated accurately based on their appear-
ances in both positive patterns and negative patterns.

Our conference paper [13] is the first study on the problem of mining negative relevance
feedback for information filtering. In this paper, we extend previous study by adding more
examples, discussing more related research works, and extending the experiments for dis-
cussing the proposed iterative learning algorithm and statistic analysis. We also conducted
some new experiments for using the proposed approach on adaptive filtering.

3 Pattern Taxonomy Mining

In this paper, we assume that all documents are split in paragraphs. So a given docu-
ment d yields a set of paragraphs PS(d). Let D be a training set of documents, which
consists of a set of positive documents, D+; and a set of negative documents, D−. Let
T = {t1, t2, . . . , tm} be a set of terms (or keywords) which are extracted from the set of
positive documents, D+.



5

Table 1 A set of paragraphs

Parapgraph Terms
dp1 t1 t2
dp2 t3 t4 t6
dp3 t3 t4 t5 t6
dp4 t3 t4 t5 t6
dp5 t1 t2 t6 t7
dp6 t1 t2 t6 t7

Table 2 Frequent patterns and covering sets

Frequent Pattern Covering Set
{t3, t4, t6} {dp2, dp3, dp4}
{t3, t4} {dp2, dp3, dp4}
{t3, t6} {dp2, dp3, dp4}
{t4, t6} {dp2, dp3, dp4}
{t3} {dp2, dp3, dp4}
{t4} {dp2, dp3, dp4}
{t1, t2} {dp1, dp5, dp6}
{t1} {dp1, dp5, dp6}
{t2} {dp1, dp5, dp6}
{t6} {dp2, dp3, dp4, dp5, dp6}

3.1 Frequent and Closed Patterns

Given a termset X , a set of terms, in document d, pXq is used to denote the covering set of
X for d, which includes all paragraphs dp ∈ PS(d) such that X ⊆ dp, i.e., pXq = {dp|dp ∈
PS(d), X ⊆ dp}. Its absolute support is the number of occurrences of X in PS(d), that
is supa(X) = |pXq|. Its relative support is the fraction of the paragraphs that contain the
pattern, that is, supr(X) =

|pXq|
|PS(d)| . A termset X is called frequent pattern if its supa (or

supr) ≥ min sup, a minimum support.
Table 1 lists a set of paragraphs for a given document d, where PS(d) = {dp1, . . . , dp6},

and duplicate terms are removed. Let min sup = 3 giving rise to ten frequent patterns which
are illustrated in Table 2. Normally not all frequent patterns are useful [32,40]. For example,
pattern {t3, t4} always occurs with term t6 in paragraphs (see Table 1); therefore, we want
to keep the larger pattern only.

Given a termset X , its covering set pXq is a subset of paragraphs. Similarly, given a set
of paragraphs Y ⊆ PS(d), we can define its termset, which satisfies

termset(Y ) = {t|∀dp ∈ Y ⇒ t ∈ dp}.

The closure of X is defined as follows:

Cls(X) = termset(pXq).

A pattern X (also a termset) is called closed if and only if X = Cls(X).
Let X be a closed pattern. We have

supa(X1) < supa(X) (1)

for all pattern X1 ⊃ X.
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3.2 Pattern Taxonomy

Patterns can be structured into a taxonomy by using the is-a (or subset) relation and closed
patterns. For example, Table 2 contains ten frequent patterns; however, it includes only three
closed patterns: < t3, t4, t6 >, < t1, t2 >, and < t6 >. Simply, a pattern taxonomy is
described as a set of pattern-absolute support pairs, for example PT={〈t3, t4, t6〉3, 〈t1, t2〉3,
〈t6〉5}, where non-closed patterns are pruned. After pruning, some direct “is-a” retaliations
may be changed, for example, pattern {t6} would become a direct sub-pattern of {t3, t4, t6}
after pruning non-closed patterns < t3, t6 > and < t4, t6 >.

Smaller patterns in the taxonomy, for example pattern {t6}, are usually more general
because they could be used frequently in both positive and negative documents; and larger
patterns, for example pattern {t3, t4, t6}, in the taxonomy are usually more specific since
they may only used in positive documents.

3.3 Closed Sequential Patterns

A sequential pattern s =< t1, . . . , tr > (ti ∈ T ) is an ordered list of terms. A sequence
s1 =< x1, . . . , xi > is a sub-sequence of another sequence s2 =< y1, . . . , yj >, denoted
by s1 v s2, iff ∃j1, . . . , ji such that 1 ≤ j1 < j2 . . . < ji ≤ j and x1 = yj1 , x2 =

yj2 , . . . , xi = yji
. Given s1 v s2, we usually say s1 is a sub-pattern of s2, and s2 is a

super-pattern of s1. In the following, we simply say patterns for sequential patterns.
Given a pattern (an ordered termset) X in document d, pXq is still used to denote the

covering set of X, which includes all paragraphs ps ∈ PS(d) such that X v ps, i.e.,
pXq = {ps|ps ∈ PS(d), X v ps}. Its absolute support and relative support are defined as
the same as for the normal patterns.

A sequential pattern X is called frequent pattern if its relative support ≥ min sup, a
minimum support. The property of closed patterns (see Eq. (1)) can be used to define closed
sequential patterns. A frequent sequential pattern X is called closed if not ∃ any super-
pattern X1 of X such that supa(X1) = supa(X).

4 Deploying Patterns on Terms

The evaluation of term supports (weights) in this paper is different from the term-based
approaches. For a term based approach, the evaluation of a given term’s weight is based
on its appearance in documents. For pattern mining, terms are weighted according to their
appearance in discovered patterns.

To improve the efficiency of the pattern taxonomy mining, SPMining(D+, min sup)

algorithm [32], was proposed (also used in [37,15]) to find closed sequential patterns for
all document ∈ D+, which used the well-known Apriori property in order to reduce the
searching space. For all positive document d ∈ D+, the SPMining algorithm discovered all
closed sequential patterns based on a given min sup.

Let SP1, SP2, ..., SP|D+| be the sets of discovered closed sequential patterns for all
document di ∈ D+(i = 1, · · · , |D+|). For a given term t, its support in these discovered
patterns can be described as follows:

support(t, D+) =

|D+|∑

i=1

|{p|p ∈ SPi, t ∈ p}|∑
p∈SPi

|p|
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Table 3 illustrates a real example of pattern taxonomy for a set of positive documents
D+ = {d1, d2, · · · , d5}. For example, term global appears in three documents (d2, d3 and
d5). Therefore, its support can be calculated based on patterns in the three documents’s
pattern taxonomies:

support(global, D+) =
2

4
+

1

3
+

1

3
=

7

6
.

Table 3 Example of sets of discovered closed sequential patterns in pattern taxonomies, where the minimum
absolute support is 2.

Doc. Pattern Sets of Discovered Closed
Taxonomies Sequential Patterns (SP)

d1 PT(1,1) {〈carbon〉 , 〈carbon, emiss〉}
PT(1,2) {〈air, pollut〉}

d2 PT(2,1) {〈greenhous, global〉}
PT(2,2) {〈emiss, global〉}

d3 PT(3,1) {〈greenhous〉}
PT(3,2) {〈global, emiss〉}

d4 PT(4,1) {〈carbon〉}
PT(4,2) {〈air〉, 〈air, antarct〉}

d5 PT(5,1) {〈emiss, global, pollut〉}

After the supports of terms have been computed from the training set, the following rank
will be assigned to an incoming document d that can be used to decide its relevance:

rank(d) =
∑

t∈T

weight(t)τ(t, d)

where weight(t) = support(t, D+); and τ(t, d) = 1 if t ∈ d; otherwise τ(t, d) = 0.

5 Mining Negative Feedback

In general, the concept of relevance is subjective; and normally people can describe the rel-
evance of a topic (or document) in two dimensions: the specificity and exhaustivity, where
“specificity” describes the extent to which the topic focuses on what users want, and “ex-
haustivity” describes the extent to which the topic discusses what users want. It is easy for
human being to do so. However, it is very difficult to use the two dimensions for IF systems.
In this section, we first discuss how to use the two dimensions for understanding the differ-
ent roles of the selected terms. We also presents an algorithm for both negative document
selection and term weight revision.

5.1 Specific and General Terms

Formally, let DP+ be the union of all discovered positive patterns of pattern taxonomies
of D+, and DP− be the union of all discovered negative patterns of pattern taxonomies of
D−, where a closed sequential pattern of D− is called negative pattern. Given a term t ∈ T ,
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its exhaustivity is the number of discovered patterns in both DP+ and DP− that contain t,
and its specificity is the number of discovered patterns in DP+ but not in DP− that contain
t. Based on this understanding, in this paper we classify terms into three groups. We call
a term a general term if it appears in both positive patterns and negative patterns. We also
call terms positive (or negative) specific terms if they appear only in patterns discovered in
positive (or negative) documents only.

Based on the above discussion, we have the following definitions for the set of general
terms GT , the set of positive specific terms T+, and the set of negative specific terms T−:

GT = {t|(∃p1 ∈ DP+) ∧ (∃(p2 ∈ DP−) ⇒ t ∈ (p1 ∩ p2)},

T+ = {t|t /∈ GT, ∃(p ∈ DP+) ⇒ t ∈ p}, and

T− = {t|t /∈ GT, ∃(p ∈ DP−) ⇒ t ∈ p}.
It is easy to verify that GT ∩ T+ ∩ T− = ∅. Therefore, (GT, T+, T−) is a partition of all
terms in patterns.

To describe user profiles for a given topic, normally we believe that specific terms are
very useful for the topic in order to distinguish to other topics. However, some experimental
results show that using only specific terms are not good enough to improve the performance
of information filtering because user information needs cannot simply be covered by doc-
uments that only contain the specific terms. Therefore, the best way is to use the specific
terms mixed with some of the general terms.

5.2 Strategies of Revision

After we can classify terms into three categories, we firstly show the basic process of revis-
ing discovered features in the training set. This process can help readers to understand the
proposed strategies for revising discovered features in different categories.

The process first extracts initial features in the positive documents in the training set,
which include terms and patterns. It then selects some negative samples (or called offenders)
in the set of negative documents in the training set. It also extracts negative features, includ-
ing both terms and negative patterns, from the selected negative documents using the same
pattern mining technique as used for the feature extraction in positive documents. In addi-
tion, it revises the initial features and obtains revised features. The process can be repeated
for several times as follows: selecting negative documents, extracting negative features and
revising revised features.

Algorithm NFMining(D) describes the details of the strategies of the revision, where
we assume that the number of negative documents is greater than the number of positive
documents. For a given training set D = {D+, D−}, we assume that the initial features,
< T, DP+, DP− >, have been extracted from positive documents D+ before we start the
algorithm, where we let DP− = ∅. We also let the experimental parameter α = −1 that will
be used for calculating weights of terms in negative patterns.

Step 1 initializes the set of general terms GT , the set of positive specific terms T+ and
the set of negative specific terms T−, where loop is used to control the times of the revision.
Step 2 and 3 calculate terms’ weights for all term in T .

Step 4 and 5 rank documents in the set of negative documents, where if t is a negative
specific term, its weight is the revised weight that calculates in step 10 and 11. The weight
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function can be described as follows:

weight(t) =





its revising weight, if t ∈ T−

support(t, D+), otherwise

Step 6 and 7 sort the negative documents based on documents’ rank values, and select
offenders, some negative documents. If a document’s rank less than or equals to 0 that means
this document is clearly negative to the system. A document has hight rank that means
the document is an offender because it forces the system make mistake. The offenders are
normally defined as the top-K negative documents in sorted D− [14]. In this paper, we let
K = d |D+|

3 e. In the first revision (loop = 0), we ignore the top-j negative documents for
offender selection since the initial features only coming from positive documents and we
believe that positive features are more important than negative features in the beginning,
where j = b |D−|

|D+| c, the largest integer that less than or equals to |D−|
|D+| .

Step 8 and 9 extract negative features (DP−, T0) from selected negative documents D−
3 ,

where it calls algorithm SPMining(D−
3 , min sup) to discover negative patterns DP− and

T0 that includes all terms in patterns in DP−.
Step 10 to 12 revise negative specific terms’ weights. These steps will go through a

loop for three times and the iteration is controlled by step 13. In each loop, when a specific
negative term is extracted in the first time, the algorithm simply negatives its support ob-
tained from the selected negative documents; otherwise, the algorithm cumulates its weight
as follows:

weight(t) = α× support(t, D−
3 ) + weight(t).

After three loops, the algorithm participates T into general terms GT and positive spe-
cific terms T+ in step 14 and 15. It also revises positive specific terms’ weights using the
following equation in step 16 and 17:

weight(t) = weight(t) ∗ (1 +
|{d|d ∈ D+, t ∈ d}|

|D+| )

At last, it updates T to include negative specific terms in step 18.
NFMining calls three times SPMining and the total negative documents used in the three

times is O(|D+|); therefore, it takes the same computation time for mining patterns in se-
lected negative documents as the SPMining does for mining patterns in positive documents.
NFMining also takes times for sorting D−, assigning weights to terms and partitioning terms
into groups. The time complexity for these operations is O(|D−|(log(|D−|) + |T |) + |T |2).

This algorithm consists of three loops for mining negative specific terms and the cor-
responding weights. For each loop, after finishing the loop, it is obvious that the number
of negative specific terms, |T−|, is not less than the number of negative specific terms be-
fore the loop, because of the operation, T− = T− ∪ (T0 − T ), in Step 12. We expect the
three loops can produce enough negative specific terms in order to reduce the side effects of
general terms. We will discuss more details for this question in Section 6.4.

6 Evaluation

In this section, we first discuss the data collection used for our experiments. We also describe
the baseline models and their implementation. In addition, we present the experimental re-
sults and the discussion.



10

NFMining(D)
Input: A training set, {D+, D−}, parameter α = −1;

extracted features < T, DP+, DP− >, DP− = ∅;
support function and minimum support min sup.

Output: Updated term set T and function weight.

Method:
1: GT = ∅, T+ = ∅, T− = ∅, loop = 0;
2: foreach t ∈ T do
3: weight(t) = support(t, D+);
4: foreach d ∈ D−do
5: rank(d) = Σt∈d∩(T∪T−)weight(t);
6: let D− = {d0, d1, ..., d|D−|−1} in descendent ranking order,

let j = b |D−||D+| c if loop = 0, otherwise j = 0;

7: D−3 = {di|di ∈ D−, j ≤ i < d |D+|
3
e+ j};

8: DP− =SPMining(D−3 , min sup); //find negative patterns
9: T0 = {t ∈ p|p ∈ DP−}; // all terms in negative patterns
10: foreach t ∈ (T0 − T ) do
11: if (loop = 0) then weight(t) = α× support(t, D−3 )

else weight(t) = α× support(t, D−3 ) + weight(t);
12: T− = T− ∪ (T0 − T ), loop + +;
13: if loop < 3 then goto step 4;
14: foreach t ∈ T do //term partition
15: if (t ∈ T−) then GT = GT ∪ {t}

else T+ = T+ ∪ {t};
16: foreach t ∈ T+ do
17: weight(t) = weight(t) ∗ (1 +

|{d|d∈D+,t∈d}|
|D+| );

18: T = T ∪ T−;

6.1 Data

Reuters Corpus Volume 1 (RCV1) was used to test the effectiveness of the proposed model.
RCV1 corpus consists of all and only English language stories produced by Reuter’s jour-
nalists between August 20, 1996, and August 19, 1997 with total 806,791 documents. The
document collection is divided into training sets and testing sets.

TREC (2002) has developed and provided 100 topics for the filtering track aiming at
building a robust filtering system. The topics are of two types: 1) A first set of 50 top-
ics are developed by the assessors of the National Institute of Standards and Technology
(NIST)(i.e., assessor topics); The relevance judgements have been made by assessor of
NIST. 2) A second set of 50 topics have been constructed artificially from intersections
of pairs of Reuters categories (i.e., intersection topics) [30].

Difference from the assessor topics, the relevance judgements have been made by ma-
chine learning methods not by human being for intersection topics. The assessor topics are
more reliable and the quality of the intersection topics is not quite good [23,30]. For this
reason, we use the all 50 assessor topics in this paper.

Documents in the RCV1 collection are marked in XML. To avoid bias in experiments,
all of the meta-data information in the collection have been ignored. The documents are
treated as plain text documents by preprocessing the documents. The tasks of removing
stop-words according to a given stop-words list and stemming term by applying the Porter
Stemming algorithm are conducted [16].
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6.2 Baseline Models and Setting

In this paper, we select three term-based baseline models because they are frequently used
for both positive and negative documents. They are a Rocchio model, a BM25 based IF
model, and a SVM based model. The PTM model is also used to measure the performance
of using negative feedback for pattern mining. In this paper, the proposed approach is called
Negative PaTtern Mining model (N-PTM), which firstly discovers sequential closed patterns
from positive documents, deploys discovered patterns on their terms. Then, it discovers
negative patterns from negative documents to group and revise the extracted features from
positive documents as shown in Section 5.

The Rocchio algorithm [26] has been widely adopted in the areas of text categorization
and information filtering. It can be used to build the profile for representing the concept of a
topic which consists of a set of relevant (positive) and irrelevant (negative) documents. The
Centroid c of a topic can be generated as follows:

α
1

|D+|
∑

−→
d ∈D+

−→
d

||−→d ||
− β

1

|D−|
∑

−→
d ∈D−

−→
d

||−→d ||

There are two sets of setting for α and β: α = 16 and β = 4; and α = β = 1.0. We
tested both sets and found α = β = 1.0 was the best set. So, we use α = β = 1.0 in the
above equation.

BM25 [8,24] is the one of state-of-the-art retrieval functions used in document retrieval.
The term weights are estimated using the following BM25 based equation:

W (t) =
tf · (k1 + 1)

k1 · ((1− b) + b DL
AVDL ) + tf

· log

(r+0.5)
(n−r+0.5)

(R−r+0.5)
(N−n−R+r+0.5)

where N is the total number of documents in the training set; R is the number of positive
documents in the training set; n is the number of documents which contain term t; r is
the number of positive documents which contain term t; tf is the term frequency; DL and
AVDL are the document length and average document length, respectively; and k1 and b are
the experimental parameters (the values of k1 and b are set as 1.2 and 0.75, respectively, in
this paper).

Information filtering can also be regarded as a special instance of text classification [28].
SVM is a statistical method that can be used to find a hyperplane that best separates two
classes. SVM achieved the best performance on the Reuters-21578 data collection for doc-
ument classification [43]. The decision function in SVM is defined as:

h(x) = sign(w · x + b) =





+1 if (w · x + b) > 0

−1 otherwise

where x is the input object; b in < is a threshold and w =
∑l

i=1 yiαixi for the given training
data: (xi, yi), ..., (xl, yl), where xi ε <n and yi equals +1 (−1), if document xi is labeled
positive (negative). αi ε< is the weight of the training example xi and satisfies the following
constraints:

∀i : αi > 0 and
l∑

i=1

αiyi = 0 (2)
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To compare with other baseline models, we tried to use SVM to rank documents rather
than to make binary decisions. For this purpose, threshold b can be ignored. We also believe
that the positive documents in the training set should have the same importance to user infor-
mation needs because the training set was only simply divided into positive documents and
negative documents. So we assign the same αi value (i.e., 1) to each positive document first,
and then determine the same αi (i.e., ά) value to each negative document based on Eq. (2).
Therefore, we use the following weighting function to estimate the similarity between a
testing document and a given topic:

weight(d) = w · d

where · means inner product; d is the term vector of the testing document; and

w = (
∑

di∈D+

di) + (
∑

dj∈D−
dj ά).

For each topic, we also choose 150 terms in the positive documents based on tf*idf values
for all term-based baseline models.

PTM model is also selected as one of the baselines models because we want to verify that
mining negative feedback can significantly improve the performance of PTM. The maximum
size of the term set T is 4000 for PTM. We also set min sup = 0.2 (relative support) for
both PTM and N-PTM.

The performance of PTM was based on the number of closed patterns that were decided
by a minimum support [36]. If the minimum support is very small, many noisy patterns
can be introduced to the system; however, if it is very big then many useful patterns may
be missed out. For RCV1, the total number of frequent sequential patterns is 36202 that
includes 28733 closed patterns if min sup = 0.2. PTM can remove 20% of the frequent
patterns if min sup = 0.2. In this paper, we use a fixed minimum support value, min sup =

0.2, suggested by [36].

6.3 Results

The effectiveness was measured by four different means: The F-beta (Fβ) measure, Mean
Average Precision (MAP), the break-even point (b/p), and Interpolated Average Precision
(IAP) on 11-points.

Fβ is calculated by the following function:

Fβ =
(β2 + 1)PR

β2P + R

The parameter β = 1 is used in our study, which means that recall and precision is weighed
equally. Mean Average precision is calculated by measuring precision at each relevant doc-
ument first, and averaging precision over all topics. The b/p break-even point indicates the
value at which precision equals recall. The larger a b/p, MAP, IAP or Fβ-measure score is,
the better the system performs. 11-points measure is also used to compare the performance
of different systems by averaging precisions at 11 standard recall levels (i.e., recall=0.0, 0.1,
..., 1.0).

Statistical method is also used to analyze the experimental results. The t-test assesses
whether the means of two groups are statistically different from each other. The paired two-
tailed t-test is used in this paper. If DIF represents the difference between observations,
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Table 4 Results for all assessor topics on RCV1.

Model top-20 b/p MAP Fβ=1 IAP
N-PTM 0.5470 0.4718 0.4863 0.4631 0.5067
PTM 0.4960 0.4304 0.4436 0.4392 0.4641
BM25 0.4450 0.4074 0.4069 0.4140 0.4281
SVM 0.4530 0.4083 0.4092 0.4211 0.4353
Rocchio 0.4740 0.4201 0.4305 0.4299 0.4523

Fig. 1 comparison between the proposed method and other approachs.

the hypotheses are: Ho : DIF = 0 (the difference between the two observations is 0).
Ha : DIF 6= 0 (the difference is not 0). N is the sample size of group. The test statistic
is t with N − 1 degrees of freedom (df ). If the p-value associated with t is low (<0.05),
there is evidence to reject the null hypothesis. Thus, there is evidence that the difference in
means across the paired observations is significant. The N-PTM model is compared with
PTM, Rocchio, BM25, and SVM models for each variable b/p, MAP , IAP , Fβ=1 over all
the 50 topics, respectively.

6.3.1 N-PTM vs Baseline Models

Table 4 illustrates the results of all models against the five measures for all assessor topics.
Compared with PTM which uses positive documents only, the proposed N-PTM model uses
both positive and negative feedback. It is obvious that N-PTM is extremely better than PTM
for all five measures. The proposed model N-PTM is also compared with term-based base-
line models in Table 4 including Rocchio, BM25, and SVM, which also use both positive
and negative feedback as well. The results of 11-points on all assessor topics are reported in
Figure 1.

As shown in Table 4 and Figure 1, the proposed new model (N-PTM) has achieved the
best performance results for the assessor topics.

We also conducted the t-test to compare the proposed model with all baseline models and
the results are listed in Table 5. The percentage changes are shown in Table 6. Comparing
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Table 5 P-value for all models comparing with N-PTM.

Model top-20 b/p MAP Fβ=1 IAP
PTM 0.027389945 0.002712978 0.00185474 0.002748289 0.000923675
BM25 0.000961513 0.002827644 0.000806368 0.000926226 0.000416951
SVM 0.000876284 0.001794258 0.000124716 0.00049229 0.000158923
Rocchio 0.009870197 0.012662994 0.008214849 0.010978002 0.007517726

Table 6 Percentage change over all baseline models.

Model top-20 b/p MAP Fβ=1 IAP
PTM 10.28% 9.62% 9.64% 5.45% 9.18%
BM25 22.92% 15.81% 19.53% 11.86% 18.36%
SVM 20.75% 15.57% 18.85% 9.99% 16.40%
Rocchio 15.40% 12.32% 12.97% 7.75% 12.03%
AVG 17.34% 13.33% 15.23% 8.76% 13.99%

with these baseline models, the proposed approach achieves excellent performance with
13.73% (max 17.34% and min 8.76%) average percentage change for all five measures.

These statistic results indicate that the proposed model is extremely statistically sig-
nificant. Therefore, we conclude that mining negative relevance feedback for information
filtering is an exciting achievement for pattern based approaches.

In the training phase, it is obvious that N-PTM and PTM use more times than other term-
based models because of mining patterns in paragraphes. However, for the time complexity
in the testing phase, all models take O(|T | × |d|) for all incoming documents d. In our ex-
periments, the number of terms used by all models for each topic is less than 300 in average.
Therefore, there is no significant difference between these models on time complexity in the
testing phase.

6.3.2 Adaptive Filtering

In this section, we design some experiments for testing the adaptive performance of the pro-
posed N-PTM model. We expect these experiments can achieve the consistent performance
like the batch one in the last section.

For each topic, the system starts from an initial training set, then adds a window of
new training documents. The size of the window set is 25. Each window of new training
documents is selected randomly in the testing set. To test the robustness of the proposed
model, we conduct the process of adaptive six times (six windows) for the same initial
training set. Table 7 shows the results of the N-PTM models which combine new training
documents with the initial one into a big training set and then train the system again.

We also test the adaptive performance of the term-based baseline models for the same
settings, and found that the Rocchio model achieves the best performance. Table 8 shows
the results of adaptive Rocchio models for using the six windows. The experiment results
show that the adaptive N-PTM models also achieve excellent performance with 9.10% (max
12.00% and min 6.28%) average percentage change for all five measures on the assessor
topics. We believe that the performance of N-PTM model is consistent and very significant
for all five measures on the RCV1 data collection.
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Table 7 Adaptive N-PTM models for all assessor topics.

Model top-20 b/p MAP Fβ=1 IAP
N-PTM-1 0.570 0.479 0.496 0.473 0.517
N-PTM-2 0.567 0.486 0.512 0.483 0.529
N-PTM-3 0.575 0.481 0.504 0.475 0.524
N-PTM-4 0.562 0.497 0.514 0.481 0.536
N-PTM-5 0.541 0.462 0.487 0.464 0.507
N-PTM-6 0.543 0.466 0.490 0.467 0.513
AVG 0.560 0.478 0.501 0.474 0.521
chg% to Rocchio 12% 7.66% 10.1% 6.28% 9.45%

Table 8 Adaptive Rocchio models for all assessor topics.

Model top-20 b/p MAP Fβ=1 IAP
Rocchio-1 0.525 0.444474 0.458249 0.448621 0.476696
Rocchio-2 0.495 0.444119 0.454437 0.448007 0.474435
Rocchio-3 0.505 0.455495 0.463649 0.449008 0.485906
Rocchio-4 0.497 0.450539 0.460866 0.448778 0.483619
Rocchio-5 0.497 0.441519 0.449421 0.441622 0.472068
Rocchio-6 0.479 0.428432 0.443400 0.439774 0.466213
AVG 0.500 0.444096 0.455004 0.445968 0.476490

Table 9 Statistical information for N-PTM with different values of K.

K
Number of Offenders Number of extracted terms Average weight of extracted terms top-20 MAP Fβ=1

#T+ #T− #G w(T+) w(T−) w(G)

|D+|/3 6.5 107 126 50 36.33 -26.54 56.04 0.547 0.486 0.463
|D−| 26.5 86 343 71 39.21 -319.3 73.41 0.442 0.372 0.375
|D+|/2 9.7 100 145 57 33.31 -46.11 58.56 0.538 0.479 0.458
|D+| 16.5 93 208 64 33.68 -96.09 61.79 0.538 0.452 0.441

6.4 Discussion

The main process of the proposed approach consists of two steps: offender selection, and
the revision of term weights. It is obvious that not all negative documents are suitable to
be selected as offenders, where offenders are the most useful negative documents that can
help to balance the percentages of general terms and specific terms in the extracted features.
Informally, the documents that have high weight are called offenders.

Table 9 shows the statistical information for N-PTM with different values of K including
the average numbers of offenders, extracted terms and their weights, and the performance.
The results of 11-points on all assessor topics for the different values of K are reported in
Figure 2. It is obvious that K = d |D+|

3 e is the best one. The statistical information illustrates
that the proposed method for offender selection meets the design objectives.

As mentioned in Section 5.2, we used three loops to get negative specific terms in order
to reduce the side effects of using general terms. Table 10 illustrates the performance of the
loops used in Algorithm NFMining (up to 6 loops). The table shows that the system achieves
the best result in average after the third loop.

Table 11 shows the average numbers of positive documents, negative documents, of-
fenders and extracted terms in the training sets for the loops in the algorithm SPMining.
Based on the proposed model, we set K = d |D+|

3 e, that is, the number of offender docu-
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Fig. 2 comparison between used all negative documents and used the offender one.

Table 10 Performance of each loop for all assessor topics.

Loop top-20 b/p MAP Fβ=1 IAP
Loop 1 0.5240 0.4560773 0.4667359 0.4522290 0.4884621
Loop 2 0.5500 0.4619442 0.4815856 0.4601250 0.5012464
Loop 3 0.5470 0.4718463 0.4863368 0.4631121 0.5066751
Loop 4 0.5470 0.4561296 0.4817219 0.4595607 0.5015123
Loop 5 0.5440 0.4521346 0.4771687 0.4573536 0.497056
Loop 6 0.5510 0.4502285 0.4714463 0.4537675 0.4927944

Table 11 Extracted features in the loops of algorithm SPMining,where min sup = 0.2.

Loop Number of Documents in Training Sets Number of Extracted Terms Weight of Extracted Terms

Positive Negative Offenders in Offenders used #T+ #T− #GT w(T+) w(T−) w(GT )

the memory in the loop

Loop 1 12.8 41.3 3.98 3.98 122 59 35 37.59 −9.68 48.81
Loop 2 12.8 41.3 5.54 3.98 110 110 47 31.88 −18.48 54.51
Loop 3 12.8 41.3 6.5 3.98 107 126 50 30.36 −26.54 56.04
System 12.8 41.3 6.5 − 107 126 50 36.33 -26.54 56.04
Loop 4 12.8 41.3 7.44 3.98 104 140 53 29.50 −35.84 56.89
Loop 5 12.8 41.3 8.12 3.26 103 147 54 29.14 −42.70 57.26
Loop 6 12.6 41.0 8.86 3.18 100 152 55 28.26 −48.52 57.40

ments should be equal or less than the number of positive documents. We also use loops
to calculate the closeness of the offender document to the positive, such as, if a document
is very closed to the positive documents it will be ranked at the top for the next loop. As
shown in Table 11 the average number of positive documents is about 13 and the average
number of negative documents is about 41; however, the average number of offender doc-
uments that have been selected in each loop is only 4 or 3. The table also illustrates that
only 15.74% = 6.5

41.3 negative documents are selected as offenders for the system, that is, the
proposed method is much efficient for reducing the space of negative documents.
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For the revision of term weights, the proposed method first classifies extracted terms into
general terms and specific terms that is a distinguish advantage comparing with others [35,
46]. The normal belief is that specific terms are more interesting than general terms for a
given topic. Therefore, the proposed method increases the weights of positive specific terms
when it conduces the revision using negative documents.

General terms are not only frequently appear in positive documents, but also frequently
appear in some negative documents because negative documents may describe some extent
to which the topic discusses what users want. To reduce the side effects of using general
terms in the extracted features, the proposed method adds negative specific terms (and neg-
ative weights) into the extracted features by the loops (see Algorithm NFMining).

Table 11 also shows the average numbers of extracted general terms #GT , specific terms
#T+ and negative specific terms #T−, and their average weights. For the system, before
revision, it can be seen that more than 61% = 56.04

56.04+36.33 weights are distributed to general
terms although the percentage of general terms is 31.8% = 50

50+107 for all extracted terms
in positive documents.

After revision, 126 negative specific terms are added into T in average for the system
(see Table 11), and they are assigned weight −26.54 in average. In this way, these negative
specific terms could reduce the side effects of general terms if both general terms and nega-
tive specific terms appear in negative documents because now only 45% = 56.04−26.54

56.04−26.54+36.33
weights could be distributed to general terms considering positive specific terms get weight
36.33 in average and general terms get 29.5 = 56.04− 26.54 in average.

The above analysis illustrates that the proposed algorithm for finding negative specific
terms meets the design objective for reducing the side effects of using general terms.

7 Conclusions

Negative relevance feedback is very useful for information filtering. However, whether neg-
ative feedback can largely improve filtering accuracy is still an open question. This paper
presents a pattern mining based approach for this open question. It introduces a method to
select negative documents (or called offenders) that are close to the extracted features in
the positive documents. It also proposes an approach to classify extracted terms into three
groups: positive specific terms, general terms and negative specific terms. In this perspec-
tive, it presents an iterative algorithm to revise extracted features. Compared with the state-
of-the-art models, the results of experiments on the RCV1 data collection demonstrate that
the effectiveness of information filtering can be significantly improved by the proposed new
approach, and the performance is also consistent for adaptive filtering. This research pro-
vides a promising methodology for evaluating term weights based on discovered patterns
(rather than documents) in both positive and negative relevance feedback.
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