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13 Abstract Smart matrices are required in bone tissue-

14 engineered grafts that provide an optimal environment for

15 cells and retain osteo-inductive factors for sustained bio-

16 logical activity. We hypothesized that a slow-degrading

17 heparin-incorporated hyaluronan (HA) hydrogel can pre-

18 serve BMP-2; while an arterio–venous (A–V) loop can

19 support axial vascularization to provide nutrition for a bio-

20 artificial bone graft. HA was evaluated for osteoblast

21 growth and BMP-2 release. Porous PLDLLA–TCP–PCL

22 scaffolds were produced by rapid prototyping technology

23 and applied in vivo along with HA-hydrogel, loaded with

24 either primary osteoblasts or BMP-2. A microsurgically

25 created A–V loop was placed around the scaffold, encased

26 in an isolation chamber in Lewis rats. HA-hydrogel sup-

27 ported growth of osteoblasts over 8 weeks and allowed

28 sustained release of BMP-2 over 35 days. The A–V loop

29provided an angiogenic stimulus with the formation of

30vascularized tissue in the scaffolds. Bone-specific genes

31were detected by real time RT-PCR after 8 weeks.

32However, no significant amount of bone was observed

33histologically. The heterotopic isolation chamber in com-

34bination with absent biomechanical stimulation might

35explain the insufficient bone formation despite adequate

36expression of bone-related genes. Optimization of the

37interplay of osteogenic cells and osteo-inductive factors

38might eventually generate sufficient amounts of axially

39vascularized bone grafts for reconstructive surgery.

40

4142Abbreviations

43HA Hyaluronic acid/hyaluronan hydrogel

44BMP Bone morphogenetic protein

45CT Computerized tomography

46A–V Arterio–venous

47PLDLLA Poly(L-lactide-co-D,L-lactide)

48PCL Poly(e-caprolactone)

49TCP b-Tri-calcium phosphate

50
51

521 Introduction

53Bone tissue engineering is based on the application of

54mechanically stable osteo-conductive scaffolds, osteogenic

55cells, and osteo-inductive growth factors [1]. Although

56autologous bone grafts represent the gold standard for the

57treatment of bone defects, a number of approaches

58employing osteo-conductive biomaterials had been descri-

59bed recently, in particular when massive bone loss was

60present. The creation of large constructs with full viability

61and functional activity still presents a major challenge.

62Since cells cannot survive at a distance of more than
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63 200–500 lm from a capillary, it is imperative for tissue-

64 engineered grafts to be well perfused by a rich vascular

65 network [2, 3]. In addition to the survival of cells, vascu-

66 larization is pre-requisite even for their differentiation [4].

67 In the majority of cases, host blood vessels grow into a

68 biomaterial in a random fashion after implantation in vivo, a

69 process called extrinsic vascularization. Transfer to the

70 defect site, though possible, is usually associated with

71 destruction of the vascular network. Thereafter, random

72 network formation among graft and host capillaries is

73 essential for the survival of the graft. On the contrary, a graft

74 pre-vascularizedwith a surgically createdA–V loop forms an

75 axially vascularized tissue [5]. This type of vascularization is

76 desired by reconstructive surgeons because, similarly as in

77 free flap transfer, it can be transferred to the defect site using

78 microsurgical techniques [6]. After implantation, these tis-

79 sues are immediately vascularized with complete survival of

80 the graft. An axially vascularized bioartificial bone graft was

81 successfully generated recently by our group using an A–V

82 loop as a vascular carrier [5]. The same technology might be

83 further extended for a large bone graft in a sheep model [7],

84 with the addition of suitable osteo-inductive factors.

85 Bone induction is a complex process involving chemo-

86 taxis, mitosis, and differentiation orchestrated by a number

87 of cytokines and growth factors in a sequential manner

88 starting from wound healing to bone remodeling [8].

89 A typical bone induction process takes almost 28 days after

90 bone loss, with the mesenchymal stem cell (MSC) attach-

91 ment on day three, while vascular invasion starting on day

92 nine [9]. The chemotactic factors induce migration of

93 osteo-progenitor cells to the local site followed by induc-

94 tion of differentiation towards bone lineage and secretion

95 of bone matrix proteins by bone-inducing growth factors,

96 especially BMP-2. Additional BMP group of proteins and

97 VEGF govern cell proliferation and bone vascularization to

98 make viable osseous tissue [8].

99 Bone morphogenetic proteins (BMP-2 s) are part of the

100 TGF-b group of highly active osteoinducing proteins and

101 they played a key role in the creation of many tissue

102 engineered bone grafts in the past [10, 11]. Considering its

103 highly potent action, a controlled release in vivo is

104 imperative and deviation of the release in any side can

105 either result in insufficient bone formation or lead to

106 undesired ectopic bone formation, compromising the

107 vitality of nearby tissues [11, 12]. Within 14 days of local

108 BMP-2 application, its concentration decreases to 5% of

109 initial dosage [13]. When BMP-2 is applied as a solution

110 in vivo, it is released into the blood stream and loses its

111 bioactivity within hours after rapid degradation and may

112 not be effective for bone induction [14].

113 One major goal for drug delivery systems is to maintain

114 BMP-2 at the site of bone loss and release it in a controlled

115 and continuous manner to act on migrating osteogenic cells

116to induce bone formation [13]. The release has to be

117predictable and at physiological concentrations; the BMP-

118responsive cells should be located nearby. Failure of clini-

119cal trials has been reported when its bioavailability was

120lower than the physiological requirement of the bone

121healing process because of its rapid degradation after

122release [15]. To circumvent the problem, increased amounts

123of BMP-2 at supra-physiologic doses may be given. In

124addition to increased cost, this may induce ossification

125impinging on nearby vital neurovascular structures and life-

126threatening swelling and disability [16]. Though type I

127collagen is most commonly used for BMP-2 as a carrier

128[11], a number of other carrier systems have been suggested

129[13]. In some cases, carrier systems such as fibrin glue are

130used to inhibit BMP-2 diffusion out of the applied site to

131prevent soft tissue ossification [12]. Additionally, a carrier

132acts more than just delivering BMP-2 with documented

133supra-additive effect of a carrier and BMP-2 forming a

134favorable three-dimensional extracellular matrix.

135Hyaluronan (HA) hydrogel is osteo-conductive and

136osteo-integrative. However, for its osteo-inductive action,

137special growth factors need to be applied. Currently, BMP-2

138and BMP-7 have been approved with type I collagen carrier,

139but other carriers may be superior in terms of efficacy [17].

140Hyaluronan has been shown to protect growth factors in

141vitro for more than 4 weeks from proteolysis [18]. It has

142also been shown to release active growth factors slowly in

143the presence of heparin [18]. Heparin can prolong the sta-

144bility of BMP-2 almost 20-fold and can produce ectopic

145bone with only 1 lg of BMP-2, avoiding the use of sig-

146nificantly increased doses [19]. However, for the effective

147action of BMP-2, angiogenesis and vascular invasion must

148precede before ossification [9]. Exploiting the ability of

149BMP-2 to induce ectopic bone, heparin-incorporated hyal-

150uronic acid hydrogel can be utilized for its delivery.

151In this experiment, we hypothesize that an axially vas-

152cularized ectopic tissue-engineered bone graft can be

153fabricated with an A–V loop surrounding the PLDLLA–

154TCP–PCL-Hyaluronan scaffold-hydrogel composite. The

155aim of this study was twofold: firstly, to evaluate the BMP-

1562 release capacity of the system and growth and survival of

157primary osteoblasts in vitro; secondly, to investigate pro-

158gress of vascularization and formation of bone tissue

159within the composites in vivo following application of

160different concentrations of BMP-2 or primary osteoblasts.

1612 Materials and methods

1622.1 Scaffold fabrication

163The scaffolds were fabricated using the fused deposition

164modeling (FDM) principle [20] utilizing three different
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165 materials: PLDLLA (Boehringer-Ingelheim, Ingelheim am

166 Rein, Germany), PCL (Absorbable Polymers, US), TCP

167 (Progentix, MB Bilthoven, Netherlands), in a ratio of 64,

168 16, and 20% by weight, respectively. The strength is pro-

169 vided by the bioceramic component, while the polymer

170 part enables plasticity and ease of fabrication. The fabri-

171 cation was by an in-house rapid prototyping (RP) system,

172 namely the screw extrusion system (SES), similar to FDM

173 [20]. The details of the fabrication method are described

174 elsewhere [21]. Briefly, it exploits a layer-by-layer fabri-

175 cation technique to assemble three-dimensional (3D)

176 structures by depositing two-dimensional (2D) supporting

177 struts based on specified lay-down patterns to assemble the

178 whole structure. Material is fed into the top of the barrel

179 chamber, heated to a molten liquefied state at 120�C and

180 transported towards a 400 lm nozzle with aided displace-

181 ment and pressure from the turning screw feed.

182 Scaffold sheets of 50 9 50 9 1.5 mm3 were fabricated

183 with a 0–90� lay-down pattern. Discs with 8 mm diameter

184 were punched out from it and fabricated into bobbin-shaped

185 constructs (Fig. 1). The scaffolds were uniformly treated

186 with 5 M sodium hydroxide for 5 min and rinsed with

187 de-ionized water to yield a hydrophilic and corrugated sur-

188 face for improved cell attachment [22]. They were sterilized

189 in 70% ethanol overnight followed by UV light for 2 h. The

190 biomechanical properties of a comparable composite scaf-

191 fold were found to be suitable for bone tissue engineering,

192 showing excellent compatibility with MSCs [21].

193 2.2 Osteoblast culture and analysis in hyaluronan-

194 based hydrogel

195 Primary osteoblasts were isolated from long bones of male

196 Lewis rats as described elsewhere [23]. In brief, after sac-

197 rificing the rats at 4–8 weeks age, the long bones were col-

198 lected and serially digested in sterile collagenase-II (554

199 U/ml, Biochrom AG, Berlin, Germany) in 19 PBS. Subse-

200 quently, the cells were cultured in flasks (COSTAR, Cam-

201 bridge, USA), maintained at 37�C and 5% CO2 with twice

202 weekly media change. Only second passage cells were

203 seeded into the scaffold for in vitro and in vivo evaluation.

204The hyaluronan-based (HA) hydrogel (Extracel-HP,

205Glycosan BioSystems, Salt Lake City, Utah) was supplied as

206a kit consisting of three components, namely thiol-modified

207hyaluronan and heparin, thiol-modified gelatine, and thiol-

208modified cross-linker, polyethylene glycol diacrylate. The

209components were prepared with distilled water at 37�C

210under aseptic conditions and were mixed at 2:2:1 ratio,

211respectively, according to the manufacturer’s recommen-

212dations. The osteoblasts were mixed in the hydrogel such

213that 100 ll of the hydrogel, aliquoted in each well of 96-well

214culture plate, contained 10,000 osteoblasts. The cells were

215cultured in a 37�C incubator with 5% CO2 with 100 ll of

216media. The medium was changed twice weekly. Osteoblasts

217in HA were observed for 8 weeks under inverted light

218microscope (Leica DMIL, Weltzlar, Germany).

219The hyaluronan-osteoblast specimens were analyzed by

220AlamarBlue (Biosource Int., Camarillo, CA) assay. Each

221week, culture medium was aspirated and 150 ll of culture

222medium with 5% AlamarBlue was added to the specimens

223and incubated for 4 h at 37�C. Absorbance was then

224measured with a plate reader (SPECTRAmax 190,

225Molecular Devices, Sunnyvale, CA, USA) at wavelengths

226of 570 and 600 nm. The percentage of AlamarBlue

227reduction was subsequently calculated as advised by the

228manufacturer.

229Cell proliferation was evaluated using PicoGreen DNA

230quantification assay (Molecular Probes, Invitrogen GmbH,

231Karlsruhe, Germany) at 4 and 8 weeks as advised by the

232manufacturer. Specimens were thoroughly destroyed with

233lysis buffer (10 mM Tris (pH 7.0), 1 mM EDTA, and

2340.2% v/v triton X-100; all from Sigma-Aldrich GmbH,

235Steinheim, Germany). Fluorescence of specimen wells was

236measured with a fluorescent microplate reader (Genios,

237Tecan Group Ltd, Maennedorf, Switzerland) at excitation

238and emission wavelengths of 485 and 535 nm, respec-

239tively, corrected with blanks.

240To visualize viable and non-viable cells, osteoblasts

241were labeled with fluorescent probes. The osteoblast-

242seeded hydrogels were washed with 19 PBS and incubated

243with 2 lg/ml fluorescein diacetate (FDA) (Molecular

244Probes Inc., Eugene, USA) in 19 PBS, for 15 min at 37�C.

Fig. 1 a Schematic diagram of

the bobbin-shaped scaffold.

b The scaffold showing high

porosity and a central groove for

accommodating the A–V loop
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245 They were gently rinsed twice in 19 PBS and placed in

246 20 lg/ml propidium iodide (PI) solution (Invitrogen

247 GmbH, Karlsruhe, Germany) for 2 min at room tempera-

248 ture. After thorough rinsing in 19 PBS, the specimens

249 were kept in 19 PBS and viewed under a fluorescent

250 microscope (Axiovert 25, Carl-Zeiss AG, Goettingen,

251 Germany). The viable cell cytoplasms were labeled green,

252 while non-viable cell nuclei were labeled red.

253 2.3 Release kinetics of rhBMP-2 from hyaluronan-

254 based hydrogel

255 The rhBMP-2 (INFUSE bone graft, Medtronics, Minne-

256 apolis, USA) was reconstituted to final concentration of

257 3.33 lg/ll in PBS. 10 lg of rhBMP-2 was incorporated in

258 50 ll of hyaluronan hydrogel. All disc shaped hydrogels

259 were uniformly polymerized to get a thickness of 4 mm

260 and a diameter of 5 mm. The BMP-2 containing hydrogel

261 discs (n = 3) were placed in 1 ml of pre-warmed PBS until

262 35 days from the start of the experiment. At different time

263 points (1, 2, 4, 6, and 24 h and 2, 4, 7, 10, 14, 17, 21, 28,

264 and 35 days), 100 ll of PBS were sampled and replaced

265 with an equal amount of fresh PBS after the scaffolds were

266 kept on a shaker for 3 min. The collected 100 ll of PBS

267 were kept in -80�C and the rhBMP-2 content was mea-

268 sured by rhBMP-2 ELISA kit (Quantikine, R&D systems,

269 Minneapolis, MN, USA). The values were calculated from

270 the standard curve. The cumulative release was calculated

271 for each time point.

272 2.4 In vivo experiments

273 Twenty-four inbred male Lewis rats (Charles-River, Sulz-

274 feld, Germany) weighing 200–300 g were used with

275 approval by the animal care committee of the University of

276 Erlangen and the Government of Mittelfranken, Germany.

277 Animals were kept in 12 h dark–light cycle with free

278 access to standard chow (Altromin, Hamburg, Germany)

279 and water at the veterinary care facility of the University of

280 Erlangen Medical Center. All operations were performed

281 by experienced microsurgeons using a surgical microscope

282 (Karl Zeiss, Jena, Germany) under general anaesthesia with

283 Isoflurane (Baxter, Unterschleißheim, Germany).

284 The rats were divided into four groups, each consisting

285 of six animals. The PLDLLA–TCP–PCL scaffold was

286 loaded with 1 ml of HA hydrogel containing either of

287 500 ng rhBMP-2 (group A), 2.5 lg rhBMP-2 (group B), or

288 three million hydrogel-immobilized osteoblasts (group C)

289 prior to implantation. Scaffolds with plain HA hydrogel

290 served as controls (group D).

291 The surgical technique has been described previously by

292 our group [24]. In brief, the femoral vessels and nerve were

293 exposed by a longitudinal incision from the inguinal

294ligament to the knee. The sheath of the neurovascular

295bundle was opened. After exposure of the right-sided

296femoral vessels, a 20 mm vein graft was harvested from the

297right femoral vein. An A–V loop was created by interpo-

298sition of the vein graft between the left sided femoral artery

299and the left femoral vein with interrupted non-absorbable

30011-0 nylon stitches (Ethilon, Ethicon GmbH, Norderstedt,

301Germany). The A–V loop was placed around the PLD-

302LLA–TCP–PCL scaffold and the whole construct was

303placed into a sterile cylindrical Teflon-chamber (inner

304diameter 10 mm, height 6 mm, constructed by the Institute

305of Materials Research, Division of Glass and Ceramics,

306University of Erlangen). The chamber was then capped

307and fixed to the underlying muscle. The skin was closed

308using interrupted 3-0 vicryl sutures (Ethicon GmbH,

309Norderstedt, Germany). All animals received 0.2 ml ben-

310zylpenicillinbenzathine (Tardomycel; Bayer, Leverkusen,

311Germany), buprenorphine (0.3 mg/kg rat weight) (Tem-

312gesic; Essex Chemie AG, Luzern, Switzerland), and hep-

313arin (80 IU/kg) (Liquemin; Ratiopharm, Ulm, Germany)

314postoperatively.

315Explantation of the specimens was performed after

3168 weeks. For sacrifice, one specimen from each group was

317used for RNA isolation as described later. The other rats

318were perfused with Microfil under general anesthesia for

319micro-CT analysis. The aorta was cannulated and the

320vascular system was rinsed with heparinized Ringer solu-

321tion (100 IU/ml) under hydrostatic pressure. The distal

322vascular system was then injected with 20 ml microfil

323(MV-122) containing 5% of MV curing agent (both from

324Flowtech, MA, USA) as advised by the manufacturer.

325Finally the aorta and caval vein were ligated and the rats

326were cooled at 4�C for 24 h. Specimens were explanted in

327toto and fixed in 3.5% formalin solution before micro-CT.

3282.5 Micro-CT analysis

329For each of the experimental groups, two specimens were

330selected at random for micro-CT analysis. To decalcify the

331scaffolds, the explanted grafts were treated with 20% EDTA

332for 3 weeks before further manipulation. They were sub-

333sequently scanned on a high resolution ‘‘ForBild’’ scanner

334(an in vivo micro computerized tomography (micro-CT)

335scanner developed by Institute of Medical Physics, FAU

336Erlangen-Nuremberg, Germany). The constructs were

337scanned with following parameters: Al-0.5 mm filter, tube

338voltage of 40 kV, 15 lm pixel size, and 15 lm slice dis-

339tance between consecutive slices. The data were volumet-

340rically re-constructed using ImpactView software (Vamp

341GmbH, Erlangen, Germany) in a 1024 9 1024 pixels

342matrix. Further, 3D modeling for data analysis was

343done using Mimics v8.02 software (Materialise, Leuven,

344Belgium). The different tissues were segmented according
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345 to their Hounsfield Unit values by global thresholding

346 procedure to selectively obliterate the scaffolds and soft

347 tissues. After 3D reconstruction, the volume and area of

348 microfil-perfused blood vessels were calculated. Using the

349 data, the mean number of vessels per unit length was cal-

350 culated, as described before [25].

351 2.6 Histology and histomorphometry

352 The samples were serially dehydrated and paraffin

353 embedded according to standard protocols. Five lm sec-

354 tions were taken using a microtome (Leica RM 2135,

355 Wetzlar, Germany). All the slides were stained with

356 Hematoxylin and eosin (H & E) using a fully automated

357 process (Jung Auto Stainer XL, Leica Microsystems,

358 Nussloch, Germany).

359 Immunhistochemical analysis was performed using

360 rabbit polyclonal antibodies against vWF (von-willebrand

361 factor) (A0082, Dakocytomation, Carpinteria, CA, USA)

362 at 1:500 dilution to confirm the vascular endothelium.

363 Envision HRP anti-rabbit kit (K4011, Dakocytomation,

364 Carpinteria, CA, USA) was used as secondary antibody.

365 The histomorphometric analysis was performed by two

366 blinded, independent observers as described elsewhere

367 [26]. Briefly, the images of two standardized planes

368 (500 lm proximal and 500 lm distal to the central plane)

369 were photographed and oriented perpendicular to the lon-

370 gitudinal axis of A–V loops. All images were taken by a

371 light microscope with bright-field filter (Leica DM IRB,

372 Wetzlar, Germany) and digital camera under 925 magni-

373 fication. The individual images of each cross section were

374 set together (Photoshop, Adobe, San Jose, CA, USA). The

375 composed images were rendered bimodal (ImageJ, NIH,

376 Bethesda, MA, USA). The construct size (cross-sectional

377 area) and the area of FVT were measured for each of the

378 sections. The percentage of fibro vascular tissue (% FVT)

379 was calculated by the ratio of total FVT area to total cross

380 sectional area of the specimen. The total number of blood

381 vessels was assessed by counting the microfil-filled (posi-

382 tive) vessels in ten pre-selected fields of view (four in the

383 central region and three each in upper and lower parts of

384 the construct) at 9100 magnification. Results are expressed

385 as means ± standard-errors of the mean.

386 2.7 RNA isolation and quantitative real time RT-PCR

387 After scarification of the animal, the chamber was quickly

388 isolated and kept overnight at 4�C in RNAlater RNA

389 Stabilization Reagent (Qiagen, Hilden, Germany) and fur-

390 ther in -80�C until RNA isolation. Total RNA was isolated

391 from the tissue grown in the loop using TRIzol Reagent

392 (Invitrogen, Carlsbad, CA, USA) followed by RNeasy Mini

393 Kit (Qiagen, Hilden, Germany) according to manufacturer’s

394protocol and RNA was measured by BioPhotometer

395(Eppendorf, Hamburg, Germany). Total RNA was con-

396verted to c-DNA using oligo d-T primers (Fermentas, Glen

397Burnie, MD, USA) and RevertAid H Minus M-MuLV

398Reverse Transcriptase (Fermentas, Glen Burnie, MD, USA).

399The amount of cDNA corresponding to 20 ng of total

400RNA was then analyzed in triplicates by semi-quantitative

401real time PCR for selected genes with primers as shown in

402Table 1 by Mx3000P QPCR System (Stratagene, Agilent

403technologies, La Jolla, CA, USA). The gene expressions

404were normalized to internal b-actin expression and the

405relative fold change was expressed by comparing to that of

406control group D.

4072.8 Statistical analysis

408Statistical comparisons were performed for histomorpho-

409metric analysis by a two-way ANOVA test followed by

410Bonferroni’s post-test (Sigmastat v3.5, Chicago, IL) con-

411sidering significant difference at the 95% confidence

412interval. Standard error bars were included in all graphs

413and represent the 95% confidence interval. For all pairwise

414comparisons on quantitative results the Student’s t-test was

415used with a confidence level of 95% (P\ 0.05).

4163 Results

4173.1 Osteoblasts in hyaluronan-based hydrogel in vitro

418At 4 and 8 weeks, osteoblasts were relatively distinct and

419well maintained throughout the hydrogel (Fig. 2a). How-

420ever, the thickness of the hydrogel decreased considerably

421over 8 weeks. Vitality of osteoblasts was demonstrated

422over the entire observation period by FDA/PI staining

423(Fig. 2b) while dead cells were almost non-existent.

424The metabolic activity of the cells increased progres-

425sively until week five followed by a decline by week eight

426(Fig. 2c). A similar trend was observed in the DNA

427quantification assay, where a significant decrease in

428dsDNA values between week four (35.38 ± 10.34) and

429week eight (7.57 ± 1.90) was demonstrated (Fig. 2d).

4303.2 Release kinetics of BMP-2 from hyaluronan-based

431hydrogel

432In vitro BMP-2 release from HA hydrogels was followed

433until day 35 (Fig. 3). The release kinetics of BMP-2 was

434characterized by a fast initial peak within the first 3 days

435followed by a sustained release over the course of 35 days.

436Even at the end of 5 weeks, a considerable percentage of

437BMP-2 was still incorporated inside hydrogel. Within the

438first 24 h, almost 10% of the loaded BMP-2 was released.
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439 Thereafter, the release rate was almost constant until the

440 end of observation.

441 3.3 Qualitative and quantitative micro-CT analysis

442 The pattern and distribution of angiogenesis of representa-

443 tive samples in micro-CT scanning are shown for scaffolds

444 with plain hydrogel (control group D, Fig. 4d), hydrogel

445 with low dose BMP-2 (500 ng, group A, Fig. 4a), hydrogel

446 with high dose BMP-2 (2.5 lg, group B, Fig. 4b), and

447 hydrogels containing osteoblasts (group C, Fig. 4c). In

Table 1 The primers of the

genes analyzed by real time

PCR

Gene name Forward primer Reverse primer

Alkaline phosphatase GCTGATCACTCCCACGTTTT GCTGTGAAGGGCTTCTTGTC

Biglycan CCACCAACTAACCAGCCTGT CAAGGTGAAGTCCCAGAAGC

Syndecan CTGATCCTGCTGCTGGTGTA TCATGCGTAGAACTCGTTGG

BMP 2 TGAACACAGCTGGTCTCAGG TTAAGACGCTTCCGCTGTTT

Osteocalcin CTATGGCACCACCGTTTAGG AGCTGTGCCGTCCATACTTT

Collagen 1 TTCTGAAACCCTCCCCTCTT CCACCCCAGGGATAAAAACT

Osteonectin AAACATGGCAAGGTGTGTGA AAGTGGCAGGAAGAGTCGAA

Agrrecan AACTCAGTGGCCAAACATCC AGATGTTCCCTCACCAGTGC

Collagen 2 CGAGGTGACAAAGGAGAAGC AGGGCCAGAAGTACCCTGAT

VEGF AATGATGAAGCCCTGGAGTG ATGCTGCAGGAAGCTCATCT

Beta-actin GATCATTGCTCCTCCTGAGC ACATCTGCTGGAAGGTGGAC

FGF 2 TTCTTTGAACGCCTGGAGTC CCGTTTTGGATCCGAGTTTA

Fig. 2 Osteoblasts in hyaluronic acid hydrogel after 4 weeks, exam-

ined in a inverted light microscope, and b after FDA/PI staining in

fluorescence microscope. Cells are evenly distributed within the

matrix and display a typical and differentiated morphology. There are

virtually no dead (PI-positive) cells. cMetabolic activity of osteoblasts

is demonstrated by AlamarBlue assay in hyaluronic acid hydrogel over

the observation period with a peak at week five. d The dsDNA value of

osteoblasts is significantly decreased at week eight compared to week

four as evidenced by PicoGreen assay (P\ 0.05)

Fig. 3 Cumulative release of rhBMP-2 from the hyaluronic acid

hydrogel over a period of 35 days
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448 groups A and D, blood vessels start sprouting from the A–V

449 loop into the centre of the scaffold. In group B, the newly

450 grown vessels already extend towards the centre of the

451 scaffold from all directions. However, only in group C

452 (osteoblast transplantation) there is extensive vascular

453 growth filling the entire centre of the scaffold (Fig. 4d).

454 The total volume of angiogenesis approached 5–10 mm3

455 in control group D as well as groups A and B (low dose

456 BMP-2 and high dose BMP-2, respectively) (Fig. 5a).

457 However, in group C (osteoblast transplantation) the value

458 was 10–15 mm3. As per the calculation by Bolland et al.

459 [25], the number of vessels per mm length in groups A, B,

460 and D is within 10–100, while one group C sample shows

461 187 per mm length (Fig. 5b). No further statistical analysis

462 of the micro-CT data was performed due to the limited

463 number of samples (Fig. 5b).

464 3.4 Histology and immunohistochemistry

465 Histological specimens showed numerous microfil-filled

466 blood vessels (black) in specimens from all groups.

467 A dense network of newly formed blood vessels originated

468 from the A–V loop and progressively invaded the void

469spaces within the scaffolds from all groups. However,

470BMP-2 concentration and transplantation of osteoblasts

471influenced the number of blood vessels and the volume of

472newly formed fibro-vascular tissue. A representative figure

Fig. 4 Micro-CT analysis. 3D

reconstructed images of

representative samples from

a group A (500 ng/ml BMP-2),

b group B (2.5 lg/ml BMP-2),

c group C (osteoblast

transplanted), and d group D

(control). Osteoblast

transplantation leads to

considerable increase in blood

vessel outgrowth from the A–V

loop

Fig. 5 Quantitative micro-CT analysis of specimens after 8 weeks

in vivo (n = 2 per group) showing a the volume of angiogenesis in

the isolation chamber, and b number of vessels per mm length
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473 of each type of sample is shown in Fig. 6: low concen-

474 tration of BMP-2 (group A, Fig. 6a), high concentration of

475 BMP-2 (group B, Fig. 6b), osteoblast transplantation

476 (group C, Fig. 6c), and scaffolds with plain hydrogel

477 (control group D, Fig. 6d). There was no significant foreign

478 body reaction detectable in specimens from any group and

479 the scaffolds were almost completely intact after 8 weeks.

480 In specimens from groups A, B, and D (low concentration

481 BMP, high concentration BMP and control, respectively),

482 there was some amount of non-resorbed hyaluronan matrix

483 observed after 8 weeks. In contrast, in specimens from

484 group C (osteoblast transplantation), the hydrogel compo-

485 nent was completely resorbed.

486 Immunostaining with vWF antibody specifically dem-

487 onstrated patency and functional integrity of blood vessels

488with microfil-filled (black) lumen in specimens from all

489groups (Fig. 6e, f). There was no significant bone forma-

490tion detectable in histological samples from any group.

4913.5 Histomorphometry

492The percentages of fibro vascular tissue (FVT) were for

493group A 12.57 ± 1.3, for group B 16.52 ± 0.7, for group

494C 24.14 ± 1.4, and for group D 16.28 ± 2.6, respectively.

495Similarly, the percentages of unresorbed hyaluronic acid

496matrix left at the end of 8 weeks were 15.34 ± 3.1,

4975.76 ± 1.0, 0 ± 0, and 13.62 ± 2.1 for groups A, B, C,

498and D, respectively. Interestingly, the entire hyalu-

499ronic acid hydrogel was resolved in group C (osteoblast

500transplantation) specimens. The percentage of FVT was

Fig. 6 Hematoxylin and eosin

staining of representative

specimens: a group A

(500 ng/ml BMP-2), b group B

(2.5 lg/ml BMP-2), c group C

(osteoblast), and d control group

D after 8 weeks. S scaffold, HA

hyaluronic acid matrix, BV

microfil-filled blood vessels,

FVT fibro vascular tissue, V vein

of the loop. All scale bars show

200 lm. (e and

f) Immunohistochemistry with

vWF antibody showing the

vascular architecture of group B

and group D, respectively. The

co-localization of vWF-positive

walls and microfil-filled lumen

clearly demonstrate functional

integrity of the newly grown

vasculature
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501 significantly higher (P\ 0.001) in samples from group C

502 in comparison to groups A, B, and D. The percentage of

503 hyaluronic acid hydrogel matrix values was significantly

504 lower in groups B and C compared to groups A and D.

505 The results are displayed graphically in Fig. 7a.

506 The total number of blood vessels per cross section area

507 was 95.57 ± 23.40, 66.40 ± 3.91, 138.7 ± 9.60, and

508 67.33 ± 12.03 in groups A, B, C, and D, respectively.

509 Specimens from the osteoblast transplantation group C

510 contained significantly more blood vessels than specimens

511 from groups B and D (P =\0.05) (Fig. 7b).

512 3.6 Quantitative real time RT-PCR

513 Bone-related gene expression profile is shown in Fig. 8.

514 Expression of collagen-I and osteonectin was not signifi-

515 cantly increased in the experimental groups A–C in

516 comparison to control group D. In contrast, alkaline

517 phosphatase, RUNX-2, osteocalcin, and IBSP expressions

518 were increased in groups A, B, and C (low-and high con-

519 centration BMP and osteoblast transplantation). However,

520 this effect was not statistically significant for all groups.

521 Expression profile for selected extracellular matrix

522 proteins and growth factors are shown in Fig. 9. Syndecan

523 expression was neither influenced by BMP-2 nor trans-

524 plantation of osteoblasts. Interestingly, biglycan expression

525 was increased in high-concentration BMP-2 and osteoblast

526 transplantation groups (groups B and C, P\ 0.05 only for

527 group B). The expression profile of growth factors such as

528 VEGF, FGF2, and BMP-2 was not significantly different in

529 the experimental groups A–C compared to control group D.

5304 Discussion

531This study clearly demonstrates that the hyaluronan-based

532matrix supported growth and differentiation of osteoblasts

533in vitro and in vivo and allowed sustained release of BMP-

5342. The whole system showed positive evidence of bone-

535related gene expression, though it eventually failed to

536induce significant amounts of bone histologically in an

537isolation chamber model of axial vascularization. Sum-

538marizing, PLDLLA–TCP–PCL polymer-ceramic compos-

539ite scaffolds combined with HA-based hydrogel might be

540utilized in engineering of bio-artificial bone tissues.

541Typical hydrogel systems are characterized by an initial

542higher peak of growth factor release followed by a reduced

543release later. At the beginning, there is maximal avail-

544ability of free growth factors for nearby cells [27, 28].

545Afterwards, two distinctive release patterns are seen for

546different hydrogels. In surface-eroding hydrogel, there

547follows a slow release later in time; while in bulk-eroding

548hydrogel, degradation and random release ensue [29].

549Though the hydrogel is required to bind BMP-2, the con-

550tinuous release must induce sufficient concentration in the

551vicinity to act on precursor cells to induce the specific

552action of the growth factor. In our study, a similar trend

553regarding the amount and rate of release of BMP-2 is seen

554at the beginning, followed by a very slow release rate until

5555 weeks. The final disintegration might have released all

556BMP-2 contained in the hydrogel.

557The hyaluronan hydrogel demonstrated in vitro growth

558compatibility with the osteoblasts and supported their rep-

559lication, as observed in light microscopic pictures and

560corroborated by AlamarBlue results until week five.

561Thereafter, the progressive decline in AlamarBlue assay

562might be due to gradual dissolution of hydrogel by hyal-

563uronidase secreted by osteoblasts with corresponding loss

564of cells [30]. This was substantiated by PicoGreen assay,

565where 8 week dsDNA was significantly lower than

5664 weeks. Cell death cannot account for the lowered values

567as all cells were found healthy and alive in FDA/PI staining.

568Successful vascularization of composite scaffolds was

569clearly demonstrated by micro-CT and histological analy-

570sis. In micro-CT angiograms, there was significant angio-

571genetic activity originating from the original A–V loop. In

572BMP groups (groups A and B), the proximal part of loops

573generally displayed comparatively more sprouting blood

574vessels than the distal part found interior in the chamber.

575This might be due to VEGF mediated vascularization by

576BMP-2 [31]. In osteoblast transplanted group C, there were

577a uniform extensive angiogenetic activity and formation of

578blood vessels throughout the chamber, even extending to

579the centers. The data were corroborated well by histo-

580morphometric analysis. The FVT area as well as the

581number of blood vessels was significantly increased in

Fig. 7 Histomorphometric calculations of blood vessel formation in

the graft constructs. a Mean percentage of FVT and non-resorbed

hyaluronic acid matrix. b Mean number of blood vessels per cross

section. Asterisks indicate statistically significant differences between

groups (P\ 0.05); group A 500 ng/ml BMP-2, group B 2.5 lg/ml

BMP-2, group C osteoblast transplantation, and group D control

J Mater Sci: Mater Med

123
Journal : Large 10856 Dispatch : 21-3-2011 Pages : 13

Article No. : 4300
h LE h TYPESET

MS Code : JMSM3511 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

582 group C specimens. These findings might be explained by

583 faster resorption of hyaluronic acid following application

584 of osteoblasts [30]. This is supported by significantly lower

585 percentage of remaining hyaluronan matrix in group C

586 specimens (Fig. 7). The degradation byproducts may

587 stimulate angiogenesis subsequently [32]. Additionally, a

588strong hypoxic stimulus from cells may stimulate VEGF

589secretion [33].

590Contrary to the demonstration of extensive vasculari-

591zation, a clear histological evidence of bone formation

592could not be seen in the examined sections of our loop

593model. Researchers have tried BMP-2 dosage from 1 lg in

Fig. 8 Quantitative real time

RT-PCR analysis of bone-

related gene expression:

Collagen-I (a), alkaline

phosphatase (b), IBSP (c),

RUNX-2 (d), osteocalcin (e),

and osteonectin (f). Specific

gene expression was normalized

to internal b-actin expression.

Values represent the fold change

compared to control group D.

The error bar represents

standard deviation and the

asterisks indicate significant

differences between

experimental groups and control

group D (P = 0.05). Each bar

represents three independent

measurements. Group

A 500 ng/ml BMP-2, group

B 2.5 lg/ml BMP-2, group

C osteoblast transplantation,

and group D control

Fig. 9 Quantitative real time

RT-PCR analysis of

extracellular matrix and growth

factors expressions: Syndecan

(a), Biglycan (b), VEGF (c),

FGF-2 (d), and BMP-2 (e).

Specific gene expression was

normalized to internal b-actin

expression. Values represent the

fold change compared to control

group D. The error bar

represents standard deviation

and the asterisks indicate

significant differences between

experimental groups and control

group D (P = 0.05). Each bar

represents three independent

measurements. Group

A 500 ng/ml BMP-2, group

B 2.5 lg/ml BMP-2, group

C osteoblast transplantation,

and group D control
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594 hind-limb muscle and subcutaneous tissue to 50 lg in bone

595 defect sites in rats with successful bone induction [34, 35].

596 We have also demonstrated extensive bone formation his-

597 tologically after subcutaneous application of 2.5 lg of

598 BMP-2 after 8 weeks (data not shown). The absence of

599 bone histology in experimental specimens might be due to

600 ineffective dosage of BMP-2, which could only be

601 addressed empirically. The currently approved effective

602 dose with a collagen carrier requires BMP-2 in milligram

603 amounts, while in vivo the level is actually in nano to pico

604 molar range [17]. The higher BMP-2 dose might be nec-

605 essary for ectopic osteoinduction, where there is no readily

606 available effector tissue present.

607 Another reason might be the challenging properties of

608 the isolation chamber model. Since the newly grown tissue

609 was isolated from surrounding tissues except for the

610 communication through vascular loops, the model had

611 limited access to subcutaneous tissue. Previous studies in

612 our model demonstrated that the neo-angiogenesis and the

613 subsequent FVT invasion occur only after 2–4 weeks of

614 surgical loop placement [24]. Beforehand, there might be

615 no effector cells in the adjacent area. By this time, a large

616 percentage of BMP-2 must have been released and biode-

617 graded without any action. With its slow release phase after

618 2 weeks, the local concentration must be grossly inade-

619 quate in inducing ectopic bone. Observations by others

620 support this hypothesis, when they found that application

621 of BMP-2 at a delayed interval of 7 days after the time of

622 surgery resulted in a significantly increased osteogenic

623 induction [28] due to the increased number of BMP-2

624 responsive cells. However, in a separate study, fast release

625 of BMP was associated with increased new bone induction

626 over a short observation period, while a slow release was

627 not [27]. Consequently, it appears that it is the release

628 kinetics of BMP-2 with its net balance of effective con-

629 centration and degradation, which usually makes the dif-

630 ference. The release kinetic must be optimized for our

631 chamber model, where a peak release is required at the

632 time of rapid angiogenesis and FVT generation. Therefore,

633 specifically for this A–V loop model, we may need a higher

634 dosage of BMP-2 or later application during the course of

635 the experiment. In the future, we propose a 2 week delay

636 for BMP-2 application, where the burst release can be

637 synchronized with presumptive maximum vascular tissue

638 growth. Additionally, without proper mechanical stimula-

639 tion, it is unlikely to find significant amounts of mature

640 bone histologically or the induced bone might have even

641 resorbed [36].

642 In comparison to growth factors, co-culture systems are

643 attractive in addressing two components of a tissue such as

644 the osteogenic compartment and blood vessels in bone

645 tissue. Optimally, different cell components are capable of

646 inducing each other to a fully differentiated state. However,

647regarding applications in regenerative medicine, autolo-

648gous cells are the gold standard at the moment. Isolation

649and expansion of autologous cells under GMP conditions,

650which are mandatory for clinical application of bioartificial

651tissues, are technically demanding and rather expensive.

652Additionally, the bi-directional interaction of cells under

653co-culture conditions needs to be fully characterized. Large

654volume applications of bioartificial tissues are also ham-

655pered by significant initial cell loss if vascularization

656aspects are not considered. Growth factors such as BMPs

657might be utilized to enhance tissue formation and increase

658efficacy of cell based strategies [6]. Under certain condi-

659tions and in selected indications, they might even replace

660transplantation of cells if adequate release kinetics and

661material properties are provided.

662Though the histological cut sections showed no bone

663formation, semi-quantitative real time PCR results showed

664a different picture of gene expression. Groups A (500 ng

665BMP-2) and C (osteoblasts) had significantly higher

666expression of bone-related genes especially, osteocalcin

667and IBSP. Group A also showed significantly increased

668expression of alkaline phosphatase. Expression of these

669bone-related genes is important at different stages of bone

670maturation. As histological bone formation is a very

671complex phenomenon, which requires coordinated inter-

672play of different types of cells and growth factors, we

673assume that the osteo-inductive stimulus was sufficient to

674induce expression of bone-related genes but induction of

675bone formation eventually failed due to insufficient long-

676term concentration of BMPs and lack of effector cells. The

677expression of growth factors such as BMP-2, FGF-2, and

678VEGF were not significantly different at 8 weeks. Cell

679surface proteoglycans function in cell adhesion to cell or

680matrix. A higher expression of biglycan was found in group

681B (2.5 lg BMP-2), while there was no difference of

682Syndecan expression. Syndecan is ubiquitously expressed

683in all cells except for some bone-specific subtypes, while

684biglycan is highly expressed in bone morphogenesis [37].

685Cell mitosis can occur at pico molar range of BMP-2, while

686cell differentiation needs nano molar range [9]. When

687BMP-2 is sequestered in extracellular matrix, local con-

688centration might be higher to produce sporadic induction.

689This might explain the positive bone-related gene expres-

690sion while absence of any clearly demarcated histological

691bone.

692Although a well-vascularized scaffold is essential for the

693survival of osteoblasts, we have surprisingly found that the

694presence of cells is also crucial for development of

695extensive axial vascularization in a reciprocal manner.

696Therefore, the chamber model could be made porous in

697future by further modification to have access to the sur-

698rounding area, making both simultaneous extrinsic and

699axial vascularization possible at a very early stage.

J Mater Sci: Mater Med

123
Journal : Large 10856 Dispatch : 21-3-2011 Pages : 13

Article No. : 4300
h LE h TYPESET

MS Code : JMSM3511 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

700 The approach may not only induce survival and faster

701 differentiation of osteoblasts but also stimulate in-growth

702 of new blood vessels. Moreover, application of angioge-

703 netic growth factors such as VEGF might have a similarly

704 stimulating effect. As discussed earlier, BMP-2 and oste-

705 oblasts might be applied in pre-vascularized scaffold after

706 2 weeks delay for their most efficient action, which is

707 currently under investigation by our group. Though such an

708 approach makes the model complex, it may ensure the

709 survival of cells and their differentiation from the

710 beginning.

711 At present, each of the individual components of PLD-

712 LLA–TCP–PCL and Extracel-HP is approved by the FDA.

713 Even so, as a whole group, the exact applicability of the

714 current approach needs to be demonstrated. It might utilize

715 a patient’s body as a bioreactor to make a tissue engineered

716 graft behave as an autograft to address the limitation of

717 autograft availability and the associated morbidity in their

718 procurement [11]. However, a number of issues must be

719 addressed before this kind of therapeutic strategy can be

720 applied.

721 In the future, BMP-2 loaded hydrogel might be highly

722 active on nearby MSCs if BMP-2 is applied after complete

723 growth of fibro-vascular tissue. Considering the well-

724 established biomaterials and the huge demand of vascular-

725 ized autografts in patients, a well-vascularized engineered

726 bone might satisfy the unmet demand. As a vein graft can be

727 utilized for induction of vascularization, this surgical

728 approach might eventually allow generation of axially

729 vascularized tissues with minimal donor site morbidity

730 independently of anatomic vascular axis.

731 5 Conclusion

732 In this study, we demonstrated that BMP-2 may be con-

733 tained within and slowly released from a Hyaluronan-based

734 hydrogel for more than 5 weeks. The hydrogel along with

735 PLDLLA–TCP–PCL scaffold could be axially vascularized

736 by an A–V loop. The hyaluronan hydrogel was gradually

737 degraded that guided sustained FVT growth and the

738 released BMP-2 induced bone-related gene expression,

739 although the formation of bone could not be observed

740 histologically. Based on the results of this experiment, it

741 can be concluded that the PLDLLA–TCP–PCL-hyaluronan

742 scaffold containing BMP-2 and supplied with an A–V loop

743 can possibly be explored as a well-vascularized bone graft

744 after further optimization.
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