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Local Adjustment and Global Adaptation of Control
Periods for QoC Management of Control Systems

Yu-Chu Tian, Xiefu Jiang, David C. Levy and Ashok Agrawala

Abstract—Linking real-time schedulability directly to the
Quality of Control (QoC), the ultimate goal of a control system,
a hierarchical feedback QoC management framework with the
Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies
as plug-ins is proposed in this paper for real-time control systems
with multiple control tasks. It uses a task decomposition model
for continuous QoC evaluation even in overload conditions, and
then employs heuristic rules to adjust the period of each of
the control tasks for QoC improvement. If the total requested
workload exceeds the desired value, global adaptation of control
periods is triggered for workload maintenance. A sufficient
stability condition is derived for a class of control systems with
delay and period switching of the heuristic rules. Examples are
given to demonstrate the proposed approach.

Index Terms—Control systems, QoC management, feedback
scheduling, period switching, stability, multitasking

I. I NTRODUCTION

Real-time and embedded control systems are conventionally
developed in two separate phases: control design and its soft-
ware implementation with real-time scheduling [1], [2], [3].
For control design, control theory has been well established
for fixed sampling frequency, and the control periods and thus
the computing workload of the task set are kept unchanged at
runtime. This leads to poor use of the computing resources. For
real-time scheduling, theory has been well developed under
the known worst-case execution times, fixed periods, and hard
deadlines [2], [4]. Many of such assumptions are conservative
and do not reflect the real runtime system requirements.

The primary objective of a control system is to maintain
satisfactory Quality of Control (QoC), which is characterized
by some performance indices [5], e.g., integral of absolute
error (IAE), integral of time absolute error (ITAE), quadratic
cost function, etc. However, neither of the two separate design
phases can provide a solution that can maximize the QoC of
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the control system. This demands the co-design of control and
scheduling in real-time control systems [1], [2], [3].

The QoC of control systems has been indirectly addressed
by reducing control latency and jitter in task scheduling.
A method was developed in [6] for period and priority
assignment in control systems. Reference [2] proposed a task
model of control systems to reduce control action interval and
data acquisition interval for a potential QoC improvement.
Strategies were developed in [3] to reduce control latency
and jitter in control task scheduling. The idea of the subtask
partition [2], [3] was also investigated in [7], where the
performance of a control system is evaluated to examine the
benefits of some task partition schemes. To make the timing
of the control output more predictable, a one-shot task model
was developed for robust real-time control systems [8].

The QoC is closely related to the control periodp. Con-
ventional fixed-period control generates constant worst-case
workload but prevents runtime resource re-allocation, leading
to difficulties when a system has to add new tasks, delete
existing tasks, and/or re-prioritize tasks at runtime. A shorter
p gives better QoC in general if the system is not overloaded.
However, a too smallp may lead to QoC degradation [9] and
excessive workload.̊Aström and Wittenmark [10] suggest that
p be chosen such that0.2 ≤ ω0p ≤ 0.6, whereω0 is the
natural frequency of the plant. Thus,p can be made adjustable
between its upper and lower bounds to provide satisfactory
QoC while avoiding overloading the system. While relaxing
the periodicity assumption is beneficial [11], [12], it also
brings difficulties to control design and scheduling, motivating
recent research on feedback scheduling of control periods.

This paper addresses period scheduling for QoC manage-
ment of multitasking control systems. The main contributions
include: (1) Linking real-time scheduling to the QoC directly,
a hierarchical feedback QoC management framework is devel-
oped. Task decomposition, local adjustment and global adap-
tation of control periods, and event-triggering are embedded
into the framework. The fixed priority (FP) and the earliest-
deadline-first (EDF) policies are used as plug-ins. (2) Heuristic
rules are proposed for runtime scheduling of control periods.
(3) A sufficient stability condition is derived for a class of
control systems with period switching of the heuristic rules.

The paper is organized as follows. Section II discusses
related work. Section III proposes a hierarchical QoC man-
agement framework. Heuristic rules are developed for local
adjustment and global adaptation of control periods in Sections
IV and V, respectively. Section VI conducts system stability
analysis under period switching. Case studies are given in
Section VII. Finally, Section VIII concludes the paper.
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II. RELATED WORK

Several approaches were developed with different complex-
ities in period scaling [13]. Elastic scheduling was proposed in
[14] to adjust the periods for flexible workload management
through the compressing algorithm. It was further developed in
a general optimization framework [15]. Cervin [16] developed
a method incorporating with the EDF to re-scale the periods in
overload conditions. Considering integrated design of control
and scheduling, a method was developed to find the optimal
control frequencies [17]. All these methods focused on the
schedulability of the control tasks. They did not address the
QoC directly, and thus did not tell when period scaling should
be activated. In comparison, this work addresses the QoC
directly in period scheduling.

Feedback scheduling for general real-time systems has been
adopted in control systems for dynamic workload and QoC
management [18]. Cervinet al. [19] reviewed related work
till 2002, and proposed a feedforward-feedback scheduling
approach for control tasks by using quadratic and linear cost
functions to approximate the QoC.

A feedback scheduling scheme was proposed to automat-
ically adjust task periods without knowing the actual com-
putation times of the tasks [20]. Following this idea, Ushio
et al. [21] applied a nonlinear elastic task model to an
adaptive fair sharing controller. All those developments try to
formulate the problems from plant models. However, accurate
plant models may not always be available [45]. Avoiding the
difficulties in obtaining accurate plant models and/or analytical
solutions, this work develops heuristic rules to adjust control
periods to achieve satisfactory QoC.

Recently, Buttazzoet al. [5] further investigated how to
manage the QoC in overload conditions. Feedback scheduling
was also used to support the specified performance of dynamic
systems with limited resources and unpredictable workload
[22]. An integrated feedback scheduler that incorporates period
adjustment with priority modification was developed for flex-
ible QoC management [23]. A common problem in all those
methods is that when the FP is used a lower-priority task with
deteriorating QoC may experience a significant delay before
a period adjustment and/or priority modification can be made,
especially in overload conditions. As a result, the QoC of the
lower-priority task may deteriorate significantly [19]. Elastic
and adaptive scheduling with the EDF in [14], [16], [20], [24]
will help; but they do not address the QoC directly. This work
uses a task decomposition for continuous QoC evaluation,
enabling quick period scaling even in overload conditions.

Effort is made to decompose real-time scheduling in sev-
eral layers. A two-level pre-emptive scheduling model was
described in which the global scheduler could be the EDF
[25], [26]. A hierarchical scheme was proposed in [27], where
an application-level feedback was used to adjust the QoC
requirements of the control tasks and a system-level feedback
was employed to adjust the bandwidths assigned to the tasks.
Davis and Burns [28], [29] analyzed a two-level system,
in which both schedulers used the FP, based on the worst-
case response time. By using the same principle, the worst-
case response time of tasks under a two-level EDF scheme

was analyzed [30]. Hierarchical scheduling of hard real-time
applications was also investigated in [31] where the local
scheduler was the EDF and the global scheduler could be the
FP or EDF. In hierarchical scheduling, the top-level scheduler
is usually designed as a periodic task [19], wasting computing
resources when there is no need to make any change. Different
from the above mentioned hierarchical scheduling methods,
the approach proposed in this work is even-triggered for more
efficient use of computing resources. Unlike many existing
task scheduling and QoC management methods which aim
to maintain the processor utilization at a desired value [5],
[19], it allows a much lower utilization when one or more
control loops have good QoC. This has significant implications
to embedded systems with limited power resources [32].

Event-triggering in control, also known as self-triggered
control, is not a new idea [33] but has received increasing
attention. It has been discussed for real-time scheduling of
stabilizing control systems [34], stabilization [35] and ro-
bustness [36], [37] of control systems, and nonlinear control
systems [38]. It has also been analyzed rigorously for a class of
first-order linear stochastic systems [39]. Focusing on system
stability, such rigorous analysis and development are carried
out for control systems with a single control task. However,
the work of this paper deals with multiple control tasks.

Most recently, effort is being made in self-triggered con-
trol of multiple control tasks. An optimization problem is
formulated in [40] to deal with this problem with resource
constraints. Though an analytical solution is not obtained,
numerical simulation of the optimization problem showed
some interesting system behaviors. Workload management in
control systems with multiple control tasks is studied in [41],
in which coordinated and self-triggered methods are exper-
imentally investigated. The benefits of non-periodic control
design is evaluated in [12] for networked control systems
(NCSs). Further experimental results are also reported in
[42] for self-triggered NCS control. For mixed types of data
packets, a scheduling method was presented in [43] to stabilize
an NCS. Ben Gaidat al. [44] have investigated optimal control
and scheduling of NCS control tasks with limited network
bandwidth. All those developments try to formulate the prob-
lems from plant models. However, as mentioned previously,
accurate plant models may not always be available [45].
This paper deviates the requirements of accurate plant models
and/or analytical solutions through developing heuristicrules
for period switching.

Period scheduling in control systems leads to control mode
switching. Even if the controller of a control loop is tuned
to be able to stabilize the control loop at any fixed period
within the upper and lower bounds of the control period, period
switching may cause system instability. The evidence of sys-
tem instability resulting from switching among stable systems
is given in [46]. Despite some advances in stabilization of
self-triggered control, stability analysis of control systems with
period switching is still an open problem. Using general delay
systems theory [47], this paper derives a sufficient stability
condition for a class of control systems with input delay and
period switching of the proposed heuristic rules.
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III. F EEDBACK QOC MANAGEMENT ARCHITECTURE

The architecture of the proposed hierarchical feedback QoC
management framework is shown in Fig. 1. It consists of two
levels: QoC-driven local adjustment of control periods at the
bottom level, and utilization-based global adaptation of the
periods at the top level. Standard scheduling policies suchas
the FP and EDF can be used as plug-ins in this framework.

Fig. 1. Hierarchical feedback QoC management.

A task decomposition model is embedded into the frame-
work to enable QoC evaluation for each control loop in
every period even in overload conditions. The QoC evaluation
module in the framework evaluates the QoC.

A periodic control task is denoted byT (c, d, p), where
c, d, p are the worst-case execution time, deadline, and period,
respectively. The utilization (or workload) of the task is
U = c/p. For n periodic control tasks running on a uni-
processor, theith task is denoted byTi(ci, di, pi) with the
utilization Ui = ci/pi, i = 1, 2, · · · , n. The total utilization
of the n tasks isU =

∑n

i=1 Ui =
∑n

i=1 ci/pi. A necessary
condition for schedulability of those tasks on a uni-processor
is U ≤ 1. This is also a sufficient condition for the EDF.

Because the environment of a system changes over time,
the n periodic tasks may overload the controller. When this
happens, the overall QoC of the system deteriorates, and some
of the control loops may even become unstable [5]. Rescaling
the periods will help improve the QoC in overload conditions.
However, as discussed previously, the existing methods do not
address the QoC directly, and are also sluggish to respond
to QoC changes especially in lower-priority tasks when the
FP is employed [19]. Using similar ideas of [2], [3], a two-
subtask decomposition model is developed in this work in
order to respond to the QoC changes promptly for improved
QoC management. While [2], [3] focus on reducing control
latency and jitter, the task decomposition model proposed here
aims to evaluate the QoC even in overload conditions, and then
to use the QoC for control period scheduling.

The ith control taskTi(ci, di, pi) is decomposed into two
subtasksTi1(ci1, di1, pi) andTi2(ci2, di2, pi) such that

Ti = Ti1 ∪ Ti2, ci1 + ci2 = ci, i = 1, 2, · · · , n, (1)

where the deadlinesdi1 anddi2 are set to be [3]

di1 = [di · ci1/ci] , di2 = di, i = 1, 2, · · · , n. (2)

It follows from the relationshipci < di that

di1 > ci1, di2 = di > ci1 + ci2, i = 1, 2, · · · , n. (3)

The first subscript toT , c andd is the task identifier, while the
second one indicates the subtask (1 for data acquisition and
QoC evaluation, and 2 for control computation and output).

As shown in Fig. 2, forn control tasks, the task decompo-
sition gives2n subtasks with subtask setsT I andT II ,

T I = ∪n
i=1Ti1, T II = ∪n

i=1Ti2. (4)

Fig. 2. Task decomposition model (The priority levels are for the FP).

The priorities are also assigned to the original tasks and
the decomposed subtasks in Fig. 2 for the FP: the lower the
number, the higher the priority. For the original task set, the
priorities are determined using the Rate-Monotonic (RM) rule.
Without loss of generality, assume that then tasksT1, · · · , Tn

have been arranged in the descending order of their priorities.
The decomposed subtask setT I inherits the priorities of the
original task set. However, in order for each of the subtasksin
T I to have a chance to execute in every period, all subtasks in
T II are assigned lower priorities without changing the order
of the priorities in the original task set. It follows that

Priority level of Ti2 : n+ i, i = 1, 2, · · · , n,
Priority level of Ti1 : i, i = 1, 2, · · · , n.

(5)

The workload of then tasksT1, · · · , Tn is:

U = U I + U II , U I =

n
∑

i=1

ci1
pi

, U II =

n
∑

i=1

ci2
pi

, (6)

BecauseU I can be far below the full potential of the system
capability, all subtasks inT I can execute regularly in the FP
with the priority assignment of Eq. (5), enabling re-scaling of
periods quickly in overload conditions.

The control computation cannot start until the sampling
is completed. The priority assignment in Eq. (5) for the FP
reflects this constraint of task dependence and simplifies the
schedulability analysis of all2n subtsasks decomposed from
the originaln tasks. Similar ideas are employed in [2], [3].

The scheduability of the original task set may or may not be
retained in the decomposed subtask set. In Fig. 1, there may
be occasions that the system becomes overloaded for both the
FP and EDF due to the local period adjustment. However, the
schedulability of the task set can always be achieved through
global period adaptation in the framework.

IV. L OCAL ADJUSTMENT OFCONTROL PERIODS

A. QoC Characterization

Allowing evaluation of the QoC in every control period
for each loop, the QoC management framework in Fig. 2
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links real-time scheduling directly to the QoC. While the QoC
can be evaluated by an integral form of the control error
e, e.g., IAE, ITAE, etc., simplified QoC computation, e.g.,
linear approximation, is shown to be effective for real-time
control [19], [48]. This work usese and its one-step difference
δe = e− eold to characterize the QoC.

There are three scenarios for the QoC of a control loop:

1) If the QoC is too poor (i.e., a big|e|) or is deteriorating
significantly (i.e., a big|δe|), more frequent control
actions will help improve the QoC;

2) If the QoC is within an acceptable region (i.e., both|e|
and |δe| are very small), the least frequent control can
be implemented to save processor resources; and

3) Otherwise, the QoC is neither good enough nor too poor,
i.e., moderate|e| and|δe|. The better the QoC, the larger
the control period could be set.

The following performance index captures the main features
of these scenarios, and will be used to guide the development
of heuristic rules for local period adjustment,

J = α|e|+ (1− α)|δe|, α ∈ [0, 1], (7)

whereα is the weight of|e| in the index. A stability condition
will be established in Section VI for a class of control systems
with period switching of the proposed heuristic rules.

B. Heuristic Rules for Local Adjustment of Control Periods

Eq. (7) shows thatJ reaches its minimum 0 when|e| =
|δe| = 0. The period of a control task is adjusted based on
how far awayJ deviates from this minimum value. Three
strategies are designed for local adjustment of the period:

1) WhenJ is very close to 0, set the periodp of the task
to its upper bound, i.e., for theith task

pnewi = pmax
i , if Ji ≤ JL

i , i = 1, 2, . . . , n, (8)

whereJL
i is a threshold, which determines how big the

dead-zone is. With this strategy, when a control loop
approaches its steady state,e and δe become close or
equal to zero, and so doesJ . In this case, setp = pmax.

2) WhenJ is bigger than a thresholdJH
i , the QoC deteri-

orates significantly. Thus, setp to its minimum:

pnewi = pmin
i , if Ji ≥ JH

i , i = 1, 2, . . . , n. (9)

3) Otherwise, i.e., whenJi is betweenJL
i and JH

i , setp
between its upper and lower bounds according to:

pnewi = pmax
i −

pmax
i − pmin

i

JH
i − JL

i

(Ji − JL
i ),

if JL
i < Ji < JH

i , i = 1, 2, . . . , n. (10)

A plot of pnew versusJ is given in Fig. 3.
Moreover, the following strategy is implemented in this

work to smooth out fluctuations in control periods:

pi = ǫpold + (1− ǫ)pnew, ǫ ∈ [0, 1], (11)

wherepnew is from Eq. (8), (9) or (10);ǫ is a forgetting factor.

0 0.5 1
2
4
6
8

10
12

J

pne
w

Fig. 3. pnew versusJ (pmax = 10, pmin = 4, JH = 0.8, JL = 0.1).

C. Waiting Time for Period Switching

Switching among stable systems may cause system instabil-
ity [46]. As a type of control mode switching, period switching
may also result in system instability. Later in Section VI,
a sufficient condition will be derived which guarantees the
stability of a class of control systems under period switching.

For general control systems, e.g., nonlinear systems, for
which stability conditions have not been well established,the
concept of waiting time for period switching is introduced.
Let t(wt) denote the time interval from the last adjustment of
p to the end of the current period for theith control task,

t
(wt)
i = t

(wt).old
i + poldi , i = 1, · · · , n, (12)

wheret(wt).old
i is the time elapsed from the last adjustment of

p to the beginning of the current period. According to [46],
the switched system resulting from applying the strategiesin
Eqs. (8) through (11) is stable ifp is adjusted only aftert(wt)

becomes longer than the dwell time on average. Especially, if
pmin > the dwell time,p can be adjusted in every period.

However, there is a lack of theory to analytically derive
the dwell time of a general control system. Thus, a practical
strategy is expected which can make the period switching
slow enough for small QoC changes but sensitive enough for
big QoC changes. A small change in QoC requires only a
small period adjustment, and thus can be ignored to avoid
frequent period switching that does not help much in QoC
improvement. However, as long as the waiting time is long
enough, a period switching should be activated to keep the
period adjustment active. Therefore, following Eq.(11), the
following strategy is designed to meet these requirements:

pi = poldi , if

∣

∣

∣

∣

pi − poldi

poldi

∣

∣

∣

∣

< γi and t(wt)
i < t

(wt).min

i , (13)

whereγi ≥ 0 is a threshold in relative change,t(wt).min

i is
the minimum allowable waiting time for period switching.

D. Algorithm for Local Adjustment of Control Periods

Following the heuristic rules in Eqs. (8) through (13),
Algorithm 1 is developed below for local adjustment ofp.

Algorithm 1: Local Adjustment of Control Periods.
1: Globalci, pi; //Execution time, control period
2: Local Ji, pnewi , t(wt)

i ; //QoC, period, waiting time
3: ConstantJL

i , JH
i , pmax

i , pmin
i , ǫ, γ, t(wt).min

i ;

4: The ith subtask Ti1:
7: if Ji ≤ JL then pnewi := pmax

i ; //Upper bound
9: elseif Ji ≥ JH

i then pnewi := pmin
i ; //Lower bound
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11: else //JL
i < Ji < JH

i

12: pnewi := pmax
i −

pmax

i
−pmin

i

JH

i
−JL

i

(Ji − JL
i );

13: end if
14: pi := ǫpoldi + (1− ǫ)pnewi ; //Compt. only, not set yet
15: Updatet(wt)

i := t
(wt).old
i + poldi ;

16: if |pi − poldi | ≥ γpoldi or t
(wt)
i ≥ t

(wt).min

i then
17: Set the period of the loop to bepi; //Now set
18: Save resultpoldi := pi;
19: Resett(wt)

i := 0;
20: end if
21: Save resultt(wt).old

i := t
(wt)
i .

V. GLOBAL ADAPTATION OF CONTROL PERIODS

When the workloadU is heavier than a thresholdUd, which
is lower than but close to the total allocatable workload, the
top-level utilization-based global adaptation of controlperiods
is triggered in the proposed QoC management framework (Fig.
1). This method is different from many existing utilization-
based scheduling methods in two aspects: (1) Unlike [19]. it
is event-triggered and thus does not run a separate periodic
task at a high priority level; and (2) It is triggered only when
U > Ud, implying that it does not globally scale downp when
the processor is underloaded (U ≤ Ud). Thus, unlike [5], [19],
it does not maintainU at a desired value.

A. Event-Triggering

A separate periodic task may be used for global adaptation
of the control periods [19]. However, the periodic task must
execute at a high priority level if the FP is adopted. It also
requires a compromise between the workload of executing
the task and the promptness of the task to respond to the
environmental changes. This compromise can be eliminated
by using event-triggering, with which the global adaptation of
the periods remains inactive whenU ≤ Ud but is sensitive
enough to capture the overload conditions.

Algorithm 2 shown below is for Event-Triggering for the
ith subtaskTi1. It evaluates the QoC, and adjustsp locally if
necessary. Then, it updatesU , and alsoUi for the ith task:

U = Uold − Uold
i + ci/pi, Ui = ci/pi, i = 1, · · · , n. (14)

After that, it checks whether or notU is too high (line 9). If
not, resetNrq (line 16), the consecutive number of requests
to re-scalep; otherwise incrementNrq (line 10). For smooth
operation, the event-triggering will not happen untilNrq ≥
Nmax

rq (line 11), whereNmax
rq is a threshold. After the periods

are scaled up (line 12), resetNrq (line 13).
Algorithm 2: Event-Triggering

1: GlobalU , Ud; //system workload and its set-point
2: Globalci, pi; //Execution time, control period
3: GlobalNrq; //No. of requests for increasing periods

4: The ith subtask Ti1:
5: Data acquisition, and QoC evaluation;
6: Adjust pi locally if necessary; //Algm. 1
7: Update system workloadU := Uold − Uold

i + ci/pi;
8: Update theith task workloadUi := ci/pi;

9: if U > Ud then //Load too high: event happens
10: IncrementNrq;
11: if Nrq ≥ Nmax

rq then //event-triggering
12: Trigger Algm. 3 for global period adaptation;
13: ResetNrq := 0;
14: end if;
15: else
16: ResetNrq := 0;
17: end if;
18: Save resultsUold := U andUold

i := Ui.

B. Global Adaptation of Periods in Overload Conditions

Once the top-level global period adaptation is triggered, it
will scale up the control periods bounded by their respective
upper limits. A heuristic rule to enlargep is designed as

pi = poldi · U/Ud. (15)

In this way, the system workload is brought back to its setpoint
Ud. Similar idea has been adopted in [19], while the difference
is that the scaling is used only in overload conditions in our
scheme. The top-level algorithm, Global Adaptation of Control
Periods, is shown below for overload conditions:

Algorithm 3: Global Adaptation of Control Periods.
1: GlobalU , Ud; //system workload and its setpoint
2: loop: For tasks fromi = 1 to n do
3: if pi < pmax

i then
4: Scale up the control periodpi := poldi · U/Ud;
5: if pi > pmax

i then pi := pmax
i ; //Upper bound

6: end if;
7: Set the period of theith task to bepi;
8: Save resultpoldi := pi;
9: end if;
10: end loop.

VI. SYSTEM STABILITY UNDER PERIOD SWITCHING

When a control system with multiple loops is designed,
each controller should be tuned to ensure the control stability
under fixed period. Thus, the overall control system is stable
if the processor is not overloaded and if there is no period
switching. However, adjustment ofp at runtime implies that
the system becomes a switched system. As switching among
stable systems may cause instability [46], the stability of
the switched system should be considered carefully when
implementing period switching.

Consider a class of linear control systems with input delay
τp. In digital control, thekth sampling and control period is
denoted aspk, k = 1, 2, 3, · · · . A zero-order hold (ZOH) is
employed to hold the sampled data in each sampling period.
The dynamics of the closed-loop control of the system is

ẋ(t) = Ax(t) +Bx(tk−1 − τpk) for t ∈ [tk−1, tk),
t0 = 0; tk = tk−1 + pk, k = 1, 2, · · · ,

(16)

where variablepk represents period switching.
The main result of the stability analysis for this system with

period switching is given in the following theorem, which is
derived from delay systems theory [47].
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Theorem 1:For givenpmax ≥ pk and τmax
p ≥ τpk ∀ k =

1, 2, · · · , if there exist matricesP > 0, Q > 0 andR > 0 such
that

Φ =





PA+ATP +Q−R+ (τmax + pmax)2ATRA
BTP + τ2MBTRA+R

0

PB + (τmax + pmax)2ATRB +R 0
(τmax + pmax)2BTRB − 2R R

R −Q−R



 < 0 (17)

holds, then the closed-loop control system in (16) with time
delayτpk and period switchingpk is asymptotically stable.

Proof: Using delay systems theory [47], we construct a
Lyapunov-Krasovskii functional candidate as

V (x(t)) = xT (t)Px(t) +

∫ t

t−τmax
−pmax

xT (s)Qx(s)ds

+(τmax
p + pmax)

∫ 0

−τmax
−pmax

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ. (18)

Omitting the detailed process, we can proveV̇ (x(t)) < 0
along the trajectory of Eq. (16) with period switching.

Remark 1:The sufficient condition given in Theorem 1
relates system stability to variable periodpk and variable time
delay τpk. It holds over a sequence of periodsp0, p1, · · · ,
which evolve with period switching. Thus, the stability of the
system in Eq. (16) under period switching is guaranteed.

Remark 2: If System (16) has a constant delay, i.e.,τpk =
τp, Theorem 1 still holds withτmax

p being replaced byτp.

VII. C ASE STUDIES

A. Processes, Controllers and System Stability

Consider open-loop unstable processes governed by

Gp(s) =
Kp

s(Tps+ 1)
. (19)

Three such processes representing DC motors are considered,
as shown in Table I. This example is taken from [49].

TABLE I
TASK SETTINGS WITHci=2MS AND di=pi (i = 1, 2, 3).

PlantGi(s) G1= 1000
s(0.9s+1)

G2= 1000
s(1.0s+1)

G3= 1000
s(1.1s+1)

Priority (for FP) 1 2 3
pmin
i (ms) 3.6 4.0 4.4

pmax
i (ms) 9.0 10 11

Umin
i (%) 16.67 15.00 13.64

Umax
i (%) 41.67 37.50 34.09

Nominal pi (ms) 5.8 6.4 7.0
NominalUi (%) 35.7 31.9 28.9∑

i U
max
i =151.01%,

∑
i U

min
i =60.40%,

∑
i(NominalUi)=94.4%.

Controller:Kc = 0.96;Tci = 0.12;Tcd = 0.049; β = 0.5;Nd = 10.

A proportional-integral-derivative (PID) controller is
adopted for all three processes

Gc(s) = Kc [1 + 1/(Tcis) + Tcds] , (20)

whereKc, Tci andTcd are controller gain, integral and deriva-
tive times, respectively. Shown in Table I, the controller
settings are taken from [49] as well. They are tuned forG2, but
are also applied toG1 andG3 to simulate model mismatch.

To apply the stability result in Theorem 1, consider Eqs.
(19) and (20) in digital control with a ZOH. Fort ∈ [tk−1, tk],
wheret0 = 0, tk = tk−1 + pk, k = 1, 2, · · · , we have

KpKc {[r(tk−1)− y(tk−1)] + Tci [ṙ(tk−1)− ẏ(tk−1)]

+TciTcd [r̈(tk−1)− ÿ(tk−1)]} = Tci [Tp

...
y (t) + ÿ(t)] ,

wherey(t) and r(t) are process output and setpoint, respec-
tively. Letting x1(t) = y(t), x2(t) = ẏ(t) and x3(t) = ÿ(t),
we can obtain the state space model of Eq. (16) with

x(t) = [x1(t), x2(t), x3(t)]
T
,

A =





0 1 0
0 0 1
0 0 −1/Tp



 , B = −
KpKc

TpTci





0 0 0
0 0 0
1 Tci TciTdi



 .

Then, from this state space model, we can obtain that with the
system settings in Table I the linear matrix inequality in Eq.
(17) of Theorem 1 always holds forpk < 20ms for all three
control loops. Table I shows that the designed maximum peri-
ods are only 9ms, 10ms and 11ms forG1, G2, G3, respectively.
It is known from Theorem 1 that the asymptotical stability of
the system with period switching is guaranteed even if period
switching happens at the end of each period. Therefore, the
minimum waiting time for next period switching in Algorithm
1 can be set to be the same as the current period.

For digital control, the PID controller in Eq. (20) is imple-
mented in the following discrete-time form [50]:

u(tk) = Kc [βr(tk)− y(tk)] + I(tk) +D(tk),

I(tk) = I(tk−1) +
pKc

Tci

[r(tk−1)− y(tk−1)] ,

D(tk) =
Tcd

pNd+Tcd

D(tk−1) +
NdKcTd

pNd+Td

[y(tk−1)− y(tk)] ,

where u represents control signal;I and D are integral
and derivative actions, respectively; andβ and Nd are filter
parameters. The subscriptk indicates thekth period.

To evaluate the QoC of the system under fixed- and variable-
period scheduling, step changes in setpoint are introducedinto
the three loops: 1) LoopG1(s): +1(0s), -1(1s), +1(2s); 2) Loop
G2(s): +1(0s), -1(1s); and 3) LoopG3(s): +1(0s). The worst-
case scenario occurs att = 0 when all loops requestpmin.

B. The FP and EDF Scheduling Under Fixed Periods

Underpmin and the FP, the system is overloaded with the
requestedU = 151%. TheG2 loop behaves with oscillations
because it often misses its deadlines. TheG3 loop becomes
unstable since the control task has no chance to execute.

Under pmin and the EDF, all control tasks can execute.
However, the control tasks often miss their deadlines due to
the overload condition. The ITAE indices listed in Table II for
MinPeriods with EDF indicates that significant improvement
can be expected through better QoC management.
pmax andpnominal are also tested under the FP. The results

are tabulated in Table II as well. They are much better than
those frompmin with either the FP or the EDF.

C. Task Decomposition and Variable-Period Scheduling

The task decomposition of the original three tasks and all
settings for re-scaling ofp are tabulated in Table III.



TIAN ET AL.: LOCAL ADJUSTMENT AND GLOBAL ADAPTATION OF CONTROL PERIODS FOR QOC MANAGEMENT OF CONTROL SYSTEMS 7

TABLE II
ITAE×103 OF THE THREE CONTROL LOOPS.

Loop 0∼1s 1∼2s 2∼3s 0∼1s 1∼2s 2∼3s
MinPeriods with FP MinPeriods with EDF

G1 Loop G1: working well; 12.6990 12.8637 12.8018
G2 Loop G2: oscillatory 12.9202 13.0646 –
G3 Loop G3: unstable 12.8634 – –∑

(ITAE×103)= - - -; U=151%
∑

(ITAE×103)=77.2;U=151%

MaxPeriods with FP NominalPeriods with FP
G1 5.1301 5.7315 5.6529 4.9651 5.2149 5.0374
G2 5.2988 5.1621 – 4.8388 5.0745 –
G3 5.1395 – – 4.5906 – –∑

(ITAE×103)=32.1;U=60.4%
∑

(ITAE×103)=29.7;U=94.4%

VariablePeriod FP(from pmax) VariablePeriods EDF(from pmax)
G1 5.0902 5.2672 4.9598 5.0348 5.2791 4.9948
G2 5.0724 5.1070 – 5.0884 5.2496 –
G3 4.4314 – – 4.7879 – –∑

(ITAE×103)=29.9279
∑

(ITAE×103)=30.4346
AverageU=63.63% AverageU=63.69%

TABLE III
TASK DECOMPOSITION MODEL AND TASK SETTINGS.

Subtasks Priority for FP Period (ms) (Table I)
G1: [T11,T12] 2, 5 3.6 - 9.0
G2: [T21,T22] 3, 6 4.0 - 10.0
G3: [T31,T32] 4, 7 1.4 - 11.0

Top level scheduler task T0 with the highest priority of 1.
c0=10µs; ci1=0.5ms andci2=1.5ms (ci1+ci2=ci=2ms),i=1,2,3;
d0 = 1ms; di1 anddi2 (i = 1, 2, 3) are calculated from Eq. (2);
Other Settings: JL=0.05;JH=0.8, ǫ=0.8,Ud=0.92,Nmax

rq =5;

t
(wt).min

i =pmin
i , γi=5%, i = 1, 2, 3.

Start with pmax under either the FP or EDF with local
adjustment and global adaptation ofp. The results are shown
in Figs. 4, 5 and 6. It is seen from Figs. 4 and 5 that both the
FP and EDF with variablep can stabilize the open-loop unsta-
ble processes and demonstrate good performance in setpoint
tracking. They also show comparable ITAE indices (Table II
under “VariablePeriod FP” and “VariablePeriod EDF”).
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Fig. 4. Dynamic adjustment of periods under the FP (plots on theleft: p1
to p3 andU ; plots on the right:y1 to y3; averageU = 63.63%).

Figs. 4 and 5 illustrate that both the FP and EDF give similar
patterns in period adjustment and workload adaptation. When
the QoC of a control loop deteriorates significantly (e.g., at 1s,
2s and 3s), the correspondingp is reduced locally for more
frequent control actions, resulting in an increased demandon
the processor utilizationU . In contrast, when the QoC is
improved,p is enlarged and thus the requestedU is reduced
without sacrifice of the QoC. Therefore, compared with the FP
with fixed nominal periods (U=94%), the FP and EDF with
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Fig. 5. Dynamic adjustment of periods under the EDF (plots on the left: p1
to p3 andU ; plots on the right:y1 to y3; averageU = 63.69%).
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Fig. 6. Plots of scheduling with variable periods (Task 1: Global period
adaptation; Tasks 2 to 4: sampling; Tasks 5 to 7: control).

variablep gives comparable ITAE indices (Table II) with their
averageU being as low as about 64%.

However, whenU > Ud, p is enlarged through global period
adaptation. Fig. 6 shows that in the worst-case scenario in
which a unit step setpoint change is introduced att = 0s into
all three loops, the top-level global adaptation is triggered only
four times.U is well maintained underUd almost all the time,
even in the worst-case scenario.

VIII. C ONCLUSION

Linking multi-tasking scheduling directly to the QoC, a hi-
erarchical feedback QoC management framework has been de-
veloped for integrated design of control and scheduling of real-
time control systems with multiple control tasks. It consists of
a task decomposition model for continuous QoC monitoring,
local adjustment of control periods for QoC improvement, and
event-triggered global adaptation of the periods for workload
management. A set of heuristic rules have been proposed for
feedback scheduling of control periods. A sufficient condition
has also been derived for a class of linear control systems to
guarantee the stability of the systems with period switching.
Case studies have been conducted to demonstrate the devel-
oped feedback QoC management framework.
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[48] J. Eker, P. Hagander, and K. E.Årzén, “A feedback scheduler for real-
time control tasks,”Control Engineering Practice, vol. 8, no. 12, pp.
1369–1378, Dec 2000.

[49] M. Ohlin, D. Henriksson, and A. Cervin,TrueTime 1.5 – Reference
Manual, Department of Automatic Control, Lund University, Jan 2007.

[50] K. J. Åström and T. Ḧagglund,PID Controllers: Theory, Design, and
Tuning, 2nd ed. NC: Instrument Society of America, 1995.


