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Abstract—Monitoring and assessing environmental health is 

becoming increasingly important as human activity and climate 

change place greater pressure on global biodiversity. Acoustic 

sensors provide the ability to collect data passively, objectively 

and continuously across large areas for extended periods of time. 

While these factors make acoustic sensors attractive as 

autonomous data collectors, there are significant issues associated 

with large-scale data manipulation and analysis. We present our 

current research into techniques for analysing large volumes of 

acoustic data effectively and efficiently. We provide an overview 

of a novel online acoustic environmental workbench and discuss 

a number of approaches to scaling analysis of acoustic data; 

collaboration, manual, automatic and human-in-the loop 

analysis. 
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I.  INTRODUCTION 

Monitoring and assessing environmental health is 
becoming increasingly important as human activity and climate 
change place greater pressures on global biodiversity. 
Protecting biodiversity and developing effective conservation 
strategies requires a thorough understanding of natural systems, 
the relationship between organisms and their environment and 
the effects of climate change. This understanding is 
traditionally derived from field observations using manual 
methods such as fauna and vegetation surveys. 

While manual methods will continue to play an important 
role in conservation, they are limited in their ability to monitor 
the effects of environmental change over large spatiotemporal 
scales. It is in this context that providing scientists with 
technology and tools to rapidly collect and analyse 
environmental data on a large scale is critical [1, 2]. Sensors 
are one of tools being utilised increasingly to extend the reach 
of scientists engaged in environmental monitoring [3-5]. They 
can be relatively inexpensive, provide a continuous, in-situ 
monitoring capability over large areas and record data over 
long periods of time. A wide range of sensors are available to 
monitor numerous aspects of the environment. This research 
focuses on the use of acoustic sensors and the analysis of 
associate acoustic sensor data.  

There are numerous roles for acoustic sensors in ecology, 

conservation biology and wildlife management research. These 

include: 

 Measures of species richness: detecting and measuring 

the number of different species in a given area [6-8]; 

 Measures of species abundance: detecting and 

measuring the size of specific species populations in a 

given area [9, 10]; 

 Localisation: detecting specific vocalisations/acoustic 

events and determining the spatial origin of the call 

[11, 12]; 

 Measures of ecosystem health: generalised or relative 

measures of ecosystem health in the context of a 

system or specific species [13, 14] 
 

Acoustic sensing provides ecologists with the capability to 
massively scale ecological observations, both temporally and 
spatially. For example, traditional avian point counts may 
involve trained ecologists making 10 minute observations at 
dawn, noon and dusk over a period of five days at a single 
site.  At 2.5 hours, the total observation time for a short term 
manual survey is a fraction of the potential 120 hours of a 
continuous automated acoustic sensor recording over the same 
period of time at the same site. At long term scales, even 
scheduled recordings (e.g. five minute recordings every 30 
minutes) provide ecologists with significantly more data than 
manually collected long term survey data. 

Conservation biologists and ecologists are increasingly 
turning to sensor technology to assist their work in the field [1, 
3-5]. Sensors provide an effective means to accumulate data at 
large scales and high resolutions [15]. Acoustic sensors have 
been employed in this capacity for some time, both in marine 
and terrestrial environments [14, 16-18]. They can be used to 
collect data passively, objectively and continuously across 
large areas for extended periods of time. While these factors 
make acoustic sensors attractive as autonomous data collectors, 
large scale data collection presents its own problems: 

 Data volume – acoustic sensors generate vast 
quantities of raw data which must be stored, analysed 
and summarized. 

 Complex analysis requirements – recognising the 
vocalisations of individual animals or species against a 
background of general noise and other vocalisations is 
a complex and challenging task. 

This paper describes a novel online Acoustic 
Environmental Workbench which addresses both the problems 
of data deluge and complex analysis through collaboration and 



 

 

human-in-the-loop semi-automation. The workbench is a web-
based application which includes integrated data upload, 
storage, management, playback, interactive analysis and 
annotation tools which enable users to work collaboratively to 
scale acoustic analysis tasks. 

In Part II of this paper we outline the basic architecture of 
our system. In Part III we describe our analysis techniques and 
Part IV proposes future work. 

II. ONLINE ENVIRONMENTAL WORKBENCH 

Part of our ongoing research has been to compare the 
effectiveness of acoustic sensors with traditional manual fauna 
survey methods. This work identified the need to provide 
ecologists with a framework which facilitates close interaction 
with their data and the ability to work collaboratively with 
other scientists. Working with ecologists we have identified the 
following core functionality: 

 Data upload and storage. 

 Data organisation and structure. 

 Recording playback and visualisation. 

 Recording analysis and annotation. 

 Automated generation of metadata using Ecological 
Metadata Language (EML). 

We describe these core functions in turn. 

A. Data Upload and Storage 

Format flexibility and centralised access were identified as 
core functionality to enable recordings from a variety of 
devices, in many formats to be uploaded and accessed via the 
internet. To achieve this, the acoustic workbench provides 
web-based access to recordings collected from a variety of 
sources including, but not limited to, networked sensors and 
standalone data loggers. Acoustic data in MP3 or WAV format 
may be uploaded from any digital recording device capable of 
generating files in these formats. 

This centralised approach provides a number of advantages: 

 Online access and collaboration: multiple users have 
access to the same data and same analysis tools, 
enabling users to collaborate on analysis tasks. 

 Data retention: all raw data is stored and retained to 
allow future analysis as techniques improve and to 
enable long term comparisons of historical data. 

 Data security and backup: all data is stored securely 
with regular backups and recovery facilities to prevent 
data loss. 

 Data provenance and context retention (metadata): key 
experimental design details are retained to ensure 
accurate comparisons between datasets. 

B. Data Organisation and Structure 

The acoustic workbench allows users to browse and 
manipulate data in a logical, structured manner. Acoustic data 

is presented to users based on a hierarchical model of Projects, 
Sites, Sensors and Recordings. 

Projects represent the top level of the hierarchy. Each 
project consists of a collection of Sites. A project may 
represent an individual experiment or series of experiments. 
Sites are physical locations (identified by GPS coordinates), 
with sensors deployed at each site. Sensors are physical 
recording devices whose details are stored to ensure retention 
of experimental design details. Recordings are the raw acoustic 
data collected from sensor devices in the field and uploaded to 
the website. 

Users are granted role-based permissions on a Project basis. 
These control the level of access to project data and analysis 
tasks. Access levels include: 

 None (default): user has no access to any data or 
functionality in the project. 

 Read Only: user can view/play acoustic data, but 
cannot annotate spectra, cannot upload data and cannot 
perform analysis tasks. 

 Full: user can view/play acoustic data, can annotate 
spectra, can upload data and can perform analysis 
tasks. 

C. Recording Playback and Visualisation 

Recordings can be played online using a custom audio 
playback tool developed for the workbench. The playback tool 
displays a spectrogram which allows the user to visualise and 
hear audio simultaneously. Long recordings are split into four 
minute segments which are loaded dynamically as the player 
reaches the end of each segment. For example, a continuous 24 
hour recording is divided into 360 four-minute segments. This 
allows the user to start listening without waiting for the entire 
recording to download.  

Users have sequential or random access to the contents of a 
recording using the player’s navigation tools. This provides the 
ability to scan recordings rapidly or to locate specific times of 
interest, for example dawn and dusk. In addition, several 
recordings may be selected at once to create a 'playlist' of audio 
to play or to assign to analysis tasks. These playlists are 
generated using a search tool, which provides the capability to 
filter recordings based on time and date recorded, project, site 
and on tags which have been annotated in any recording. 

D. Recording Analysis and Annotation 

One of the key goals of this research is to devise analysis 
tools to scan large volumes of acoustic data and identify 
distinct species. The results of this analysis can then be used to 
generate a list of species with vocalisations in the recordings. 
Apart from the obvious challenges of data volume and arbitrary 
noise sources, animal calls show great variation both within 
and between species. There can also be significant regional 
variation in many species. 

To overcome these issues the workbench provides a 
flexible approach to data analysis. Users can work alone or in 
collaboration. They can annotate recordings manually, run 



 

 

fully automated tools or interact with the system in a semi-
automated fashion.  

Manual analysis requires users to identify vocalisations 
aurally and/or visually and to annotate spectrograms directly. 
Annotation involves drawing a rectangular marquee around the 
spectral content of a call as it appears in a spectrogram. See 
Fig. 1 for an example of a spectrogram with annotations. The 
user then assigns an identifying tag to the marquee. The 
marquee identifies the upper and lower frequency bound and 
the start and end times of the call. 

 

Figure 1. Marquees identifying three Bush Stone Curlew (Burhinus 
grallarius) syllables in a series of calls which are masked by noise and various 
insect vocalisations. 

Users can search the acoustic database for all recordings 
containing an identifying tag. These recordings can be assigned 
to a playlist or downloaded as a report in CSV format, listing 
the tagged events in the recordings. 

E. Automated Generation of EML 

We use Ecological Metadata Language (EML) [19] to 
facilitate incorporation of ecological projects undertaken using 
our acoustic workbench into the Long Term Ecological 
Research (LTER) metadata catalogues. EML defines, 
standardises and formalises metadata considered essential for 
the adequate description of ecological data. EML defines 
metadata attributes such as geographic and temporal coverage, 
taxonomic coverage and data types. Maintaining and 
standardising metadata associated with ecological experiments 
retains the context of the data and enables reinterpretation and 
re-analysis of the data for long term research. 

III. ONLINE ANALYSIS TECHNIQUES 

There are significant challenges associated with analysing 
recordings of the natural environment. They are subject to 
many effects including natural noise (such as wind and rain), 
man-made noise (such as cars and aeroplanes) and various 
forms of electrostatic interference. In addition, many animal 
species exhibit significant call variation and their call spectra 
vary depending on proximity to the microphone. Our research 
has identified the need to provide ecologists with flexibility 
when analysing acoustic data. To this end, we provide the 
following options for processing and analysing acoustic data: 

 Manual analysis 

 Automated call recognition 

 Human-in-the-loop analysis 

A. Manual Analysis 

The Acoustic Workbench provides users with core 
functionality to playback recordings, identify vocalisations and 
annotate spectrograms with identification tags. This approach 
is primarily used for single species identification or detailed 
single species behavioural studies. Manual analysis by skilled 
users provides a highly accurate and comprehensive audit of 
acoustic data, however processing large volumes of data can be 
time consuming. Manual analysis may also be necessary in 
acoustically complex environments (e.g. avian dawn chorus), 
where automated tools fail to discriminate between 
simultaneous vocalisations. 

Given the volume of data associated with long term 
acoustic sensing, the time required to manually analyse 
recordings can be prohibitive. Additionally, manual analysis 
typically requires highly trained users who can discriminate 
between vocalisations and identify many numbers of species. 
To help overcome some of these limitations, the Acoustic 
Workbench provides a number of additional tools to assist 
manual analysis: 

 Online collaboration: enables users to scale manual 
analysis by allowing multiple users to collaborate in 
identifying and annotating large volumes of acoustic 
data. The workbench also incorporates a feedback and 
confidence rating system which provides the ability to 
rate the accuracy of collaborating users. Collaboration 
can also be used to focus the attention of ‘expert’ 
user’s on complex or difficult-to-identify calls. 

 Online species identification library: assists users in 
call identification. To reduce the time taken to 
correctly identify vocalisations, users can compare a 
call in a spectrogram with spectrograms of previously 
identified exemplars. To reduce the number of 
exemplar spectrograms to compare, the library can be 
filtered on features such a frequency band, call 
duration and geographic proximity to the current 
recording. 

 Removal of silence and noise: removes sections of 
recordings with long periods of silence or periods with 
continuous noise pollution (e.g. caused by wind or 
rain). Automated removal of these sections of a 
recording reduces the volume of acoustic data to 
analyse, and focuses manual effort on those parts of a 
recording mostly amenable to analysis. 

 Rapid spectrogram scanning: allows a user to visualise 
a recording in a fraction of the time that it takes to 
listen to it. Many vocalisations have a characteristic 
spectral appearance that the human eye can recognise 
more easily than available automated techniques. 
Rapid spectrogram scanning allows user to scan 
quickly through an entire recording to search for a 
specific species or vocalisation. 



 

 

B. Automated Call Recognition 

Perhaps due to the importance of birds as indicator species 
of environmental health, there is already a considerable body of 
work published on the automatic detection of bird vocalisations  
[20-28]. A common approach has been to adopt the well-
developed tools of Automated Speech Recognition (ASR), 
which extract Mel-Frequency Cepstral Coefficients (MFCCs) 
as features and use Hidden Markov Models (HMMs) to model 
the vocalisations.  

Unfortunately it is not so easy to translate ASR to the 
analysis of environmental recordings because there are far 
fewer constraints in the latter task. Two issues are noise and 
variability. ASR tasks are typically restricted to environments 
where noise is tightly constrained, for example over the 
telephone. By contrast, environmental acoustics can contain a 
wide variety of non-biological noises having a great range of 
intensities and a variety of animal sounds which are affected by 
the physical environment (vegetation, geography etc.). 
Furthermore, the sources can be located any distance from the 
microphone. Secondly, despite its difficulty, ASR applied to 
the English language requires the recognition of about 50 
phonemes (or 150 tri-phones). By contrast, bird calls offer 
endless variety; variety in call structure between species, 
variety between populations of the one species and variety 
within and between individuals of the one population. Many 
species have multiple calls and many are mimics. To give some 
indication of the difficulty of bird call recognition, a state-of-
the-art commercial system using an ASR approach that has 
been under development for more than a decade, achieves, on 
unseen test vocalisations of 54 species, an average accuracy of 
65% to 75% [29]. 

In our experience, ASR techniques have not been effective 
for most animal calls (our work extends beyond bird 
recognition to include insects, reptiles and koalas). Two 
reasons would appear to be 1) the inappropriateness of cepstral 
coefficients as features to describe bird whistles and 2) the 
difficulty of having a suitable HMM noise model to cover the 
wide variety of situations that occur in an uncontrolled 
recording. Note that MFCC features were developed for ASR 
under conditions where noise and recording conditions were 
tightly controlled. 

Our approach has been to identify the invariant features of 
calls of interest and to build recognisers for those features. Not 
all noise types and all species occur at all locations so it is 
possible to achieve useful recognition results without building 
a universal-classifier to recognise everything. 

While some animal and bird calls have complex structures 
[27], species recognition does not necessarily require 
recognition of an entire call. For example it is not necessary to 
model the complex structure of 30 second male Koala 
(Phascolarctos cinereus) bellow. Instead the oscillatory 
characteristic of its exhales provides a suitable feature on 
which to train a recogniser. Likewise the Bush Stone Curlew 
(Burhinus grallarius) has a multi-syllable call structure with 
harmonics, but recognition can be limited to detection of a 
single characteristic formant. Even highly variable bird calls 
such as that of the Golden Whistler (Pachycephala pectoralis) 
may be confined to a particular frequency band and have 
characteristic frequency modulated whistles. Many multi-
syllable calls consist of the same repeated syllable (e.g. the 
cane toad (Bufo marinus)) or different syllables varying in 
pitch (e.g. the ground parrot (Pezoporus wallicus)), duration or 
both (e.g. the whistle and whip of the Eastern Whipbird 
(Psophodes olivaceus)).   

While all these call types exhibit some form of variability, 
nevertheless each has an invariant feature to which a recogniser 
can be tuned. Representative examples of recognition 
techniques we have implemented include: 

 MFCC features + HMMs: We have found this 
technique to be suitable only for high quality single-
syllable calls. We used the HMM Tool Kit [30] and 
applied it to the recognition of Pied Currawong 
(Strepera graculina) calls.  

 Oscillation Detection (OD): We used a Discrete Cosine 
Transform to find repeating or oscillating elements of 
calls within a user specified bandwidth. This method is 
highly sensitive and does not require prior noise 
removal. For more details see [31]. 

 Event Pattern Recognition (EPR): This technique 
models a call as a 2D distribution of acoustic events in 
the spectrogram. Step 1: Acoustic Event Detection 
(AED). Extract acoustic events from the spectrogram. 

TABLE I. RECOGNISER RESULTS FROM EXPERIMENTS USING FOUR RECOGNITION TECHNIQUES. 

Call structure Recognition technique Call type Recordings (Files 

in Datasets) 

# Files 

with Calls 

Recall Precision Accuracy 

Single syllable  MFCC features + HMM Currawong 29 x 4-minutes 7 28.6% 100% 75.9% 

Oscillating 

single syllables 

in time domain 

Detection of temporal 

oscillations within a 

characteristic frequency 

band of the STFT. 

Cane Toad 337 x 2-minutes 55 92.5% 98.0% 98.5% 

Asian House 

Gecko 

270 x 2-minutes 77 90.9% 89.7% 94.4% 

Male Koala 

(bellows) 

115 x 4-minutes 12 75.0% 

 

75.0% 

 

94.8% 

Static pattern in 

time and 

frequency 

Detection of a characteristic 

pattern of acoustic events in 

the STFT. (AED + EPR) 

Ground 

Parrot (one 

call type) 

 

405 x 1-minute 

 

23 

 

87.0% 

 

87.0% 

 

98.5% 

Complex single/ 

multiple-line 

patterns 

Detect whistle followed by 

whip using Syntactic 

Pattern Recognition. 

 

Whipbirds 

 

38 x 2-mintues 

 

14 

 

100% 

 

66.7% 

 

81.6% 



 

 

Each call syllable should be isolated as a single event. 
Step 2: Detect a 2D pattern of events whose 
distribution matches a template. Note that the content 
of the syllables themselves is not modelled. The 
advantage of this method is that it is resistant to 
background noise and other acoustic events. For more 
details see [32]. 

 Syntactic Pattern Recognition (SPR): this technique 
models a call as a symbol sequence, each symbol 
selected from a finite alphabet representing ‘primitive’ 
elements of the composite pattern. In our case the 
primitives are short straight-line segments at different 
angles in the spectrogram. Step 1: Isolate Spectral Peak 
Tracks (SPTs) which appear as ridges in the 
spectrogram. Step 2: Describe the spectral tracks as 
piece-wise straight line segments. We apply this 
technique to Eastern Whipbird calls that can be 
modelled as a series of horizontal line segments (the 
whistle) followed by a series of near-vertical line 
segments (the whip). 

To test these methods we used data sets selected by an 
ecologist based on judgements as to what selection of 
recordings at different times of the day would provide 
interesting information about the locality. An ecologist tagged 
all calls of interest, even those at the limits of audibility and not 
expected to be detected by automated means. Our objective 
was to devise experimental conditions that would reflect how 
an ecologist would use the acoustic workbench. Results are 
displayed in Table I. We use the following definitions of recall 
and precision: 

recall = TP/(TP+FN) 

precision = TP/(TP+FP) 

Accuracy is defined as the total number of correctly 
classified 1-4-minute file segments in the test set. We adopted 
the convention that where a recogniser detected a true positive 
(TP) in a single 1-4 minute file yet made an error in the same 
file (either a false positive—FP—or false negative—FN) we 
labelled that file correctly classified. On the other hand we 
observed many instances where multiple TPs were obtained in 
one recording but offset by a single error in another file. The 
most common errors were FN due to a distant call or call lost 
in noise. We chose this form of presenting accuracy because it 
is more efficient for ecologists using the Acoustic Workbench 
to work with audio segments of 1-4 minute rather than 
manipulate hours of recording. Furthermore birds tend to call 
in clusters and reporting on a file basis reduces the length of a 
report. 

It is notable that the use of MFCCs and HMMs was the 
least successful technique tested (Table I). Although the 
accuracy figures presented should only be regarded as general 
indications of performance in a real operational environment, 
they nevertheless demonstrate that useful accuracy rates can be 
achieved for automated recognition when appropriate 
algorithms are selected for specific vocalisations. 

C. Human-in-the-Loop Analysis 

Human-in-the-loop analysis provides a hybrid approach 
which addresses the respective strengths and weaknesses of the 
manual and automated techniques. Manual analysis utilises the 
sophisticated recognition capabilities of an expert user, but 
cannot be efficiently scaled to process the volumes of data 
collected in long-term sensor deployments. Automated 
techniques are effective for identifying targeted species in large 
volumes of data, but they require a high degree of skill to 
develop and are still not able to cope with the variability that 
animal calls present. 

Combining manual and automated approaches provides 
users with the ability to interactively and systematically 
process large volumes of acoustic data in a semi-automated 
fashion. Human-in-the loop analysis recognises that: a) many 
species (particularly avian species) have a broad range of 
vocalisations and these vocalisations may have significant 
regional variation; b) environmental factors such as wind, rain, 
vegetation and topography can attenuate, muffle and distort 
vocalisations considerably and c) human analysis capabilities 
are currently far superior to that of automated computational 
analysis tools. Accurately identifying species with diverse 
vocalisations in diverse conditions requires a broad selection of 
characteristic vocalisations under different conditions. This 
problem is analogous to developing speech recognition tools to 
identify any number of words, in any number of languages for 
any number of accents, in almost any physical environment. 
The human-in-the-loop technique provides users with the 
ability to: 

 Identify and associate many different vocalisations 
with a single species. 

 Automate repetitive scanning and annotation tasks. 

 Leverage expert user time by searching an entire 
recording or set of recordings with a number of 
identifying vocalisations. 

 Identify and locate potential vocalisations which have 
not been identified i.e. identify novelty. 

 Develop a comprehensive, geographical-specific 
library of vocalisations to apply to other recordings 

To illustrate this technique, the following is an example of 
a typical human-in-the-loop scenario. 

A user is tasked with producing a species list and associated 
call frequency data for avian species detected in a seven day 
(168 hour) continuous acoustic recording. The user is also 
tasked with building up a library of representative calls of 
species of interest in the recording. This library could be used 
later to assist call identification in other recordings at the same 
location. 

The recording is uploaded to the environmental workbench, 
divided into four-minute segments for playback and processed 
segment-wise to remove background noise.  

The analysis process begins by performing a manual scan 
of the first minutes of the recording to identify calls of interest. 
These are manually tagged as the identified species, processed 



 

 

and placed in the call library. At present we use a binary matrix 
to represent the shape of calls in a spectrogram. These steps are 
represented in Fig. 2 as the arrows from ‘Start’ to ‘New Tags’ 
to ‘Library of Calls’.  

The automated part of the human-in-the-loop process (the 
top section of Fig. 2) is to scan the entire recording with the 
templates in the Call Library. The recall/precision trade-off is 
controlled with a sensitivity parameter. At present we use a 
nearest-neighbour (NN) recogniser but in principle a number of 
recognition algorithms could be used. This automated step 
returns a list of ‘hits’ some number of which will be false 
positive errors. The recogniser will also have missed some true 
calls (false negatives). 

The user now identifies and corrects errors (see Error 
Correction box in Fig. 2) and adds new examples of calls 
including those wrongly identified in the previous scan. The 
expanded library is now used as the basis for a second scan of 
the entire recording.  

The above process is iterated until all vocalisations of 
interest have been annotated. Note that iterative identification 
and annotation of vocalisations builds up a library that not only 
covers the species range but also the variation within species 
for that location. Since calls in the library are annotated with 
their location, filtering for geographic proximity reduces the 
number of vocalisations to be compared. 

 

Figure 2. Semi-automated analysis (human-in-the-loop).  

To give some idea of the performance of the nearest-
neighbour recogniser (which also requires any similarity 
measure to exceed a threshold for positive identification) we 

used it to detect Bush Stone Curlew calls in a two hour 
recording. We used a single template describing just one of the 
several syllable types characteristic of a Bush Stone Curlew 
call. Dividing the recording into 4-minute segments, the single 
syllable recogniser achieved a recall rate of 63%, precision of 
100% and accuracy of 76%. The addition of more syllables to 
the call library would increase recognition performance 
correspondingly. 

IV. DISCUSSION AND FUTURE WORK 

Acoustic sensors are set to play an important role in 
protecting biodiversity as we face increasing environmental 
challenges. Sensors provide scientists with the capability to 
collect data over large spatial and temporal scales, far 
exceeding what would be traditionally possible using manual 
methods. With this ability however comes the problem of 
analysing large volumes of data. This research has developed a 
‘toolbox’ approach to the analysis of acoustic data, while 
providing scientists with an online environment to store, access 
and collaborate on data collected from acoustic sensors. 
Ultimately, these tools are aimed at providing scientists with 
the ability to detect and identify species in recordings. This 
information can be analysed over time to observe fluctuations 
in species richness, detect the presence of rare or invasive 
species, and to monitor the effects of climate change on the 
environment.  

The automated recognition of animal calls has not yet 
reached a level of reliability that allows ecologists to use the 
methods without careful verification of results. Any application 
which offers analysis tools to ecologists must necessarily offer 
graded levels of utility from fully manual to fully automated. In 
particular it makes sense to offer semi-automated tools which 
allow an adjustable degree of user interaction with the data. 

To this end, the automated recognisers in our Acoustic 
Environmental Workbench have a number of features that 
adapt them to the real world of semi-automated classification 
as opposed to the optimised world of a specialised machine 
learning laboratory. In particular: 

1) We have constructed generic classifiers that respond to a 

particular feature which is common to many animal calls. The 

most obvious example in our work is the Oscillation Detector. 

Another feature of our generic recognisers is that they have 

parameters whose tuning is relatively intuitive. The only 

exception to this rule is the use of HMMs in HTK. These 

classifiers require IT expertise to construct. Reporting the 

accuracy of call classifiers based on carefully prepared data 

sets is not an accurate reflection of the typical ecologist’s 

requirements. 

2) Except for our HMM classifiers, we have prepared generic 

classifiers that can be ‘trained’ with very few (even just one) 

instance. This is necessary because many bird species of 

interest are cryptic. As more calls are identified, the classifier 

can be improved in a boot-strap manner. 

3) We have constructed classifiers that can be used in both a 

multi-class context (e.g. as a nearest-neighbour classifier) or as 



 

 

stand-alone binary classifiers. The latter option is necessary 

because in many situations an ecologist is interested in a 

particular species and has no need of a classifier that 

recognisers multiple species. The difficulty to be solved in 

order to achieve this outcome is to normalise classification 

scores independently over a broad range of call types. 

 
The identification of animal calls in arbitrary recordings of 

the environment remains a difficult task. We believe that it is 
more difficult than ASR, which is only just becoming a reliable 
technology after three decades and huge investment. From an 
economic standpoint alone, it is most unlikely that automated 
recognition of animal vocalisations will be achieved in the near 
future, certainly not having sufficient accuracy to replace 
human identification. Consequently human-in-the-loop will be 
required for analysis of environmental acoustic data for the 
foreseeable future. Our workbench recognises this reality, 
however, we anticipate that we will continue to improve on the 
accuracy of both semi-automated and fully-automated 
identification of species and these features will be added to the 
on-line acoustic workbench as they become available. 
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