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Abstract 

Analytical and closed form solutions are presented in this paper for the vibration response of an 

L-shaped plate under a point force or a moment excitation. Inter-relationships between wave 

components of the source and the receiving plates are clearly defined. Explicit expressions are 

given for the quadratic quantities such as input power, energy flow and kinetic energy 

distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation 

in the prediction of the vibration response of finite coupled plate structures under a single 

deterministic forcing are examined and quantified. It is found that the SEA method can be 

employed to predict the frequency averaged vibration response and energy flow of coupled plate 

structures under a deterministic force or moment excitation when the structural system satisfies 

the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) 

the source location is more than a quarter of the plate bending wavelength away from the source 

plate edges in the point force excitation case, or is more than a quarter wavelength away from the 

pair of source plate edges perpendicular to the moment axis in the moment excitation case due to 

the directional characteristic of moment excitations. SEA overestimates the response of the L-

shaped plate when the source location is less than a quarter bending wavelength away from the 

respective plate edges owing to wave coherence effect at the plate boundary. 
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1. Introduction 

Statistical Energy Analysis (SEA) is often employed to estimate the vibration energy flow 

between coupled structures such as a ship structure when only band-averaged quantities are the 

main concern. However, the application of SEA is questionable when the excitation frequency is 

in the low or medium frequency ranges where modal overlap is low. SEA also assumes 

broadband random excitations with uncorrelated statistically independent forces. In contrast, 

excitation sources in practical applications often appear in deterministic forms (e.g., engine 

excitations on ship structures through engine mounts). Although analytical solutions can be 

obtained for the vibration response of simple regular shaped coupled plate structures with well 

defined boundary conditions and excited by a deterministic forcing, coupled structures in 

practical applications such as a ship hull or an aircraft fuselage often appear in complex forms 

with uncertain boundary conditions. For such structures, an analytical solution is difficult to 

obtain. The limitation thus motivates this study to examine the extension of SEA in the 

prediction of vibration response of finite coupled plate structures under a deterministic force or 

moment excitation, at low and medium frequencies.  

 

Plate/plate coupled structures are often encountered in engineering applications where plates are 

coupled to form an integral engineering structure, such as a ship hull or an aircraft fuselage. 

Guyader and co-workers
 
[1, 2] studied the vibration response of finite plates coupled at L, T and 

cross junctions by employing a propagation wave approach. Wave coefficients of the 

propagation wave solution were determined by matrix inversions in their work. Cuschieri [3] 

obtained a closed form solution in predicting the power transmission of an L-shaped plate using 
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the mobility power flow approach. By including in-plane waves in their investigation, Cuschieri 

and McCollum [4] expanded the analysis
 
further to vibration response of an L-shaped plate in 

both thin and thick plate models. They found that in-plane waves could be neglected at low 

frequencies when the product of the plate bending wavenumber and the plate thickness is less 

than 0.1. Kessissoglou
 
[5] studied the in-plane contribution to the energy flow of a coupled plate 

structure at low and high frequency ranges. It was observed that contributions of the in-plane 

wave to the energy flow between coupled plates are significant at high frequencies where in-

plane waves can act as efficient transmitters of flexural energy through plate/plate junctions. By 

employing a modal receptance formulation, Farag and Pan
 
[6] studied the vibration response of 

two finite plates coupled at arbitrary angles where flexural, shear and in-plane wave components 

were included in a single matrix formulation. They observed that the coupling between two 

plates is dominated by moment couplings at frequencies up to the cut-off frequency of the first 

in-plane mode, and is controlled by both out-of-plane and in-plane vibration at frequencies above 

this cut-off frequency.  

 

Wester and Mace
 
[7] studied the validity of SEA in a wave guide system comprising two coupled 

simply supported rectangular plates by employing a propagation wave approach. Two wave 

parameters (reflectance and transmission coefficients) were defined to quantify the coupling 

strength between plates as weak, strong and very strong. They illustrated that the coupling loss 

factor estimated from the classical SEA assumption of semi-infinite subsystems and diffuse field 

holds only for the finite coupled system when the coupling strength is weak. It was noted that the 

coupling strength and the accuracy of coupling loss factor between two finite coupled plates 

could not be indicated by the modal overlap of the system. Dimitriadis and Pierce
 
[8] obtained a 
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closed form solution for the vibration response of two rectangular plates coupled at right angles 

by utilizing a modal solution where all plate edges including the coupled plate/plate junction 

were assumed to be simply supported. The solution was utilized to extract the ‘apparent’ 

quantities corresponding to the coupling loss factor and modal density ratio used in SEA. By 

considering both in-plane and flexural vibration, Rebillard and Guyader
 
[9] derived an analytical 

solution to predict the response of a plate structure comprising a number of finite plates coupled 

at arbitrary angles. They showed that the effect of angular defects to vibration response of the 

coupled plate structure depends on the coupling angle. A small angle defect can lead to a large 

variation of response when the angle between two coupled plates is small. In contrast, large 

modification of the angle has little effect on the response when the angle of two coupled plates is 

large.  

 

Typical SEA parameters of coupled plate structures have been evaluated and discussed in the 

literature [10-14]. Skeen [12] investigated wave transmission coefficients of finite and semi-

infinite coupled plate structures, and found that the random incidence wave transmission 

coefficient of infinite plate structures would not provide a good estimation for that of a finite L-

shaped plate under a single point force excitation. As a result, 100 random point excitations were 

applied to calculate the averaged total transmission coefficient of a finite coupled plate structure 

in his work. Park et al [13] studied the influence of modal behaviors to wave transmission 

between a finite and a semi-finite plate using a combined wave model and dynamic stiffness 

approach. They showed that finite boundary conditions have strong influence on wave 

transmission coefficients of the coupled plate structure. Skeen and Kessissoglou [14] examined 

the typical SEA parameter of the modal and total wave transmission coefficient of finite and 
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semi-infinite coupled plate structures under a point force excitation. They found that the 

transmission coefficient between two coupled finite or semi-infinite plates due to a point force 

excitation is largely affected by excitation locations, particularly when the excitation location is 

close to the plate/plate junction and the coupled plate is a finite structure. However, they did not 

provide an adequate explanation in their study to quantify the condition of how close to the 

junction the transmission coefficient would be largely affected by the excitation locations. This 

condition will be examined and quantified in this work. The work also aims to extend the 

application of SEA formulation in the prediction of the frequency averaged response of coupled 

plate structures under a deterministic force or moment excitation at low and medium frequencies. 

Although in-plane waves are often included in the vibration analysis of plate/plate coupled 

structures, it was found that the contribution of in-plane vibration to the power transmission of an 

L-shaped plate is only significant at higher frequencies [4-6]. In-plane waves were also neglected 

by Nilsson
 
[15] in the study of wave propagation in a scaled ship model. They found that 

vibration response of the ship model predicted by considering only flexural vibration agrees well 

with experimental results. Since this work concerns only the vibration response and energy flow 

of coupled plate structures at low frequencies, only flexural waves are considered in the analysis.  

 

For simplicity, a simply supported L-shaped plate model is chosen in the study. Analytical and 

closed form solutions for the vibration response of the L-shaped plate under a deterministic point 

force or moment excitation are presented in Section 2. SEA formulation for the energy flow 

between two plates coupled at right angles is also briefly discussed in the section. In Section 3, 

conditions for the application of SEA in the prediction of the frequency averaged vibration 

response and kinetic energy distribution of L-shaped plates under a deterministic force/moment 



 

 6

excitation, at low and medium frequency ranges, are examined and quantified. The main findings 

are summarized in Section 4. 

2. Formulation 

2.1  An analytical solution by matrix inversion 

The L-shaped plate and the associated coordinate system are shown in Fig. 1. It is assumed that 

all plate edges other than the coupled plate/plate junction are simply supported. Using a thin 

plate vibration model, the governing equations for flexural displacements of the source (W)  and 

the receiving (U) plates excited by an external source ( Q ) are given as: 

1

4

1

4

D

Q
WkW p =+∇ , (1)  

and 

04

2

4 =+∇ UkU p , (2) 

where 1pk  and 2pk  are the bending wavenumber of the source and the receiving plates 

respectively and 1D  is the bending rigidity of the source plate. 

 

Equations (1) and (2) can be solved by employing a propagation wave approach similar to that 

described by Lin et al [16]. However, when the calculation domain of the source plate is large 

(i.e. a large xL ), the exponential terms associated with the traveling wave solution of the source 

plate can have extremely large or small values, which could lead to numerical overflow [9]. 

Adopting the approach of Ref. [9], the source plate is partitioned into three sub-domains in this 
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study to avoid such occurrence. After the partition, the source location becomes ),( 00 yx
a  in the 

local coordinate system of the source section as shown in Fig. 2(b).  

 

The traveling wave solution of flexural displacements for the three sub-domains of the source 

plate gives: 
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where )sin()( yky nn =φ , yn Lnk /π= , 2

1

2

1 pnn kkk +=  and 2

1

2

2 pnn kkk −= . 

 

The traveling wave solution for the flexural displacement of the receiving plate gives: 
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where 2

2

2

3 pnn kkk +=  and 2

2

2

4 pnn kkk −= . 

 

The unknown wave coefficients in Eqs. (3) – (7) can be determined from the boundary and 

continuity conditions of the coupled plate structure. The simply supported boundary conditions 

of the two plate edges at xLx = and zLz =  are well known, which are given by: 
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where ν  is Poisson’s ratio. 

 

The compatibility conditions at the coupled plate/plate junction are: 
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where 
1

2

D

D
r =  is the rigidity ratio of the receiver and source plates. 

The continuity conditions at the artificial boundaries of the sub-domains as shown in Fig. 2 are: 
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The continuity conditions at the source location for a point force excitation source, 

)()( 000 yyxxFQ −−= δδ , are [9]: 
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For a moment excitation source,
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where 0M  is the amplitude of the external moment source and ϕ  is the angle of moment axis 

with respect to the x-axis of the coordinate system [17] as shown in Fig. 1. Under moment 

excitation, the continuity conditions at the source locations become: 
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where the prime (') indicates a spatial derivative.  

 

Traditionally, wave coefficients of the traveling wave solution are determined by matrix 

inversion [5, 12-14],
 
which is given by: 

nnn FBA
1−

= , (14) 

where  
T

nnnn AAAA 201921 ......=nA is the unknown wave coefficient vector to be 

determined, the superscript T  indicates a vector transpose. nB  is a 2020 ×  square matrix, which 

is given in Appendix A. The vector nF  is the external force vector. For a point force excitation 

source, the force vector is given by: 
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=Λ  is a modal constant. 

 

If the external excitation source is a moment source, the force vector becomes: 
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Eq. (14) provides a straight forward solution for the vibration response of an L-shaped plate. 

However, dependency of vibration response of the L-shaped plate, such as input power, energy 

flow and kinetic energy distribution, on structural properties of the plate is not explicitly 

demonstrated in the solution. For a better understanding of the mechanism controlling the energy 

flow from an excitation source to the coupled plate structure, and from the source plate to the 

receiving plate, vibration response of the L-shaped plate is given explicitly in terms of structural 

properties of the L-shaped plate in the following section. 

2.2  A closed form solution for a point force excitation case 

In this paper, the receiving plate is replaced by a coupled boundary condition to obtain a closed 

form solution of the L-shaped plate. By doing so, the simply supported boundary conditions at 

zLz =  corresponding to 0)(
2
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2

2

=
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∂
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∂

∂

= zLz
y

U

z

U
ν  and 0=

= zLz
U , and the zero flexural 

displacement ( 0
0

=
=z

U ) at the coupled plate/plate junction ( 0=z ) are utilized first to express 
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the first three wave coefficients in Eq. (7) in terms of the fourth wave coefficient of the receiving 

plate as: 

nn AcA 202117 β= , nn AA 2018 β−= , nn AcA 202219 −= , (17) 
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coupled boundary condition in terms of wave coefficients of the source plate only as: 
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Eq. (18) together with the zero flexural displacement condition of the source plate at 0=Ix  

( 0
01 =

=Ix
W ) provide the two necessary boundary conditions at the plate/plate junction for a 

closed form solution. Combining Eq. (18) with other boundary conditions of the source plate 

lead to analytical expressions for the wave coefficients of the L-shaped plate, which are given in 

Appendix B.  
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(1) Input mobility 

Once the wave coefficients are determined, the point force input mobility of the L-shaped plate 

can be calculated from Eq. (4) as: 

)()( 088776655
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Alternatively, the input mobility of the L-shaped plate can be expressed in terms of structural 

properties of the plate by substituting the analytical expressions of wave coefficients into Eq. 

(19) as: 
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41 Θ−Θ  are terms relating to the coupling of the receiving plate which are defined by:  
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(2) Vibration energy flow 

The power injection to the structure by the point force can now be written as: 
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Eq. (22) illustrates that the input power of the L-shaped plate is largely controlled by the 

structural properties of the source plate, particularly at frequencies away from the resonant 

response of the receiving plate. This will be discussed further in Section 3. 

 

The time averaged, steady state energy flow from the source plate to the receiving plate can be 

calculated by: 
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where the asterisk sign (*) indicates a complex conjugate, yM  and yθ&  are respectively, the 

moment and angular velocity distribution along the plate/plate junction. The moment distribution 

at the plate/plate junction is evaluated by: 
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The angular velocity distribution at the plate/plate junction is given by: 
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Substituting Eqs. (24) and (25) into Eq. (23) gives: 
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Examination of Eq. (26) reveals that the energy flow from the source plate to the receiving plate 

is not only governed by the source plate stiffness 1D  but is also controlled by the receiving plate 

stiffness 2D  via the stiffness ratio in the coupling term 
2

1

∆

∆
. Furthermore, the energy flow from 

the source plate to the receiving plate is also affected by the wavenumber ratios between the two 

plates. 

2.3  A closed form solution for a moment excitation case 

The inter-relationships between wave coefficients in the moment excitation case are the same as 

in the point force excitation case except for those directly associated with the moment source, 

corresponding to nn AA 125 − . The inter-relationships of these wave coefficients ( nn AA 125 − ) and 

analytical expressions of wave coefficients nA3  and nA4  in the moment excitation case are 

given by Eqs. (B.18) to (B.23) in Appendix B.  

(1) Input mobility 

There are two moment input mobility components, each associated with one of the two angular 

velocity components at the source location. These two input mobility components are given by: 
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and 
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The input power of a moment excitation thus has two components in association with the two 

input mobility components, which is given by: 
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(2) Vibration energy flow 

The moment distribution at the plate/plate junction for this excitation case is given by: 
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The angular velocity distribution at the coupled junction is determined by: 

∑
∆

∆
+

′
−+

Λ
−=

n

n

n

n

n

n

n
y

y y
k

y

k

y

D

Mj
)()](

cos)(
)(

sin)(
[

2 2

1
22112

1

0
4231

1

0

1

0

),0(
φγσγσ

ϕφ
γσγσ

ϕφω
θ& . (31) 

Substituting Eqs. (30) and (31) into Eq. (23) gives: 
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2.4  Kinetic energy distribution 

For both excitation cases, the time averaged, steady state kinetic energy distribution of the source 

plate is given by: 

∑∫
=

Λ
==

4

1

2

1*

11
22

1

1
i

i
n

S
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ρ && , (33) 

where 1S  and 1ρ  are respectively, the surface area and material density of the source plate. iT  is 

the energy component obtained by integrating over the surface area of th
i  sub-domain of the 

source plate. Analytical expressions for these energy components of the source plate are given by 

Eqs. (B.24) – (B.27) in Appendix B.  

 

The time averaged, steady state kinetic energy distribution of the receiving plate is given by: 
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2.5  SEA formulation for vibration energy flow of an L-shaped plate  

The steady state energy balance equation of a two-subsystem SEA model can be written as [10]: 

PT

1

21212

211211
−










+−

−+
=

ηηη

ηηη

ωc

, (35) 

where   
T

TT 21=T is the kinetic energy vector .  1T  and 2T  are respectively, the time 

averaged, steady state kinetic energy of subsystems 1 and 2. 1η  and 2η  are the internal loss 
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factor of subsystems 1 and 2, 12η  and 21η  are the coupling loss factors between the two 

subsystems, cω  is the centre frequency of a band.  
T

PP 21=P is the input power vector in 

which 1P  and 2P  are the time averaged, steady state power injection to subsystems 1 and 2 

by external sources. Only power injection into the source plate is considered in the numerical 

simulation presented in the next section, thus, 02 =P . 

 

Eq. (35) could be utilized to estimate the vibration energy distribution of a finite L-shaped plate 

under a deterministic force excitation if the frequency averaged power injection to the L-shaped 

plate can be approximated by that of an infinite plate. For a point force excitation, the power 

injection to an infinite plate is given by [18]: 

)
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Y
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== , (36) 

where 1sρ  is the surface mass of the source plate. For a moment excitation, the power injection is 

given by [18]: 
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D
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P p
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π
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−== , (37) 

where j is the imaginary number, and a is the dipole distance that measures the distance between 

the forces forming a dipole moment. 

 

The coupling loss factors between the component plates of an L-shaped plate needs to be 

determined. For two rectangular plates coupled along a common edge, the coupling loss factor 
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between the two component plates of an L-shaped plate is given in terms of the wave 

transmission coefficient as [10, 18, 19]: 

1

121

12

2

S

Lc

c

yb

πω

τ
η = , (38) 

where 1bc  is the bending wave speed of component Plate 1, 12τ  is the wave transmission 

coefficient from Plate 1 to Plate 2 across the line junction. The coupling loss factor between 

Plate 2 and Plate 1 can be evaluated similarly.  

 

Furthermore, the random incidence wave transmission coefficient 12τ  is approximated in terms 

of the normal incidence transmission coefficient 0τ  by [20]: 

R

R

24.31

754.2
012

+
= ττ , (39) 

where 
2

1

t

t
R =  is the ratio of plate thicknesses, and the normal incidence transmission coefficient 

0τ  is given by:  
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where 1Lc  and 2Lc  are the longitudinal wave speeds of Plates 1 and 2. 

3.  Results and discussion 

3.1  Accuracy evaluation 

The plates used in the numerical simulation are assumed to be made of aluminum panels with the 

material properties 210

0 N/m101.7 ×=E , 3Kg/m2660=ρ  and 3.0=ν , and are assumed to have 
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constant internal loss factors 01.021 ==ηη . 1Hz frequency resolution is used for all simulations 

in the study except for the simulation results presented in Fig. 5 where 0.1Hz frequency 

resolution is used instead. Four plate configurations are chosen for the L-shaped plate in the 

simulation: Model A, the source and the receiving plates both have relatively high modal 

density; Model B, the receiving plate has higher modal density than the source plate; Model C, 

the receiving plate has lower modal density than the source plate; and Model D, the source and 

the receiving plates both have relatively low modal density. Physical dimensions of the four L-

shaped plate models and the value of a quarter bending wavelength of the source plate at 100Hz 

and 1000Hz are given in Table 1. The plate bending wavelength of the source plate is calculated 

by: 

ω

ρπ
λ

4/1

1

12 







= s

D

. (41) 

Model B is used in the initial accuracy evaluation. The real part of input mobility of the L-shaped 

plate due to a point force excitation applied at the source plate location 

)m32.0,m32.0(),( 00 =yx  is calculated by using the closed form solution (Eq. (20)), the matrix 

inversion method (Eq. (14)) and by finite element analysis using the modal frequency response 

analysis module provided by MSC/NASTRAN. The source and the receiving plates are meshed 

by 50150×  and 5075×  mesh grids respectively in the FEA model. The results are shown in Fig. 

3 for comparison. Good agreement is found between the results. Furthermore, it is shown in Fig. 

3(b) that the averaged response of the L-shaped plate can be represented by that of the infinite 

plate at frequencies above the first few peak responses. This corresponds to frequencies where 

the source location is more than a quarter of the plate bending wavelength away from the source 
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plate boundary, that is, at frequencies greater than 12Hz. This interesting observation will be 

discussed further in the next section. 

 

Fig. 4 shows the input mobility of the L-shaped plate due to a moment excitation ( o0=ϕ ) 

applied at the same location as in the point force case together with that of the corresponding 

infinite plate for comparison. It is shown that the frequency averaged principal component of the 

moment input mobility (the component in the direction of the moment excitation) can be 

represented by that of the corresponding infinite plate at frequencies above the first few peak 

responses of the L-shaped plate but not the secondary component. The real part of the secondary 

moment input mobility component (the component perpendicular to the moment source) is not 

always positive and its frequency averaged value is substantially less than that of the infinite 

plate.     

 

For better understanding of the mechanism controlling the input power of L-shaped plates, the 

input mobility of the four L-shaped plate models described in Table 1 together with those of the 

corresponding uncoupled component plates are calculated and shown in Fig. 5. It is shown that 

the coupling of the receiving plate leads to a slightly increased modal stiffness of the 

corresponding modes of the uncoupled source plate (i.e., an increased modal frequency and a 

decreased modal amplitude). Peaks corresponding to the uncoupled modes of the receiving plate 

are also presented in the response, which typically have much smaller amplitude than peaks due 

to the source plate, particularly when the receiving plate has much smaller bending stiffness than 

the source plate such as Model C in Fig. 5. The overall input mobility of L-shaped plates is 

largely controlled by the bending stiffness of the source plate as indicated by Eq. (22). 
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3.2 Applications of SEA in a deterministic source excitation case 

In this simulation, vibration response due to a unit point force/moment excitation applied at 

various plate locations are calculated for the four plate models described in Table 1. This is to 

examine the validity of SEA application in the prediction of vibration response and energy flow 

between coupled plate structures due to a deterministic force/moment excitation. The excitation 

source is applied at )32.0,11.0(),( 00 =yx , )32.0,035.0(  and )32.0,01.0(  in three separate 

simulations for models A and B, and is at )32.0,22.0(),( 00 =yx , )32.0,07.0(  and )32.0,01.0(  

for models C and D. The first two excitation locations in each model are chosen such that the 

distance between the source and the plate/plate coupling edge is corresponding to a quarter plate 

bending wavelength at 100Hz and 1000Hz as shown in Table 1. The third excitation location is 

chosen such that the distance between the source and the coupling edge is far less than a quarter 

plate bending wavelength in the whole frequency range of consideration. 

 

(1) Point force excitations 

The energy distribution of the source and the receiving plates of the four plate models are shown 

in Figs. 6 – 9, together with those predicted by SEA using Eq. (35). In the SEA approach, the 

input power of the L-shaped plates is calculated by that of the infinite plate using Eq. (36). The 

energy distribution of the source and receiving plates is evaluated at discrete frequencies (i.e., 

ωω =c ) in Eq. (35) rather than band averaged values.    

 

It is shown that the frequency averaged energy distribution of the L-shaped plates due to a 

deterministic point force excitation at low and medium frequencies can be predicted by using 
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SEA formulation when the source location is more than a quarter of the plate bending 

wavelength away from the coupling plate edge, for instance, at frequencies above 100Hz when 

the force excitation is applied at )32.0,11.0(),( 00 =yx  for plate models A and B, and at 

)32.0,22.0(),( 00 =yx  for plate models C and D. Similar results are found when the source 

location is more than a quarter bending wavelength away from other edges of the source plate. In 

contrast, SEA over predicts the vibration response of the L-shaped plates when the source 

location is less than a quarter bending wavelength away from the respective source plate edge. 

This can be explained by the wave coherence effect at the plate boundary or by the effect of the 

plate boundary stiffness (infinite in this case) on the input mobility of the plate. 

 

The excitation is not affected by wave coherence at the plate boundary when the source location 

is more than a quarter of the plate bending wavelength away from the source plate edges. The 

boundary stiffness of the plate has little effect on the point force input mobility and therefore the 

input power of the L-shaped plate at this condition. It starts to affect and contribute to the 

stiffness term of the input mobility when the source location is less than a quarter bending 

wavelength from the boundaries. The plate boundary stiffness effect increases when the source 

location is moved closer to the plate edges or diminishes when the source location is moved 

away from the edges. At the latter condition, the input mobility is mainly controlled by the 

bending stiffness of the source plate so that the frequency averaged input mobility can be 

represented by that of the corresponding infinite plate. Fig. 10 shows the input mobility of the L-

shaped plate (Model A) due to the three force excitation conditions. It is shown that the 

frequency averaged input mobility of the L-shaped plate can be represented approximately by 

that of the infinite plate at frequencies above 100Hz when the source location is 0.11m 



 

 23 

(corresponding to a quarter plate bending wavelength at this frequency) away from the coupling 

edge, and above 1000Hz when the source is 0.035m away from the coupling edge. However, the 

vibration response of the plate model is substantially less than that of the infinite plate in the 

whole frequency range of interest when the source location is 0.01m away from the coupling 

edge attributing to the strong wave coherent effect from the plate boundary. 

(2) Moment excitations 

The input mobilities of the L-shaped plate (Model A) due to a bending moment excitation 

( o0=ϕ ) applied at the same locations as in the point force excitation case are shown in Fig. 11. 

Additionally, the input mobilities of the L-shaped plate due to the same moment excitation but 

applied at three other locations are shown in Fig. 12 for comparison. In contrast to that of point 

force excitation cases, it is found that only the pair of source plate edges perpendicular to the 

moment axis can affect the input power of the moment excitation. The amplitude of the moment 

input mobility is largely affected by the infinite boundary stiffness of this pair of plate edges 

when the source location is less than a quarter bending wavelength away from these edges, but is 

not affected by the other pair of plate edges. This interesting result is attributed to the directional 

characteristic of moment excitations. Similar to that observed in point force cases, effects of 

boundary stiffness on the moment input mobility diminish when the source location is greater 

than a quarter of the plate bending wavelength away from the pair of source plate edges 

perpendicular to the moment axis. Under this condition, the frequency averaged vibration 

response and the kinetic energy flow of the L-shaped plate can be predicted by SEA as shown in 

Fig. 13. Similar results are also found when the L-shaped plate is excited by a torsional moment 

( o90=ϕ ).   



 

 24 

4.  Conclusions 

Analytical and closed form solutions are presented in this paper by utilizing a traveling wave 

solution to predict the vibration response of an L-shaped plate under a point force or a moment 

excitation. Explicit expressions are given for wave coefficients of the traveling wave solution 

where no matrix inversion is required. The quadratic quantities of the plate response such as 

input mobilities, energy flow and kinetic energy distribution of the L-shaped plate are also 

expressed explicitly in terms of structural properties of the plate. The closed form solution not 

only provides a direct understanding of the mechanism controlling the power injection and 

power flow between two coupled plates under a deterministic force/moment excitation, it also 

has computational benefit than traditional matrix inversion approaches since no matrix inversion 

is required in the solution. Discussions are given by comparing the input mobility of the L-

shaped plate and that of the corresponding infinite plate. It is shown that the frequency averaged 

input mobility of the L-shaped plate can be represented by that of the corresponding infinite plate 

when the source location is more than a quarter of the plate bending wavelength away from the 

source plate edges in the point force excitation case, or is more than a quarter wavelength away 

from the pair of plate edges perpendicular to the moment axis in moment excitation cases due to 

the directional characteristic of moment excitations. 

 

This paper also shows that SEA formulation could be utilized to predict the frequency averaged 

vibration response of an L-shaped plate due to a single deterministic force/moment excitation at 

low and medium frequencies when the source location is more than a quarter of the plate bending 

wavelength away from the plate boundary. Although only results of simple rectangular plate 

structures are used in this work, results obtained from this study indicate that SEA technique can 
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also be employed to predict the frequency averaged vibration response of coupled plate 

structures with different shapes providing that the coupling loss factors are known and the 

excitation source is more than a quarter plate bending wavelength away from the source plate 

boundary. It is also noted that the findings presented in this paper are not affected by internal loss 

factors of the coupled subsystems. 
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Appendix A 

The matrix nB  in Eq. (14) is given by: 
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Appendix B 

1. Inter-relationships of wave coefficients in point force excitation cases 

Combining Eq. (18) with other boundary and continuity conditions of the source plate, one has:  

nn FA
312

1322
3

ααα

γαγα

−

−
= , (B. 1) 

and 

nn FA
312
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4

ααα

γαγ

−
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= , (B. 2) 

where 
2

111
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4

)(

pnn

n
n

kkD

yF
F

Λ
=

φ
.  

 

Analytical expressions of other wave coefficients can also be obtained from the following inter-

relationships between wave coefficients determined from the compatibility conditions at the 

interfaces and the boundary conditions of the plate structure. For instance, Eq. (12) together with 

the boundary condition 0
01 =

=Ix
W  at the plate/plate junction gives: 

nnn AAA 42311 Θ−Θ−= ,         (B.3) 

and 

nnn AAA 44332 Θ−Θ−= .         (B.4) 

The continuity and compatibility conditions at the virtual interface of the first and the second 

sub-domains yield: 

3

1
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c

A
A n

n = ,           (B.5) 
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126 cAA nn = ,           (B.6) 

4

3
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c

A
A n

n = ,           (B.7) 

and 

248 cAA nn = .           (B.8) 

 

The compatibility and continuity conditions at the source location give: 

5

59
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and 
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812
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F
AA n

nn += .          (B.12) 

The compatibility and continuity conditions at the virtual interface of the second and the third 

sub-domains in conjunction with the simply supported boundary conditions of the source plate 

edge at xLx =  provide: 

31014 cAA nn = ,           (B.13) 
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41216 cAA nn = .           (B.16) 

 

Combining Eq. (18) and one of the two coupled boundary conditions at the plate/plate junction 

gives: 
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Eq. (17) provides the inter-relationships of other wave coefficients of the receiving plate in terms of 

nA20 . 

2. Inter-relationships of wave coefficients in moment excitation cases 

For the moment excitation case, the compatibility and continuity conditions at the source 

location yield: 
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Following the same procedure as in the point force case, one has: 
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and 
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where 
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Inter-relationships of other wave coefficients in the moment excitation case are the same as in 

the point force excitation case, which can again be used to determine an analytical expression for 

each wave coefficient in this excitation case. 

3. Energy components 

The four energy components ( 1T  - 4T ) in Eq. (30) are given by: 
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Table 1. Physical dimensions of the four L-shaped plate models used in the study  

 
 Source Plate Receiving Plate 

Model Surface area 

(m
2
) 

Thickness 

(mm) 

Modal 

density n(f) 

¼ bending 

wavelength (m) 

Surface area 

(m
2
) 

Thickness 

(mm) 

Modal 

density n(f) 

A 3.0×1.0 2 0.48 0.11 at 100Hz 

0.035 at 1000Hz 

3.6×1.0 2 0.58 

B 3.0×1.0 2 0.48 1.5×1.0 8 0.06 

C 1.2×1.0 8 0.048 0.22 at 100Hz 

0.07 at 1000Hz 

3.6×1.0 2 0.58 

D 1.2×1.0 8 0.048 1.5×1.0 8 0.06 
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Figure Captions 

 

Fig. 1. Model description and the coordinate system of the L-shaped plate. 

 

Fig. 2. Local coordinate systems of the three sub-domains of the source plate, (a) sub-domain 

I; (b) sub-domain II; and (c) sub-domain III.  

 

Fig. 3. Point force input mobility of the L-shaped plate. 

 

Fig. 4. Moment input mobility of the L-shaped plate due to a moment excitation ( 00=ϕ ), (a) 

x component; (b) y component. 

 

Fig. 5. Point force input mobility of the four plate models listed in Table 1 and those of the 

corresponding uncoupled component plates. 

 

Fig. 6. Kinetic energy distribution of the L-shaped plate (Model A) due to a point force 

excitation applied at various plate locations away from the coupled edge. 

 

Fig. 7. Kinetic energy distributions of the L-shaped plate (Model B) due to a point force 

excitations applied at various plate locations. 

 

Fig. 8.  Kinetic energy distributions of the L-shaped plate (Model C) due to a point force 

excitations applied at various plate locations. 
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Fig. 9.   Kinetic energy distributions of the L-shaped plate (Model D) due to a point force 

excitations applied at various plate locations. 

 

Fig. 10.   Input mobility of the L-shaped plate (Model A) due to a point force excitation applied 

at various locations on the plate. 

 

Fig. 11.   Input mobility of the L-shaped plate (Model A) due to a moment excitation ( o0=ϕ ) 

applied at various locations away from the coupled edge. 

 

Fig. 12.   Input mobility of the L-shaped plate (Model A) due to the same moment excitations 

( o0=ϕ ) but applied at various locations away from a plate edge parallels the moment 

axis. 

 

Fig. 13.   Kinetic energy distribution of the L-shaped plate (Model A) due to a moment 

excitations ( o0=ϕ ) applied at various locations away from the coupled edge. 

 


