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Abstract. In vector space based approaches to natural language pro-
cessing, similarity is commonly measured by taking the angle between
two vectors representing words or documents in a semantic space. This
is natural from a mathematical point of view, as the angle between unit
vectors is, up to constant scaling, the only unitarily invariant metric on
the unit sphere. However, similarity judgement tasks reveal that human
subjects fail to produce data which satisfies the symmetry and trian-
gle inequality requirements for a metric space. A possible conclusion,
reached in particular by Tversky et al., is that some of the most basic
assumptions of geometric models are unwarranted in the case of psy-
chological similarity, a result which would impose strong limits on the
validity and applicability vector space based (and hence also quantum
inspired) approaches to the modelling of cognitive processes. This paper
proposes a resolution to this fundamental criticism of of the applicability
of vector space models of cognition. We argue that pairs of words imply
a context which in turn induces a point of view, allowing a subject to
estimate semantic similarity. Context is here introduced as a point of
view vector (POVV) and the expected similarity is derived as a measure
over the POVV’s. Different pairs of words will invoke different contexts
and different POVV’s. Hence the triangle inequality ceases to be a valid
constraint on the angles. We test the proposal on a few triples of words
and outline further research.

Keywords: Similarity, Semantic Space, Triangle Inequality, Metric, POVV,
Context

1 Introduction

A mental lexicon refers to the words that comprise a language, and its structure
is defined here by the associative links that bind this vocabulary together. Such
links are acquired through experience and the vast and semi-random nature of
this experience ensures that words within this vocabulary are highly intercon-
nected, both directly and indirectly through other words. For example, the word
planet can become associated with earth, space, moon, and so on, and within this
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set, moon can become linked to earth and star [7]. Words are so associatively
interconnected with each other that it takes only a few associative steps to move
from one word to any other in the lexicon [23]. The complexity of the mental
lexicon makes it highly challenging to construct analytical and computational
models of both its structure and behavior. Yet even relatively small steps towards
achieving the automatic interpretation of human language have given us search
engines capable of converting our human made queries into their mathematical
equivalent, and identifying documents relevant to that query among the huge
corpus of the internet. Thus, these small steps have transformed the way we use
the internet today. It seems clear that having a better mathematical representa-
tion of human language will lead to an improved use of the information content
of the internet, however, the question of how to best represent human language
remains a theoretical challenge. In this paper we shall consider one particu-
lar challenge, that of metricity. While vector space based models of the human
mental lexicon have proven successful in various respects, the manner in which
they quantize similarity is different from human judgements of semantic similar-
ity, which violate important properties op a metric[25]. We shall then propose
a contextual resolution to this problem and conclude by suggesting a number
of potential future avenues of investigation. We begin with a brief overview of
current vector space models of the mental lexicon.

2 Vector Space Models of the Mental Lexicon

Computational representations of the mental lexicon have been investigated by
researchers from a range of disciplines, including mathematics, logic, philoso-
phy, artificial intelligence, computational linguistics, cognitive psychology, natu-
ral language processing and information retrieval [24]. The birth of vector space
based models (VSBM) for the purpose of information retrieval can be traced
back to the seminal paper of Salton et al. [20] who were searching for an ap-
propriate mathematical space to represent documents. Starting from a few basic
desiderata, they settled upon a vector in a high dimensional vector space as an
appropriate representation of a document. Within this framework, a query is
treated like a small (pseudo) document that is also converted to vector form.
The documents in the corpus are then ranked according to their distance to the
query; closer documents are considered more relevant than ones that are further
away. The way was now open to include Boolean operators on the returned re-
sults, and thus the first search engines were born. One of the main drawbacks of
this system was that it had trouble returning documents that would have been
highly relevant if one of the words in the query was replaced by a synonym,
and the next advance came from representing concepts latently in a so-called
semantic space where they are not formally represented or labelled. Semantic
spaces are instances of vector spaces, and represent words in a basis created
from other words, concepts, documents, or topics. They are generally built from
the observation of co-occurrences in large text corpora. In word spaces such as
the Hyperspace Analogue to Language (HAL) [21] the basis consists of every
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word in the vocabulary. Thus, the vector for a given word W is calculated by
summing the number of occurrences of word W (i) in a given context window
around each occurrence of W and writing that number at the position i in the
vector that represents W . This number can be adjusted using the distance (de-
fined in terms of the number of words) or mutual information measures such
as Point-Wise Mutual Information, which allows for a weighting of the impor-
tance of the word at that position. It is also possible to take word order into
account [12, 19] . The major evolution with respect to the original proposal of
Salton et al., was to derive a more fundamental semantic value through a reduc-
tion of the initial word space using mathematical tools such as Singular Value
Decomposition ([13]), Non Negative Matrix factorization ([14]), or random pro-
jection ([18]), all of which generate a new basis that is greatly reduced in the
number of dimensions. This new basis can under certain conditions be naturally
related to topics, objects and concepts [14]. Because of the dimensional reduc-
tion, words with similar meaning tend to cluster into single dimensions of the
resulting reduced vector space, greatly reducing the problems the old VSBM had
with synonyms.

Once a semantic space has been created, we need to rank the results returned
by a query using a similarity measure. Several distance measures (such as cosine
similarity, Euclidean distance, and the City Block metric [8]) have been applied
to semantic analysis, all of which supposedly measure the similarity between
words in a given space. The most popular of these used in semantic analysis is
cosine similarity, which gives the angle between two vectors in semantic space.
We will later explain why this is generally considered a good choice. A num-
ber of studies have shown that semantic spaces can be effective at performing
tasks that are human like. For example they have shown success at synonymy
detection, categorization tasks, information retrieval and query expansion [24].
They have also been shown to perform well at mimicking human word associa-
tion norms [27]. As we will show later, this has led a number of researchers to
propose semantic spaces as models of human cognition. In this paper we examine
important issues related to such a move. Semantic spaces are metric spaces and
this poses problems that must be resolved before they can become viable models
of human cognition. We shall begin with a discussion of metric spaces and in
particular of the properties that a set must satisfy before it can be identified
as a metric space. We shall then proceed to a discussion of the way in which
human behavior violates these conditions and propose a possible resolution to
this problem in later sections.

2.1 Motivation for the use of the angle as a measure of similarity

It is notoriously difficult to formally describe the notion of meaning. Yet this
precisely what Natural Language Processing aims for. VSBM solve this issue via
the so-called distributional hypothesis, which claims that words which occur in
similar contexts tend to have similar meanings [11, 10, 9]. In VSBM, the entries
of the vectors are usually monotone functions of the frequency of co-occurrence.
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Hence vectors that are “close” occur in similar contexts and, by the distribu-
tional hypothesis, ought to have similar meanings. Using the inner product or
cosine measure as a representation of similarity then seems like a very plausible
suggestion. There are good mathematical reasons as well. If the vectors that
correspond to a word are represented by unit vectors, the state space of words
becomes the unit sphere. The unit sphere is a simple example of a manifold and
geodesics on this manifold are well known to correspond to great circles. On
the unit circle, the length of a great circle between two points equals the angle
expressed in radians. Indeed, we have that the angle between two points on the
sphere is (up to constant scaling) the only unitarily invariant Riemann metric on
the sphere [28]. But what precisely are the mathematical criteria for a function
to be a bona fide distance function?

2.2 Requirements for a Metric Space

In this section we shall briefly sketch the requirements for a metric space before
proceeding in the next section to a discussion of the manner in which semantic
data obtained from humans tends to violate the requirements for metric spaces.

Definition 1. The ordered couple (M,d) with M a non emtpy set and d : M ×
M → R a function (called the distance or metric), is called a metric space if for
any i, j, k ∈ M , the following hold:

1. Non-negativity: the distance between two points must be greater than or
equal to zero:

d(i, j) ≥ 0. (1)

2. Identity of indiscernibles: if the distance between two points is equal to
zero then those two points are the same:

d(i, j) = 0 ⇔ i = j. (2)

3. Symmetry: the distance between two points is equal, regardless of which
direction it is measured in:

d(i, j) = d(j, i). (3)

4. The Triangle Inequality: for three points in M , the distance from i to k
is less than the distance which goes via j:

d(i, j) + d(j, k) ≥ d(i, k), (4)

Many authors prefer to list 1 and 2 in a single requirement. In fact, require-
ment 1 can be derived easily from 2,3 and 4. It is straightforward to verify that
the angle αij between vectors ui and uj

αij = cos−1 〈ui, uj〉
|ui||uj |

(5)
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satisfies all four requirements. The angle between two vectors seems to be in
accordance with the distributional hypothesis and satisfies all qualities of a
mathematical metric. Moreover, its use has been tested in a wide variety of
applications. As such we seem to have a very fundamental and valuable quan-
tity. But the most important question is perhaps how we humans judge semantic
similarity. This is a question that belongs to cognitive science so we shall now
turn to an examination of similarity in this field, contrasting its results with
those of VSBM.

3 Are Semantic Spaces Good Models of Human
Cognition?

Vector spaces have been at the heart of many models in cognitive science. One
of the more important examples for our purpose, is prototype theory. The basic
idea of prototype theory is that some members of a category are more ‘typical’
than others [17]. For example, a cat is a more (prototypical) member of the
category pet, whereas a donkey is clearly more peripheral. This idea is called
‘graded categorization’ and was formalized by representing concepts as vectors
and categories as sets of vectors [15, 22]. However, these vectors are not based
on co-occurrence, but on subjective numerical scores obtained by questioning
human subjects. In this section we shall draw attention to a range of human
derived data which violates a number of the properties that must be satisfied by
a metric. We shall go through them in the order given in the previous section.
The first requirement listed above is non-negativity. This is probably the least
problematic of all requirements. Whether or not negative values of similarity
occur, is decided by the questionnaire’s scale on which human subjects are asked
to judge similarity. Humans can quite naturally associate a concept of distance
between two words as a measure of their similarity and this distance can be
straight-forwardly assumed to be non-negative. However, in this section we shall
show that every other requirement of a metric space can be quickly violated by
spatial representations of similarity data.

3.1 Homographs and the non-identity of indiscernible

The identity of indiscernibles property implies that different words should be sep-
arated by some distance. However, many languages contain words with multiple
meanings, multiple words for the same thing, and ambiguous structures, and
these properties give us reason to question the general validity of this property,
although some features of natural language support this property. For example,
synonyms (different words for the same thing) appear to satisfy the identity of in-
descernibles property reasonably well; while they lie close together semantically
synonyms generally have slightly different connotations. Thus, while ‘student’
and ‘pupil’ both mean essentially the same thing, there are slightly different
senses to these two words, and hence they tend to appear close together, but
with some distance separating them in most semantic spaces.
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However, homographs create much more serious problems for attempts to
generate a metric space. Homographs are words that have the same spelling and
pronunciation but different meanings. For example, ‘bat’ is a homograph, as it
has at least two senses: (1) as a small furry flying mammal; and (2) as a sporting
implement.

Homographs pose a problem for the if and only if criterion in property 2. If
we generate a set that represents each word in English, then ‘bat’ should appear
only once in it (i = j); however, semantic spaces tend to correctly reveal the
different meanings behind this word by using a mixture of the representation
of both words. Thus, property 2 seems to pose a challenge for semantic space
approaches a discernible words (such as ‘bat’ for sports and ‘bat’ the animal) are
represented at exactly the same point in the space. We believe a finer resolution
of homographs in semantic space is possible by examining the set of documents
that contain the words. First a search in, for example, Wordnet will reveal if
a word has several meanings and if so, how many. Say a word has n possible
meanings. Then we ought to divide the set of all the words that substantially co-
occur with the query word, into n sets of words such that each set shows a degree
of cohesion in the words that co-occur with it. This may be implemented by an
appropriate algorithm that reduces to n the dimension of the matrix that has
as its rows the words that co-occur and as column the documents in which they
occur. Interestingly, a very similar situation occurs in quantum mechanics in the
case of degenerate energy levels. An energy level of a quantum system is called
degenerate if different states correspond to the same energy level. If we think of
the energy level of the system as ‘the name’ of the state that corresponds to that
energy level, we have an analogy with homographs. Application of a well chosen
perturbation to the Hamiltonian of the system allows us to separate the energy
levels, so each energy level corresponds in a unique way to an energy level. We
say that the perturbing field is ‘lifting the degeneracy’ and splits the energy level
into finer energetic detail. If we see a separation of the two meanings of a single
word in the semantic vector space, it seems we have provided enough context in
the semantic space to lift the degeneracy of meanings corresponding to a single
word. In an actual task of information retrieval, it is very valuable to be able
to identify which meaning is more probable for a given word in a given context.
For this we would have to judge to which of two statistical clusters a given
vector (word) in a given context belongs. Language is extremely flexible and is
perfectly able to shift perspective as we include more context, thereby changing
the meaning. Take as an example, the word ‘hits’. Without additional context,
its meaning is degenerate; it could mean many things. We are then given a piece
of context: ‘Michael hits Billy’. Most probably ‘hits’ denotes a physical act of
violence. We are then given an additional piece of context: ‘Michael Jackson hits
Billy Jean’. The meaning of ‘hits’ is now more likely to signify a musical hit.
We are given a last piece of context: ‘Michael Jackson number of Google hits for
Billy Jean’, the word ‘hits’ denotes the webpages Google relates to a query. In
the example above every new level of context only adds words to the previous
context; the previous context isn’t changed in form, only in meaning. We feel the
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nature of language is simply too rich to allow for a strict separation, but VSBM
do seem capable of at least statistically approaching the problem of homographs.

3.2 Human Similarity Judgements are not Symmetric

It was shown by Tversky that human similarity judgements are asymmetric,
and so directly violate the symmetry requirement of metric spaces (i.e. d(a, b) 6=
d(b, a)) [26]. A classic example was first provided by Rosch in her theory of
prototypes [16], which shows that humans have a tendency to declare similarity
with respect to an archetype. For example, when asked to give an example of
the concept furniture, humans will much more frequently cite a “chair” than a
“stool”, and this archetypical concept (“chair”) is the one that similarity judge-
ments are preferentially, and asymmetrically, assigned by. Thus, the similarity
of stool to chair is usually deemed to be greater than that of chair to stool,
the similarity of North Korea to China is judged greater than the similarity of
China to North Korea [25, 26], and pink is deemed more similar to red, than red
is to pink. There seems to be a genuine linguistic phenomenon here that one
eventually would like to model. Of course, these experiments are designed to
test for asymmetry; experiments that do not show asymmetry are equally easy
to design. Suppose we produce a deck of cards with on each card nothing but
the two words “red” and “pink”. However, on half of the cards the word “red”
is printed above the word “pink”, on the other half, “pink” is printed above
“red”. Each test subject is given one card and asked to quantify the similarity of
the two concepts printed on the card. The result will obviously be symmetrical,
because there was no distinguished order of words on the deck of cards. For our
present purpose, we will assume symmetrical data.

3.3 Human Similarity Judgements Violate the Triangle Inequality.

Finally, human similarity judgements do not appear to satisfy the triangle in-
equality, a result shown by Tversky & Gati [25]. Indeed, the contrast between
human similarity judgements and distance notions in geometric models of cog-
nition led them to conclude that ([25], p 153):

some basic properties of the geometric model (e.g., translation invari-
ance, segmental additivity, and the triangle inequality), which enhance
the interpretability and the appeal of spatial representations, cannot al-
ways be accepted as valid principles of psychological similarity.

even before Semantic Space approaches to the mental lexicon were invented.
If Tversky & Gati are correct then their criticism poses some very serious

problems for both semantic space models, and hence quantum inspired mod-
els of the human mental lexicon. To put things in perspective, semantic spaces
were developed and successfully put to use in spite of this problem, so per-
haps we need not worry too much. On the other hand we would like to be able
to model subjective similarity as it seems an important component of natural
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language processing. What makes the triangle inequality problem more severe
than the three previous requirements we discussed, it that we cannot make it go
away by devising another experiment, at least not straightforwardly. If we want
symmetric or non-negative data we can always make sure that the experiment
will give us only positive values. For non-negativity we need only to constrain
the range of the possible answers; for the symmetry condition, we need only to
make sure every couple’s similarity is symmetric. Indeed, if d(a, b) = d(b, a) and
d(b, c) = d(c, b), then obviously d(a, c) = d(c, a). Can we design an experiment
in such a way that it always satisfies the triangle inequality? We could give con-
cepts in triples to subjects and ask them to draw a triangle with the three words
on the vertices of the triangle and express the relative similarities by the relative
lengths of the sides of the triangle. The triangle inequality would be trivially
satisfied for this triple. However, if we have several triples that satisfy the trian-
gle inequality, then there is no guarantee whatsoever, that from these triples we
cannot pick words to form new triples that will violate the triangle inequality.
Another proposal would be to abandon metric spaces, or geometric models for
the representation of cognitive entities such as concepts and sentences. If we
take into consideration the huge success this class of models has enjoyed then
this seems like a rather radical step to take. An alternative answer to Tversky
& Gati might be found through an adoption of the notion of context, and in
what follows we shall start to develop an approach within a metric space that
can recover the non-metric behavior of human judgements of similarity.

4 The point of view model

In vector space based accounts of cognition (such as quantum theory inspired
approaches [1–3, 6, 5]) concepts are very often represented by unit vectors in a
Hilbert space. Take three unit vectors u1, u2 and u3 that represent three con-
cepts. Call θij the angle between ui and uj :

cos θij = 〈ui, uj〉. (6)

Because Hilbert space is a metric space, this has consequences for the possible
range of values the angles between the vectors can assume:

|θij − θjk| ≤ θik ≤ |θij + θjk|. (7)

The new model assumes that each time a subject is asked to quantify the
similarity between two concepts they must take a stance, or a point of view,
from which to judge their similarity. On an absolute scale we may argue that
all concepts are very similar (they are, after all, just concepts) or we may argue
no two concepts are alike. But if we are asked what the similarity is between
Moon and Ball, we will not easily judge their similarity on an absolute scale. We
rather inadvertently look for a proper context to judge their similarity. If our
perspective is “Shape” then we will think of Moon and Ball as being somewhat
similar. If the perspective would have been “Play”, the two concepts would be
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judged rather dissimilar. So it is the two words, together with the state of the
subject, that determine the point of view from where similarity will be judged.
We model a point of view by assuming that for each pair of vectors ui and uj

and a given subject S that is asked to judge their similarity, there is a point of
view vector (POVV) uS

ij . The cosine of the angle this observer sees between ui

and uj , is:

cosαij =
〈ui − uS

ij , uj − uS
ijj〉

|〈ui − uS
ij〉||〈uj − uS

ij〉|

=
cos θij − 〈uS

ij , uj〉 − 〈ui, u
S
ij〉+ |uS

ij |
|〈ui − uS

ij〉||〈uj − uS
ij〉|

(8)

In psychological experiments, the similarity is an average over many trials.
The expected similarity is then derived as a measure over the POVV’s. In what
follows, we may assume that uS

ij is already an averaged point of view in the sense
that αij coincides with the average subjective similarity.

To determine which regions for uS
ij lead to increased values of θij and which

lead to decreased values, we first look at the set of uS
ij that leaves αij invariant.

Lemma 1. Let 0, ui and uj be three non-collinear vectors and let Cij be the
circle that contains 0, ui and uj . Then for any uS

ij ∈ Cij with uS
ij 6= ui and

uS
ij 6= uj we have cosαij=cos θij.

Proof. The span ui and uj defines a two dimensional linear subspace containing
the null vector. Let Cij be the unique circle within this linear subspace that
contains 0, ui and uj . By the inscribed angle theorem, the angle θij inscribed in
this circle does not change as its apex uS

ij is moved to different positions on Cij ,
hence αij = θij . ut

Let us call Dij the open disk that is the interior of Cij . It is easy to see a
POVV inside Dij yields an observed angle αij that is greater than θij . The disk
Dij is an open convex set, so any open convex combination of 0, ui and uj is an
element of Dij . The maximal angle is reached for uS

ij =
1
2 (ui+uj), which clearly

lies inside Dij . The observed angle in this case, is:

αij = cos−1 〈ui − 1
2 (ui + uj), uj − 1

2 (ui + uj)〉
|〈ui − 1

2 (ui + uj)〉||〈uj − 1
2 (ui + uj)〉|

(9)

= cos−1(−1) = π (10)

So it is always possible to pick a POVV in Dij that yields minimal similarity.
This result makes sense geometrically: if your point of view is in the middle of
the two concepts, then, to you, they couldn’t be further apart from each other.
For an intermediate situation, there are many possibilities. A particularly nice
choice is to consider the d−parameter POVV that lies precisely between ui and
uj and has length d : uS

ij(d) =
d

|ui+uj | (ui+uj). If we consider the triangle which
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has as vertices uS
ij(d), o and ui, the sine rule learns us that sin(π − αij/2)/1 =

sin((αij − θij)/2)/d, hence the relation between αij , θij and d is given by:

d =
sin((αij − θij)/2)

sin(αij/2)
. (11)

We can get minimal similarity and intermediate values. It turns out the POVV
constrains the maximum similarities. To see this, assume that

uS
ij = − ui + uj

|ui + uj |
. (12)

This unit vector points in the direction opposite of 1
2 (ui + uj). By the inscribed

circle theorem, the observed angle αij is exactly θij/2. It turns out this is the
minimal value for αij that the point of view model can attain; this minimum is
reached if uS

ij lies on the great arc between ui and uj of the unit circle. If u
S
ij lies

on the unit circle, but on the short arc between ui and uj , then the quadruple
of vectors 0, ui, u

S
ij , uj form a cyclic quadrilateral, from which we immediately

get: αij = π − θij .

4.1 The evocation data set

Let us provide a brief illustration of the model using data from the Evocation
data set [4], collected by crowd sourcing using Amazon Mechanical Turk which
allows for the quick collection of large amounts of data. The data was cleaned to
the highest level of correlation with a smaller data set collected under controlled
conditions. Users were asked how much a sense of a word brings the sense of
another to mind (on a scale of 0 to 100), using the word themselves as well as
a definition for disambiguation. The data for a pair of words are usually not
symmetric, however for the purposes of this paper we have averaged the two
similarities so that the resulting data is symmetric . In essence then, this data
set contains human judgements of symmetrized semantic relatedness between
pairs of words. For example, ‘key ’ and ‘car ’ were judged at 73% of similarity,
‘car ’ and ‘light ’ at 79,4% of semantic similarity, while ‘key ’ and ‘light ’ only at
14.3%. Other examples of triples that violate the triangle inequality from this
data set include:

1. night /day : 86.3%, day/year : 62.8%, night/ year : 11.6%;
2. school/university : 83.7%, university/court : 73.2%, school/court : 7.6%;
3. food/oil : 81.5%, oil/gold : 62.8%, food/gold : 2.7%.

Let us take the first example and label three vectors with an index that
refers to the concepts: un is the vector that corresponds to night, and likewise
we denote ud for the concept day and uy for the concept year. We first convert
the given similarities to angles using cos θij = 〈ui, uj〉. Then θnd = 0.53; θdy =
0.89 and θny = 1.45. Clearly this triple violates the triangle inequality, e.g.
|θny − θdy| = |1.45− 0.89| = 0.56 ≥ θnd = 0.53. Because the triangle inequality
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is violated, there do not exist three vectors with the prescribed angles. However,
from the d−parametrized POVV for θny, u

S
ij(d) =

d
|un+uy| (un + uy), we obtain:

|un + uy| = 2 cos(θny/2) ≈ 1.5. The value of θny was 1.45; if it would have
been 1.42, no violation would have occurred. Hence we choose d = sin((1.42 −
1.45)/2)/ sin(1.42/2) = −.023. So the POVV uS

ij(d) =
−1
60 (un + uy) restores the

triangle inequality for this triple. It is easy to see we could also have taken a
triple of vectors that respect the inequality (e.g., the “restored” vectors above)
and, when one of the angles is viewed upon from a suitably chosen POVV (e.g.,
the opposite vector of uS

ij(d) in the example above), the resulting angles will
violate the inequality.

5 Concluding remarks

The question we addressed in this paper is whether it is possible for a semantic
space to be a metric space and at the same time be able to capture the non-metric
behavior of human similarity judgements. Another strongly related and perhaps
even more interesting question is whether it is possible to derive a vector space
using subjective similarity in stead of co-occurrence. We presented a model that
gives an affirmative answer, in principle. Although the model we offered here was
derived in an essentially ad hoc way, the model is falsifiable and we feel the case
for this model could be made stronger if it can be shown a POVV can be derived
from the semantic space itself. In order to sketch out a viable avenue for further
work, we shall refer to one of our above examples. It is not peculiar that day and
year are considered close, as they are both important measures of time. Neither
is it strange that day and night are judged to be close, as they are in a certain
sense opposite to one another. Note that someone who is being asked how close
day and night are, will think of day in the sense of daytime, which is not the
same meaning the word has when we compare day and year. The last couple in
our triple is then night and year, which are not so obviously connected, hence
the lower similarity rating. We see that when we are asked to weigh the words
for similarity, we unconsciously look for a minimal context that contains the
two concepts, and depending on the words, this will be a different context. This
is what the POVV model attempts to capture. However, for the POVV model
to be convincing, we need to show there is a connection between the POVV
and the concepts we are dealing with. In particular, the vectors that correspond
to the words and their semantically associated vectors should determine the
POVV. In a sense, the POVV is a “centre of gravity of meaning”: if all concepts
contribute to the centre of gravity, then the POVV will approximately be the
zero of the vector space and the triangle inequality will hold; if not, deviations
will arise. An important observation is that the model as it is right now, does
not specify a unique POVV, so how will we know an eventual linkage between
pairs of words and POVV’s is viable? A valid confirmation would require a
statistically significant test that uses only a semantic network and no human
similarity measures, and which can predict human violations of the triangle
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inequality for triples of words. Whether this avenue will prove fruitful is left for
future research.
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