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Abstract

Association rule mining has contributed to many advances in the area of
knowledge discovery. However, the quality of the discovered association rules
is a big concern and has drawn more and more attention recently. One prob-
lem with the quality of the discovered association rules is the huge size of
the extracted rule set. Often for a dataset, a huge number of rules can be
extracted, but many of them can be redundant to other rules and thus useless
in practice. Mining non-redundant rules is a promising approach to solve this
problem. In this paper, we first propose a definition for redundancy, then
propose a concise representation, called a Reliable basis, for representing
non-redundant association rules. The Reliable basis contains a set of non-
redundant rules which are derived using frequent closed itemsets and their
generators instead of using frequent itemsets that are usually used by tradi-
tional association rule mining approaches. An important contribution of this
paper is that we propose to use the certainty factor as the criterion to mea-
sure the strength of the discovered association rules. Using this criterion, we
can ensure the elimination of as many redundant rules as possible without
reducing the inference capacity of the remaining extracted non-redundant
rules. We prove that the redundancy elimination, based on the proposed
Reliable basis, does not reduce the strength of belief in the extracted rules.
We also prove that all association rules, their supports and confidences, can
be retrieved from the Reliable basis without accessing the dataset. Therefore
the Reliable basis is a lossless representation of association rules. Experimen-
tal results show that the proposed Reliable basis can significantly reduce the
number of extracted rules. We also conduct experiments on the application
of association rules to the area of product recommendation. The experimen-
tal results show that the non-redundant association rules extracted using the
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proposed method retain the same inference capacity as the entire rule set.
This result indicates that using non-redundant rules only is sufficient to solve
real problems needless using the entire rule set.

Key words: Knowledge discovery, Association rule mining, Redundant
Association rules, Closed itemsets, Data mining agents

1. Introduction

For most of the work done in the area of association rule mining, the
primary focus has been on developing novel algorithms to aid efficient com-
putation of such rules [AS94, Bay98, HP00], especially regarding improving
the efficiency of generating frequent itemsets. However, the quality of the
extracted rules has not drawn adequate attention. One big problem in as-
sociation rule mining is the huge number of extracted rules which results in
difficulties in end users’ comprehension, and therefore effective usage, of the
discovered rules, significantly reducing the effectiveness of association rule
mining. If the extracted knowledge can’t be effectively used in solving real
world problems, the effort used to extract the knowledge is wasted. Moreover,
many of the extracted rules produce no value to the user or can be replaced
by other rules thus can be considered redundant. The extent of redundancy is
much larger than previously suspected [Zak04], especially for dense datasets
[PTB+05]. Some efforts have been made to reduce the number of the ex-
tracted rules. The approaches can be roughly divided into two categories,
subjective approach and objective approach. In the subjective approach cate-
gory, one technique is to define various interestingness measures and only the
rules which are considered of interest based on the interesting measures are
generated [BL97, BMUT97]. Another technique in this category is to apply
constraints or templates to generate only those rules that satisfy the con-
straints or templates [MSMG04, DD09, BAG00, HLN99, NLHP98, SVA97].

In the objective approach category, the main technique is to construct
concise representations of association rules without applying user-dependent
constraints. A concise representation contains a much smaller number of
rules and would be considered lossless if all association rules can be derived
from the representation. Association rules are derived from frequent itemsets.
For a large dataset, especially for a dense dataset where data is heavily cor-
related, the number of frequent itemsets is often so huge that generating all
frequent itemsets requires unrealistic resources (memory and time) [CRB06].
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One solution to this problem is to design concise representations of frequent
itemsets. A concise representation of frequent itemsets, also called a perfect
cover of frequent itemsets in [CCL05], is a proper subset of frequent itemsets,
from which all frequent itemsets and their supports can be derived without
any further access to the dataset. In the past decade, a number of con-
cise representations of frequent itemsets have been proposed such as closed
itemsets [PBTL99a], free itemsets [BBR03], disjunction-free itemsets [BR03],
non-derivable itemsets [CG02], and essential itemsets [CCL05]. Initially, the
primary purpose of these condensed representations is the efficiency of gen-
erating all frequent itemsets [CRB06] rather than for concisely representing
association rules. However, among these proposed condensed representa-
tions, closed itemsets are of particular interest as they can be applied to
generate a condensed set of association rules [KRG04, PBTL99b, Zak00].

The notion of closed frequent itemsets has its origins in the mathe-
matical theory of Formal Concept Analysis introduced in the early 1980s
[GW99, Wil82]. An itemset is said to be closed if and only if no proper
superset of that itemset has the same support as that itemset. For a given
support threshold, knowing all frequent closed itemsets is sufficient to gener-
ate all the frequent itemsets and their supports without accessing the dataset.
The use of frequent closed itemsets presents a clear promise to reduce the
number of extracted rules and also provides a concise representation of asso-
ciation rules [PTB+05, Zak04]. Even though the number of extracted rules
can be reduced drastically by only using frequent closed itemsets, a consid-
erable amount of redundancy still remains. Our work will be in this category
to construct concise representations of association rules based on closed item-
sets for effective redundancy reduction.

We argue that the evaluation of non-redundant rule mining algorithms
should take three factors into consideration: removing as much redundancy
as possible; ensuring the extracted non-redundant rules retain the same in-
ference capacity; and retaining the ability to retrieve all association rules.
In this paper, our goal is to develop techniques that can generate as few
rules as possible without reducing the inference capacity of the remaining
rules and also without losing any information. To achieve this, we propose
a definition of redundant association rules based on which non-redundant
association rules can be generated. The non-redundant rules defined in this
paper have minimal antecedents and maximal consequents which are similar
to the non-redundant rules defined in [PTB+05]. However, our definition
relaxes or reduces the requirements to redundancy and thus a much greater
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number of redundant rules can be eliminated compared to the approach pro-
posed in [PTB+05]. We propose a concise representation of association rules,
called Reliable basis which contains a set of non-redundant rules that meet
the proposed definition. Most importantly, in this paper, we propose to use
the Certainty Factor (CF) as the criterion to measure the strength of the
discovered association rules. The certainty factor is an important and pop-
ularly used measure of belief in inference rules [SB75]. With this criterion,
we can ensure the removal of the maximal amount of redundancy without
reducing the inference capacity of the remaining extracted non-redundant
rules. We prove that the redundant rules eliminated by our approach have
less or equal CF belief values than that of their corresponding extracted non-
redundant rules, and thus that the elimination of such redundant rules will
not reduce the belief of the extracted rules. We also show by experiments
that the proposed Reliable basis can retain the same or better capacity as
the entire rule set to solve problems. Moreover, we prove that the Reliable
basis is a lossless representation of association rules since all association rules
can be retrieved from the Reliable basis. The contributions of this paper are
summarized below:

• We propose a definition of redundant association rules with a relax-
ing requirement to redundancy so that more redundant rules can be
eliminated.

• We propose a concise representation, called Reliable basis, to represent
the non-redundant association rules defined in this paper.

• We propose to use the Certainty Factor as the criterion to measure the
strength of association rules. We prove that eliminating the redundant
rules defined in this paper will not reduce the strength of the extracted
non-redundant rules (i.e., Theorem 1).

• We prove that the proposed Reliable basis can be generated from fre-
quent closed itemsets and their generators (i.e., Theorem 2).

• We prove that all association rules can be retrieved from the Reliable
basis (i.e., Theorem 3 and Theorem 4). Therefore, the Reliable basis
is a lossless representation of association rules.
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• We show by experiments that the non-redundant rules contained in
the proposed Reliable basis can be used to solve real problems with the
same or better capacity as the entire rule set.

The paper is organized as follows. The basic concepts of association rule min-
ing are given in Section 2. In Section 3, we propose a definition of redundancy
and then discuss the elimination of the redundancy. Section 4 introduces the
proposed Reliable association rule basis for extracting non-redundant rules,
then presents a method to retrieve all association rules from the Reliable
basis. Experimental results are given in Section 5. Section 6 discusses some
related work. Finally, Section 7 concludes the paper.

2. Problem Definition

Let I = {I1, I2, . . . , Im} be a set of m distinct items, t be a transaction
that contains a set of items such that t ⊆ I, T be a dataset containing
different identifiable transactions. An association rule is an implication in
the form of X ⇒ Y , where X,Y ⊂ I are sets of items called itemsets,
and X

∩
Y = ϕ. The definition of closed itemsets comes from the closure

operation of the Galois connection [GW99]. ∀i ∈ I and ∀t ∈ T , if item i
appears in transaction t, then i and t has a binary relation δ denoted as
iδt. The Galois connection of the binary relation is defined by the following
mappings where X ⊆ I, Y ⊆ T :

τ : 2I → 2T , τ(X) = {t ∈ T |∀i ∈ X, iδt} (1)

γ : 2T → 2I , γ(Y ) = {i ∈ I|∀t ∈ Y, iδt} (2)

τ(X) is called the transaction mapping of X. γ(Y ) is called the item map-
ping of Y . γ ◦ τ(X), called the closure of X, gives the common items among
the transactions each of which contains X. With the mappings and the clo-
sure defined above, we can formally define the following important concepts
in association rule mining.

Definition 1. (Support) The support of an itemset X, denoted as supp(X),
is the percentage of the transactions which contain X, i.e., supp(X) = |τ(X)|/
|T |.
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Definition 2. (Confidence) The confidence of an association rule X ⇒ Y ,
denoted as conf(X ⇒ Y ), is the percentage of the transactions which contain
X

∪
Y out of the transactions which contain X only, i.e., conf(X ⇒ Y ) =

|τ(X
∪

Y )|/|τ(X)|.

Definition 3. (Closed Itemset) Let X be a subset of I. X is a frequent
closed itemset iff γ ◦ τ(X) = X.

Definition 4. (Generator) An itemset g ∈ 2I is a generator of a closed
itemset c ∈ 2I iff c = γ ◦ τ(g) and g ⊂ γ ◦ τ(g). g is said to be a minimal
generator of the closed itemset set c if ̸ ∃g′ ⊂ g such that γ ◦ τ(g′) = c.

From Definition 4, we can get that g ⊂ c is true for any generator
g and its closed itemset c. The Galois connection satisfies the following
properties[GW99].

Property 1. Let X, c ∈ 2I . If c is the closed itemset of X, then supp(X) =
supp(c).

Property 2. Let X, X1, X2 ∈ 2I and Y , Y1, Y2 ∈ 2T .

1. X1 ⊆ X2 =⇒ τ(X1) ⊇ τ(X2)

2. Y1 ⊆ Y2 =⇒ γ(Y1) ⊇ γ(Y2)

Property 2 indicates that the transaction mapping of an itemset is larger
than the transaction mapping of its super itemset, and that the common
itemset of a transaction set (i.e., the item mapping of the transaction set) is
larger than the common itemset of a super set of the transaction set. These
properties reflect the nature of itemsets and will be used in theorem proofs
in the following sections.

A few examples are given below to illustrate the concepts defined above.
The following simple dataset involves 5 items and consists of 6 transactions,
i.e., I={A,B,C,D,E} and T={1, 2, 3, 4, 5, 6} where the transactions are
identified using their ID numbers.

For itemsets AC and ABCE, their transaction mappings are τ(AC) =
135 and τ(ABCE) = 35, respectively. The item mapping of transaction set
{3, 5} is γ(35) = ABCE. The support of AC and ABCE is 1/2 and 1/3,
respectively and the confidence of rule AC ⇒ BE is 2/3.
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Transaction ID Items

1 A C D
2 B C E
3 A B C E
4 B E
5 A B C E
6 B C E

Closed itemsets Minimal Generators

AC A
BE B, E
BCE BC, CE
ABCE AB, AE

From the simple dataset, we can generate the following closed itemsets
and corresponding minimal generators:

Association rule mining is usually decomposed into two sub problems: to
find frequent itemsets whose support is larger than or equal to the prede-
fined minimum support and then from those frequent itemsets to generate
association rules that satisfy the minimum support and minimum confidence.
For the popular Mushroom dataset (http://kdd.ics.uci.edu/), with minimum
support 0.8 and minimum confidence 0.8, we can generate 88 association
rules. Table 1 displays 20 of the 88 association rules. The closed itemsets
and their minimal generators are given in Table 2.

3. Redundancy in Association Rules

A challenge to association mining is the huge number of extracted rules.
Recent studies have shown that using closed itemsets and generators to
extract association rules can greatly reduce the number of extracted rules
[PTB+05, Zak00]. However, a considerable amount of redundancy still exists
in the rules extracted based on closed itemsets. Therefore, techniques are
needed to remove the redundancy in order to generate high quality associa-
tion rules. The scope of the redundancy must be carefully and fairly defined
so that the reduction won’t cause information loss or reduce the belief in the
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Table 1: Association rules (Mushroom Dataset, minsupp=0.8, minconf=0.8)

Rules (supp, conf)

1 gill-attachment-f ⇒ veil-type-p (0.97415,1.0)
2 veil-color-w ⇒ veil-type-p (0.97538,1.0)
3 gill-attachment-f,veil-color-w ⇒ veil-type-p (0.97317,1.0)
4 gill-attachment-f,ring-number-o ⇒ veil-type-p (0.89808,1.0)
5 gill-spacing-c,veil-color-w ⇒ veil-type-p (0.81487,1.0)
6 gill-attachment-f,gill-spacing-c ⇒ veil-type-p,veil-color-w (0.81265,1.0)
7 gill-attachment-f,gill-spacing-c⇒ veil-type-p (0.81265,1.0)
8 gill-attachment-f,gill-spacing-c,veil-type-p ⇒ veil-color-w (0.81265,1.0)
9 gill-attachment-f ⇒ veil-type-p,veil-color-w (0.97317,0.99899 )
10 gill-attachment-f ⇒ veil-type-p,ring-number-o (0.89808,0.92191)
11 veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81487,0.83544)
12 veil-color-w ⇒ gill-attachment-f,gill-spacing-c,veil-type-p (0.81265,0.83317)
13 gill-attachment-f,veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81265,0.83506)
14 gill-attachment-f,veil-color-w ⇒ veil-type-p,ring-number-o (0.8971,0.92183)
15 gill-attachment-f,ring-number-o ⇒ veil-type-p,veil-color-w (0.8971,0.9989)
16 gill-spacing-c,veil-color-w ⇒ gill-attachment-f,veil-type-p (0.81265,0.99728)
17 gill-attachment-f ⇒ veil-color-w (0.97317,0.99899)
18 gill-attachment-f ⇒ ring-number-o (0.89808,0.92191)
19 gill-attachment-f,veil-color-w ⇒ gill-spacing-c (0.81265,0.83506)
20 gill-attachment-f,ring-number-o ⇒ veil-color-w (0.8971,0.9989)
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Table 2: Closed Itemsets and Minimal Generators (Mushroom Dataset, minsupp=0.8)

Closed itemsets Minimal Generators Support

{veil-type-p} 1.0
{gill-attachment-f,veil-type-p} {gill-attachment-f} 0.97415
{gill-spacing-c,veil-type-p} {gill-spacing-c} 0.8385
{veil-type-p,veil-color-w} {veil-color-w} 0.97538
{veil-type-p,ring-number-o} {ring-number-o} 0.9217
{gill-attachment-f, {gill-attachment-f,
veil-type-p,veil-color-w} veil-color-w} 0.97317
{gill-attachment-f,veil-type-p, {gill-attachment-f,
ring-number-o} ring-number-o} 0.8981
{gill-spacing-c,veil-type-p, {gill-spacing-c,
veil-color-w} veil-color-w} 0.81487
{gill-attachment-f,gill-spacing-c, {gill-attachment-f,
veil-type-p,veil-color-w} gill-spacing-c} 0.81265
{gill-attachment-f,veil-type-p, {veil-color-w,
veil-color-w,ring-number-o} ring-number-o} 0.8971

resulting rules. Any information loss or belief degradation will cause quality
deterioration of the extracted rules, which makes the redundancy reduction
not worthwhile. In this section, we start with some examples to show the ex-
istence of redundancy in association rules, following that we give a definition
of redundant rules, and then we prove that the elimination of the defined
redundancy won’t reduce the belief in the extracted non-redundant rules. In
Section 4, we describe a concise representation of the defined non-redundant
association rules, from which all association rules can be derived.

3.1. Redundancy Definition

The rules in Table 1 are considered useful based on the predefined min-
imum support and confidence. However, some of the rules actually do not
contribute new information. The consequent concluded by some rules can
be obtained via other rules with higher or the same confidence but without
requiring more conditions to be satisfied. For example, in order to be selected
the rules 5, 8, 13, and 20 in Table 1 require more conditions to be satisfied
than that of rules 2, 6, 11, and 9, respectively, but conclude the same or less
results which can be produced by rules 2, 6, 11, and 9. That means, without
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rules 5, 8, 13, and 20, we still can achieve the same result using other rules.
Therefore, rules 5, 8, 13, and 20 are considered redundant to rules 2, 6, 11,
and 9, respectively. Compared to rules 2, 6, 11, and 9, the redundant rules 5,
8, 13, and 20 have a longer or the same antecedent and a shorter or the same
consequent, respectively, and the confidence of the redundant rules is not
larger than that of their corresponding non-redundant rules. The following
definition defines this type of redundant rules.

Definition 5. (Redundant rules) Let X ⇒ Y and X ′ ⇒ Y ′ be two associ-
ation rules with confidence cf and cf ′, respectively. X ⇒ Y is said to be a
redundant rule to X ′ ⇒ Y ′ if X ′ ⊆ X, Y ⊆ Y ′, and cf ≤ cf ′.

Based on Definition 5, for an association rule X ⇒ Y , if there does not exist
any other rule X ′ ⇒ Y ′ such that the confidence of X ′ ⇒ Y ′ is the same as
or larger than the confidence of X ⇒ Y , X ′ ⊆ X or Y ⊆ Y ′, then X ⇒ Y is
non-redundant. In terms of the requirement of shorter antecedent and longer
consequent, Definition 5 is similar to the definition of min-max association
rules defined in [PTB+05]. However, the definition of min-max association
rules requires that a redundant rule and its corresponding non-redundant
rule must have identical confidence and identical support, while Definition
5 here only requires that the confidence of the redundant rule is not larger
than that of its corresponding non-redundant rule.

Safely eliminating redundancy without damaging the capacity of the re-
maining rules is an essential issue and defining a boundary between re-
dundancy and non-redundancy is crucial to ensure safe redundancy elimi-
nation. Several approaches have been proposed for redundancy elimination
[PBTL99b, Zak00, CG02]. However, none of them have specifically discussed
the boundary. As mentioned above, in this paper, we propose to use Cer-
tainty Factor (CF) defined in Section 3.2 as a criterion to determine the
boundary. If the deletion of a rule does not reduce the CF value of the re-
maining rules, the deletion is considered safe. In the following subsection,
we prove that the elimination of the redundancy defined by Definition 5 will
not reduce the belief in the remaining non-redundant rules.

3.2. Reliable Redundancy Elimination
The certainty factor theory was first introduced in MYCIN [SB75] to

express how accurate and truthful a rule is and how reliable the antecedent
of the rule is. MYCIN was an early expert system developed at Stanford
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University in the early 1970s for the diagnosis of blood clotting diseases.
The certainty factor theory is based on two functions: measure of belief
MB(X, Y ) and measure of disbelief MD(X, Y ) for a rule X ⇒ Y , as given
below.

MB(X,Y ) =


1 P (Y ) = 1
0 P (Y/X) ≤ P (Y )
P (Y/X)−P (Y )

1−P (Y )
otherwise

(3)

MD(X,Y ) =


1 P (Y ) = 0
0 P (Y/X) ≥ P (Y )
P (Y )−P (Y/X)

P (Y )
otherwise

(4)

where, in the context of association rules, P (Y/X) and P (Y ) are the confi-
dence of the rule and the support of the consequent, respectively. The values
of MB(X,Y ) and MD(X, Y ) range between 0 and 1 measuring the strength
of belief or disbelief in consequent Y given antecedent X. MB(X, Y ) weighs
how much the antecedent X increases the possibility of Y occurring. Sim-
ilarly, MD(X, Y ) weighs how much the antecedent X decreases the possi-
bility of Y occurring. If the antecedent completely supports the consequent,
then P (Y/X) will be equal to 1 thus MB(X, Y ) will be 1. If P (Y/X)=0
which indicates that the antecedent completely denies the consequent, then
MD(X, Y )=1 thus the disbelief in the rule reaches its highest value. The
total strength of belief or disbelief in the association captured by the rule is
measured by the certainty factor which is defined as follows:

CF (X,Y ) = MB(X,Y )−MD(X,Y ) (5)

The value of a certainty factor is between 1 and -1. Negative values rep-
resent cases where the antecedent is against the consequent; positive values
represent cases where the antecedent supports the consequent; while CF=0
means that the antecedent does not influence the belief in Y . Obviously,
association rules with high CF values are more useful since they represent
strong positive associations between antecedents and consequents. Indeed,
the aim of association rule mining is to discover strong positive associations
from large amounts of data. Therefore, we propose that the certainty factor
can be used to measure the strength of discovered association rules.

Theorem 1 below states that the CF value of a redundant rule defined
by Definition 5 will never be larger than the CF value of its corresponding
non-redundant rules. It means that, the association between the antecedent
and consequent of the non-redundant rule is stronger than that of the corre-
sponding redundant rule.

Theorem 1. Let X ⇒ Y and X ′ ⇒ Y ′ be two association rules. If Y ′ ⊆ Y ,
and P (Y/X) ≥ P (Y ′/X ′), then CF (X, Y ) ≥ CF (X ′, Y ′).
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Proof. We can prove the theorem, i.e., CF (X,Y ) ≥ CF (X ′, Y ′), by proving
that CF (X,Y ) - CF (X ′, Y ′) ≥ 0.
From Equation (5) we have CF (X,Y ) - CF (X ′, Y ′) = MB(X,Y ) - MB(X ′, Y ′) +
MD(X ′, Y ′)-MD(X,Y ). Hence, we need to prove that MB(X,Y ) - MB(X ′, Y ′)
+ MD(X ′, Y ′)-MD(X,Y ) ≥ 0.

1. Assuming that P (Y ′/X ′) ≥ P (Y ′). From condition Y ′ ⊆ Y , we have P (Y ) ≤
P (Y ′). Because P (Y/X) ≥ P (Y ′/X ′), we have P (Y/X) ≥ P (Y ). Therefore
in this case, MD(X ′, Y ′) - MD(X,Y ) = 0. To prove the theorem, we need
to prove that MB(X,Y ) - MB(X ′, Y ′) ≥ 0. From Equation (3), we have:

MB(X,Y ) - MB(X ′, Y ′) =P (Y/X)−P (Y )
1−P (Y ) − P (Y ′/X′)−P (Y ′)

1−P (Y ′)

=P (Y/X)−P (Y ′/X′)+P (Y ′/X′)P (Y )−P (Y/X)P (Y ′)−P (Y )+P (Y ′)
(1−P (Y ))(1−P (Y ′))

= (P (Y/X)−P (Y ′/X′))(1−P (Y ′))+(P (Y ′)−P (Y ))(1−P (Y ′/X′))
(1−P (Y ))(1−P (Y ′))

Because P (Y ) ≤ P (Y ′) and P (Y/X) ≥ P (Y ′/X ′), we prove that the above
expression ≥ 0. Hence, MB(X,Y ) - MB(X ′, Y ′) ≥ 0

2. Assuming that P (Y ′/X ′) ≤ P (Y ′). In this situation, we have two cases.

(a) P (Y/X) ≤ P (Y )
In this case, MB(X,Y ) - MB(X ′, Y ′) = 0. To prove the theorem, we
need to prove that MD(X ′, Y ′) - MD(X,Y ) ≥ 0. From Equation (4),
we have
MD(X ′, Y ′) - MD(X,Y ) =P (Y ′)−P (Y ′/X′)

P (Y ′) − P (Y )−P (Y/X)
P (Y )

=P (Y/X)P (Y ′)−P (Y ′/X′)P (Y )
P (Y )P (Y ′) ≥ P (Y/X)P (Y ′)−P (Y/X)P (Y )

P (Y )P (Y ′) .

Again, since P (Y ) ≤ P (Y ′), we get MD(X ′, Y ′) - MD(X,Y ) ≥ 0.

(b) P (Y/X) ≥ P (Y )
In this case, MD(X,Y )=0 and MB(X ′, Y ′) = 0. To prove the theorem,
we need to prove MD(X ′, Y ′) + MB(X,Y ) ≥ 0. Because P (Y ′/X ′) ≤
P (Y ′) and P (Y/X) ≥ P (Y ), from the equations (3) and (4), it is true
that MD(X ′, Y ′) + MB(X,Y ) ≥ 0
Combining the results of the above cases, we have CF (X,Y ) - CF (X ′, Y ′) ≥
0, hence CF (X,Y ) ≥ CF (X ′, Y ′).

�
Theorem 1 states that, as long as Y ′ ⊆ Y (no matter whether X ⊆ X ′

or not) and P (Y/X) ≥ P (Y ′/X ′), i.e., the confidence of X ⇒ Y is not less
than the confidence of X ′ ⇒ Y ′, the CF value of X ⇒ Y will not be less
than that of X ′ ⇒ Y ′. According to Definition 5, if Y ′ ⊆ Y , X ⊆ X ′, and
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the confidence of X ⇒ Y is not less than the confidence of X ′ ⇒ Y ′, then
X ′ ⇒ Y ′ is considered redundant to X ⇒ Y . This means that, based on
Theorem 1, the CF value of the redundant rule X ′ ⇒ Y ′ is never higher
than that of its corresponding non-redundant rule X ⇒ Y and thus the
elimination of X ′ ⇒ Y ′ is reliable since it won’t reduce the belief in the
extracted non-redundant rule X ⇒ Y .

4. Concise Bases Representing Non-redundant Association Rules

Developing concise and lossless representations is a promising way to
improve the quality of the discovered associations. Some work has been done
in this area [GMT05, KRG04, PTB+05, Zak04]. Pasquier et al. [PTB+05]
proposed two condensed bases to represent non-redundant association rules,
which are defined as follows:

Definition 6. (Min-max Approximate Basis) Let C be the set of frequent
closed itemsets and G be the set of minimal generators of the frequent closed
itemsets in C. The min-max approximate basis is:

MinMaxApprox = {g ⇒ (c\g)|c ∈ C, g ∈ G, γ ◦ τ(g) ⊂ c}

Definition 7. (Min-max Exact Basis) Let C be the set of frequent closed
itemsets. For each frequent closed itemset c, let Gc be the set of minimal
generators of c. The min-max exact basis is:

MinMaxExact = {g ⇒ (c\g)|c ∈ C, g ∈ Gc, g ̸= c}

Rules with confidence less than 1 are called Approximate rules and rules
with confidence equal to 1 are called Exact rules. For the 88 rules extracted
from the Mushroom dataset mentioned above, there are 17 exact rules and 71
approximate rules. Based on the Min-max approximate basis and the Min-
max exact basis, only 9 exact rules and 25 approximate rules, as displayed in
Table 3 and Table 4, are extracted and considered non-redundant in terms
of the redundancy definition given in [PTB+05]. However, under Definition
5, some of the rules extracted from the min-max bases are redundant such
as rules 5, 6 and 7 in Table 3 which are redundant to rules 1 and 2 in the
same table, and rules 22 to 25 in Table 4 which are redundant to rules 17,
11, 10, and 16, respectively.
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Table 3: Non-redundant Exact Rules Extracted From Min-max Exact Basis (Mushroom
Dataset, minsupp=0.8, minconf=0.8)

Rules (supp, conf)

1 gill-attachment-f ⇒ veil-type-p (0.97415,1.0)
2 gill-spacing-c ⇒ veil-type-p (0.8385,1.0)
3 veil-color-w ⇒ veil-type-p (0.97538,1.0)
4 ring-number-o ⇒ veil-type-p (0.92171,1.0 )
5 gill-attachment-f,veil-color-w ⇒ veil-type-p (0.97317,1.0)
6 gill-attachment-f,ring-number-o ⇒ veil-type-p (0.89808,1.0)
7 gill-spacing-c,veil-colo-w ⇒ veil-type-p (0.81487,1.0)
8 gill-attachment-f,gill-spacing-c ⇒ veil-type-p,veil-color-w (0.81265,1.0)
9 veil-color-w,ring-number-o ⇒ gill-attachment-f,veil-type-p (0.8971,1.0)

4.1. Reliable Bases

Corresponding to the two Min-Max bases, we propose two more concise
bases called Reliable bases which are defined in Definition 8 and Definition
9. Using the Reliable bases, more redundant rules can be eliminated.

Definition 8. (Reliable Approximate Basis) Let C be the set of frequent
closed itemsets and G be the set of minimal generators of the frequent closed
itemsets in C. The Reliable approximate basis is:
ReliableApprox = {g ⇒ (c\g)|c ∈ C, g ∈ G, γ ◦ τ(g) ⊂ c,¬(g ⊇ ((c\c′) ∪ g′))

or conf(g ⇒ (c\g)) > conf(g′ ⇒ (c′\g′))
where ∀c′ ∈ C, ∀g′ ∈ G, g′ ⊂ g, γ ◦ τ(g′) ⊂ c′}

Definition 9. (Reliable Exact Basis) Let C be the set of frequent closed
itemsets. For each frequent closed itemset c, let Gc be the set of minimal
generators of c. The Reliable exact basis is:
ReliableExact = {g ⇒ (c\g)|c ∈ C, g ∈ Gc,¬(g ⊇ ((c\c′) ∪ g′)),

where ∀c′ ∈ C, c′ ⊂ c,∀g′ ∈ Gc′}

It can be proved by the following lemma and theorem that the rules
defined by the Reliable bases are non-redundant.

Lemma 1. Let c ∈ C and C be the set of frequent closed itemsets, let g ∈ G
and G be the set of minimal generators of the closed itemsets in C. If ∃c′ ∈ C,
∃g′ ∈ G, γ ◦ τ(g′) ⊆ c′, g′ ⊂ g, g ⊇ ((c\c′) ∪ g′), and conf(g ⇒ c\g) ≤
conf(g′ ⇒ c′\g′), then g ⇒ c\g is redundant to g′ ⇒ c′\g′.
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Table 4: Non-redundant Approximate Rules Extracted From Min-max Approximate Basis
(Mushroom Dataset, minsupp=0.8, minconf=0.8)

Rules (supp, conf)

1 veil-type-p ⇒ gill-attachment-f (0.97415,0.97415)
2 veil-type-p ⇒ gill-spacing-c (0.8385,0.8385)
3 veil-type-p ⇒ veil-color-w (0.97538,0.97538)
4 veil-type-p ⇒ ring-number-o (0.92171,0.92171)
5 veil-type-p ⇒ gill-attachment-f,veil-color-w (0.97317,0.97317)
6 veil-type-p ⇒ gill-attachment-f,ring-number-o (0.89808,0.89808)
7 veil-type-p ⇒ gill-spacing-c,veil-color-w (0.81487,0.81487)
8 veil-type-p ⇒ gill-attachment-f,gill-spacing-c, veil-color-w (0.81265,0.81265)
9 veil-type-p ⇒ gill-attachment-f,veil-color-w, ring-number-o (0.8971,0.8971)
10 gill-attachment-f ⇒ veil-type-p,veil-color-w (0.97317,0.99899 )
11 gill-attachment-f ⇒ veil-type-p,ring-number-o (0.89808,0.92191 )
12 gill-attachment-f ⇒ gill-spacing-c,veil-type-p, veil-color-w (0.81265,0.83422)
13 gill-attachment-f ⇒ veil-type-p,veil-color-w, ring-number-o (0.8971,0.9209)
14 gill-spacing-c ⇒ veil-type-p,veil-color-w (0.81487,0.97181)
15 gill-spacing-c ⇒ gill-attachment-f,veil-type-p, veil-color-w (0.81265,0.96917)
16 veil-color-w ⇒ gill-attachment-f,veil-type-p (0.97317,0.99773)
17 veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81487,0.83544)
18 veil-color-w ⇒ gill-attachment-f,gill-spacing-c,veil-type-p (0.81265,0.83317)
19 veil-color-w ⇒ gill-attachment-f,veil-type-p,ring-number-o (0.8971,0.91974)
20 ring-number-o ⇒ gill-attachment-f,veil-type-p (0.89808,0.97436)
21 ring-number-o ⇒ gill-attachment-f,veil-type-p,veil-color-w (0.8971,0.97329)
22 gill-attachment-f,veil-color-w ⇒ gill-spacing-c,veil-type-p (0.81265,0.83506 )
23 gill-attachment-f,veil-color-w ⇒ veil-type-p,ring-number-o (0.8971,0.92183)
24 gill-attachment-f,ring-number-o ⇒ veil-type-p, veil-color-w (0.8971,0.9989 )
25 gill-spacing-c,veil-color-w ⇒ gill-attachment-f,veil-type-p (0.81265,0.99728)
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Proof. Let A = c\c′ so that c ⊆ A ∪ c′ and A ∩ c′ = ϕ. Therefore, we
have c\((c\c′) ∪ g′) ⊆ (A ∪ c′)\(A ∪ g′). Since A ∩ c′ = ϕ and g′ ⊆ c′, then
A ∩ g′ = ϕ. So, we have
c\((c\c′) ∪ g′) ⊆ (A ∪ c′)\(A ∪ g′) = ((A ∪ c′)\A)\g′) = c′\g′. That is,
c\((c\c′) ∪ g′) ⊆ c′\g′. Because g ⊇ ((c\c′) ∪ g′), we have c\g ⊆ c\((c\c′) ∪
g′) ⊆ c′\g′, hence, c\g ⊆ c′\g′. Since c\g ⊆ c′\g′, g ⊃ g′, and conf(g ⇒
c\g) ≤ conf(g′ ⇒ c′\g′), according to Definition 5, we can conclude that
g ⇒ c\g is redundant to g′ ⇒ c′\g′.

�
According to Modus tollens inference rule, from Lemma 1, we get the follow-
ing corollary:

Corollary 1. Let c ∈ C and C be the set of frequent closed itemsets, let
g ∈ G and G be the set of minimal generators of the closed itemsets in C,
and γ ◦ τ(g) ⊆ c. If g ⇒ c\g is a non-redundant rule, then ∀c′ ∈ C, ∀g′ ∈ G,
γ ◦ τ(g′) ⊆ c′ and g′ ⊂ g, we have ¬(g ⊇ ((c\c′) ∪ g′)) or conf(g ⇒ c\g) >
conf(g′ ⇒ c′\g′).

Theorem 2. Let c ∈ C and C be the set of frequent closed itemsets, let
g ∈ G and G be the set of minimal generators of the closed itemsets in C,
and γ ◦ τ(g) ⊆ c. g ⇒ c\g is a non-redundant rule iff ∀c′ ∈ C, ∀g′ ∈ G,
γ ◦ τ(g′) ⊆ c′, and ¬(g ⊇ ((c\c′)∪ g′)) or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′).

In Theorem 2, if γ ◦ τ(g) = c is true, g ⇒ c\g is an exact rule, otherwise
an approximate rule. Therefore, Theorem 2 covers both Exact basis and
Approximate basis.

Proof.

1. Completeness: if g ⇒ c\g is a non-redundant rule, then ∀c′ ∈ C, ∀g′ ∈
G, γ ◦τ(g′) ⊆ c′, and ¬(g ⊇ ((c\c′)∪g′)) or conf(g ⇒ c\g) > conf(g′ ⇒
c′\g′). Two cases:

(a) If g′ ⊂ g, the proof follows the conclusion of Corollary 1.
(b) If g′ ⊇ g, then g ⊇ ((c\c′)∪g′) won’t be true, i.e., ¬(g ⊇ ((c\c′)∪g′)).

2. Soundness: if ∀c′ ∈ C, ∀g′ ∈ G, γ ◦ τ(g′) ⊆ c′, and ¬(g ⊇ ((c\c′) ∪ g′))
or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′), then g ⇒ c\g is a non-redundant
rule.
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(a) Assuming that ¬(g ⊇ ((c\c′) ∪ g′)), we get g ⊂ (c\c′) ∪ g′, or
g ∩ ((c\c′) ∪ g′) = ∅, or (g ∩ ((c\c′) ∪ g′) ⊂ ((c\c′) ∪ g′)) ∧ (g ∩
((c\c′) ∪ g′) ⊂ g).
(1). In the case that g ⊂ (c\c′) ∪ g′ is true, assuming that g ⇒ c\g
is redundant, then we get, ∃c′ ∈ C, ∃g′ ∈ G, and γ ◦ τ(g′) ⊆ c′

(hence g′ ⊂ c′) such that g′ ⊆ g and c′\g′ ⊇ c\g.
From c′\g′ ⊇ c\g and g′ ⊂ c′, we have c′ ⊇ c′\g′ ⊇ c\g. Since
γ ◦ τ(g) ⊆ c thus g ⊂ c, obviously we have c = (c\g) ∪ g and
(c\g) ∩ g = ϕ, therefore, we have c\(c\g) = g.
Because c′ ⊇ c\g, hence c\c′ ⊆ c\(c\g) = g. Therefore, we have
c\c′ ⊆ g. From g′ ⊆ g, we get (c\c′) ∪ g′ ⊆ g ∪ g′ = g, i.e.,
(c\c′) ∪ g′ ⊆ g which contradicts to (c\c′) ∪ g′ ⊃ g.
Therefore, the assumption is false, i.e., g ⇒ c\g is non-redundant.
(2). In the case that g ∩ ((c\c′) ∪ g′) = ∅ is true, then g ∩ g′ = ∅,
thus g ⊇ g′ is always false. Therefore, g ⇒ c\g can’t be redundant
to g′ ⇒ c′\g′.
(3). In the case that (g∩ ((c\c′)∪ g′) ⊂ ((c\c′)∪ g′))∧ (g∩ ((c\c′)∪
g′) ⊂ g) is true, there must exist some x such that x ∈ c\c′ and
x ̸∈ g or x ∈ g′ and x ̸∈ g. The former will make (c\g) ⊂ (c′\g′)
false and the latter will make g ⊃ g′ false. Therefore, g ⇒ c\g will
never be redundant to g′ ⇒ c′\g′.

(b) Assuming that conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′). From Definition
5, we can directly conclude that g ⇒ c\g is not redundant.

�
Thus we proved that, the rules defined by the Reliable bases are non-

redundant. According to our definition of redundant rules given in Definition
5, for two rules X ⇒ Y and X ′ ⇒ Y ′, as long as X ⊆ X ′, Y ′ ⊆ Y , and
the confidence of X ⇒ Y is not less than that of X ′ ⇒ Y ′, X ′ ⇒ Y ′ is
considered redundant to X ⇒ Y no matter what the supports of the two
rules are. However, for Min-Max basis rules, as proved by Proposition 3 and
Proposition 4 in [PTB+05], the support and confidence of a non-redundant
rule in the Min-Max basis must be identical to the support and confidence
of its corresponding redundant rule, respectively. Our relaxed requirement
to redundancy allows more rules to be considered redundant and therefore
eliminated. Even though more rules are eliminated based on the Reliable
basis, the elimination is reliable because, as explained in Section 3.2, the
CF value of a redundant rule is never higher than that of its corresponding
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non-redundant rule.
The following property states that the generator of a closed itemset won’t

be larger than or equal to the generator of its super closed itemset. There-
fore, the rules generated from a closed itemset won’t be redundant to the
rules generated from its super closed itemset. Thus when calculating non-
redundant exact rules from a closed itemset c using the Reliable Exact Basis,
only sub closed itemsets of c need to be checked. This property is reflected in
the definition of Reliable Exact Basis where only subsets c′ ⊂ c are checked.

Property 3. Let g and g′ be minimal generators of c and c′, respectively, c
and c′ be closed itemsets, then c ⊂ c′ ⇒ ¬(g ⊇ g′).

Proof. Assume that g ⊇ g′. From Property 2-(1) and Property 2-(2), we
get g ⊇ g′ ⇒ c ⊇ c′.
Negating both sides of the above implication by using Modus tolen inference
rule, we have ¬(c ⊇ c′) ⇒ ¬(g ⊇ g′). That is, (c ⊂ c′) ∨ (c ∩ c′ = ∅) ∨
((c ∩ c′ ̸= ∅) ∧ (c ̸⊂ c′)) ⇒ ¬(g ⊇ g′). Because (c ⊂ c′), c ∩ c′ = ∅, and
(c∩ c′ ̸= ∅)∧ (c ̸⊂ c′) are exclusive events, they can’t be true simultaneously.
Therefore we have (c ⊂ c′) ⇒ ¬(g ⊇ g′).

�

The generic representation resulting from coupling the Reliable Exact
Basis with the Reliable Approximate Basis defines a more concise set of as-
sociation rules which are non-redundant, sound and lossless. The algorithms
to extract non-redundant exact rules and non-redundant approximate rules
based on the Reliable bases are given below:

Algorithm 1. ReliableExactRule(Closure)
Input: Closure: a set of frequent closed itemsets
Output: A set of non-redundant exact rules.

1. exactRules := ∅
2. for each c ∈ Closure
3. for each g ∈ G.c (G.c is the set of minimal generators of c)
4. if ∀c′ ∈ Closure such that c′ ⊂ c and ∀g′ ∈ G.c′

5. we have ¬(g ⊇ ((c\c′) ∪ g′))
6. then exactRules := exactRules ∪ {g ⇒ (c\g)}
7. end
8. end
9. Return exactRules
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Algorithm 2. ReliableApproxBasis(Closure)
Input: Closure: a set of frequent closed itemsets

Generator: a set of minimal generators

Output: A set of non-redundant approximate rules.
1. approxRules := ∅
2. for each c ∈ Closure
3. for each g ∈ Generator such that γ ◦ τ(g) ⊂ c
4. if ∀c′ ∈ Closure, ∀g′ ∈ G such that γ ◦ τ(g′) ⊂ c′

and g′ ⊆ g
5. we have ¬(g ⊇ ((c\c′) ∪ g′))

or conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′)
6. then approxRules := approxRules ∪ {g ⇒ (c\g)}
7. end-for
8. end-for
9. Return appproxRules

For the Mushroom example dataset, 6 non-redundant exact rules are ex-
tracted based on the Reliable Exact basis and 21 non-redundant approximate
rules are extracted based on the Reliable Approximate basis. Rules 5, 6, and
7 in Table 3 extracted based on the Min-max Exact basis and rules 22, 23,
24 and 25 in Table 4 extracted based on the Min-max Approximate basis
are considered redundant under the Reliable Exact basis and the Reliable
Approximate basis, respectively, and thus eliminated.

4.2. Deriving Association Rules from the Reliable Bases

The proposed reliable bases are lossless, which means that from the bases
we can construct all association rules without scanning the dataset. Algo-
rithms have been proposed to derive all association rules from the Min-max
bases [PTB+05]. In this section, we provide algorithms that can derive all
exact and approximate rules from the Reliable bases.

4.2.1. Deriving Exact Association Rules

Based on the definitions 7 and 9, the Min-max exact basis can be de-
scribed as:

MinMaxExact = {g ⇒ (c\g)|c ∈ C, g ∈ Gc, g ̸= c}
= {g ⇒ (c\g)|c ∈ C, g ∈ Gc,
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¬(g ⊇ ((c\c′) ∪ g′)) for all c′ ∈ C, c′ ⊂ c, g′ ∈ Gc′} ∪
{g ⇒ (c\g)|c ∈ C, g ∈ Gc,

g ⊇ ((c\c′) ∪ g′) for some c′ ∈ C, c′ ⊂ c, g′ ∈ Gc′}
= ReliableExact ∪NonReliableExact

Where NonReliableExact = {g ⇒ (c\g)|c ∈ C, g ∈ Gc, g ⊇ ((c\c′) ∪
g′) for some c′ ∈ C, c′ ⊂ c, g′ ∈ Gc′}

The equation above shows that the Reliable exact basis is a subset of the
Min-max exact basis. Pasquier et al. have proved that all exact associa-
tion rules can be deduced from the Min-max exact basis [PTB+05]. Given
ReliableExact, if we can deduce NonReliableExact from ReliableExact,
then we will be able to deduce all exact association rules. The following the-
orem allows us to generate all NonReliableExact rules from ReliableExact.

Theorem 3. Let C be the set of frequent closed itemsets. For rules r1 : g1 ⇒
c1\g1 and r2 : g2 ⇒ c2\g2 where c1, c2 ∈ C, g1 ∈ Gc1 and g2 ∈ Gc2, r1 is a
NonReliable exact rule iff c1 ⊃ c2 and (g1 ⊇ (c1\c2) ∪ g2).

Proof.

1. Soundness: if c1 ⊃ c2 and g1 ⊇ (c1\c2) ∪ g2, then r1 is a NonReliable
exact rule.
According to the definition of Min-max exact basis, both r1 and r2 are
Min-max exact rules. Since g1 ⊇ (c1\c2)∪g2, according to the definition
of Reliable exact basis, r1 must not be a Reliable exact rule, i.e., r1 ∈
NonReliableExact.

2. Completeness: if r1 is a NonReliable exact rule, then c1 ⊃ c2 and g1 ⊇
(c1\c2) ∪ g2.
The proof follows the definition of NonReliableExact.

�

According to Theorem 3, for r2 : g2 ⇒ c2\g2 where c2 is a closed item-
set and g2 is a generator (i.e., r2 is a rule in MinMaxExact), if we can
find a super set c1 ⊃ c2, and (g1 ⊇ (c1\c2) ∪ g2), then we can deduce:
r1 : g1 ⇒ c1\g1 is a NonReliable basis rule. This means, from a rule in
MinMaxExact, we can deduce a NonReliable basis rule. Algorithm 3 given
below takes ReliableExact as the initial value for MinMaxExact and gener-
ates all NonReliable basis rules from ReliableExact so that MinMaxExact
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will be completed progressively during the course. Theorem 3 ensures that
we can deduce all NonReliable basis rules. On the completion of executing
Algorithm 3, MinMaxExact will contains all ReliableExact basis rules and
all NonReliable basis rules as well.

For Algorithm 3, initially, the variable MinMaxExact is assigned with
ReliableExact. Steps 3-7 generate exact association rules from a basis rule
in current MinMaxExact. Steps 8 to 13 deduce possible NonReliable basis
rules and add them into the current MinMaxExact.

Algorithm 3. AllExactFromReliable(ReliableExact)
Input: ReliableExact: reliable exact basis
Output: AllExact: A set of all exact association rules

1. AllExact := ∅, MinMaxExact := ReliableExact
2. for each rule (r1 : a1 ⇒ c1, r1.supp) ∈ MinMaxExact
3. for each subset c2 ⊂ c1
4. AllExact := AllExact ∪ {(r2 : a1 ⇒ c2, r1.supp)}
5. if (r3 : a1 ∪ c2 ⇒ c1\c2, r1.supp) ̸∈ AllExact
6. then AllExact := AllExact ∪ {r3}
7. end
8. for each super set c3 ⊃ (c1 ∪ a1) and

c3 is a closed itemset
9. for each a3 ∈ Gc3

10. if a3 ⊇ ((c3\(c1 ∪ a1)) ∪ a1)
11. then MinMaxExact := MinMaxExact ∪

{a3 ⇒ (c3\a3)}
12. end
13. end
14.end
15.return AllExact

4.2.2. Deriving Approximate Association Rules

Similar to the Min-max exact basis, the Reliable approximate basis is a
subset of the Min-max approximate basis. Based on the definitions 6 and 8,
the Min-max approximate basis can be described as:

MinMaxApprox = {g ⇒ (c\g)|c ∈ C, g ∈ G, γ ◦ τ(g) ⊂ c}
= {g ⇒ (c\g)|c ∈ C, g ∈ Gc,¬(g ⊇ ((c\c′) ∪ g′)) or

conf(g ⇒ c\g) > conf(g′ ⇒ c′\g′)for all c′ ∈ C, g′ ∈ G, γ ◦ τ(g) ⊂ c} ∪
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{g ⇒ (c\g)|c ∈ C, g ∈ Gc, g ⊇ ((c\c′) ∪ g′) and conf(g ⇒ c\g) ≤ conf(g′ ⇒ c′\g′)
for some c′ ∈ C, g′ ∈ G, γ ◦ τ(g′) ⊂ c′}

= ReliableApprox ∪NonReliableApprox

Where NonReliableApprox = {g ⇒ (c\g)|c ∈ C, g ∈ Gc, g ⊇ ((c\c′)∪g′) and
conf(g ⇒ c\g) ≤ conf(g′ ⇒ c′\g′) for some c′ ∈ C, g′ ∈ G, γ ◦ τ(g′) ⊂ c′}

Similar to deriving exact rules, given ReliableApprox, if we can deduce
NonReliableApprox from ReliableApprox, then we would be able to deduce
all approximate association rules. The following theorem shows that, for
r2 : g2 ⇒ c2\g2, c2 ∈ C and g2 ∈ G (i.e., r2 is a rule in MinMaxApprox), if
for some c1 ∈ C and some g1 ∈ G, (g1 ⊇ (c1\c2)∪g2) and conf(r1) ≤ conf(r2)
are true, then we can deduce: r1 : g1 ⇒ c1\g1 is a rule inNonReliableApprox.
This means that, from a rule in MinMaxApprox, we may deduce a
NonReliableApprox rule.

Theorem 4. Let C be the set of frequent closed itemsets and G be the set of
minimal generators. For rules r1 : g1 ⇒ c1\g1 and r2 : g2 ⇒ c2\g2 where c1,
c2 ∈ C, g1, g2 ∈ G, γ ◦ τ(g1) ⊂ c1, and γ ◦ τ(g2) ⊂ c2. r1 is a NonReliable
approximate rule iff (g1 ⊇ (c1\c2) ∪ g2) and conf(r1) ≤ conf(r2).

Proof.

1. Soundness: if (g1 ⊇ (c1\c2) ∪ g2) and conf(r1) ≤ conf(r2), then r1 is a
NonReliable approximate rule.
According to the definition of Min-max approximate basis, both r1
and r2 are Min-max approximate rules. Since g1 ⊇ (c1\c2) ∪ g2 and
conf(r1) ≤ conf(r2), according to the definition of Reliable approx
basis, r1 must not be a reliable approximate rule. Therefore, r1 ∈
NonReliableApprox.

2. Completeness: if r1 is a NonReliable approximate rule, then (g1 ⊇
(c1\c2) ∪ g2) and conf(r1) ≤ conf(r2).
The proof follows the definition of NonReliableApprox.

�

We designed the following algorithm AllApproxFromReliable to derive
all approximate rules from the Reliable Approximate basis. The algorithm
AllApproxFromReliable takes ReliableApprox as the initial value for
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MinMaxApprox. Steps 4-8 generate approximate rules from an approxi-
mate basis rule in current MinMaxApprox. Steps 9 to 14 deduce
NonReliableApprox basis rules and add them into the currentMinMaxApprox.
Therefore, during the process of deriving approximate rules, we generate all
NonReliableApprox rules so that MinMaxApprox will be completed pro-
gressively during the course. Theorem 4 ensures that we can deduce all
NonReliableApprox basis rules. On the completion of executing Algorithm
4, MinMaxApprox will contain all ReliableApprox basis rules and also all
NonReliableApprox basis rules. Steps 17 to 21 in Algorithm 4 derive all
approximate rules from these basis rules, which perform the same task as
the steps 11 to 17 in the approximate reconstruction algorithm proposed in
[PTB+05].

Algorithm 4. AllApproxFromReliable(ReliableApprox)
Input: ReliableApprox: reliable approximate basis
Output: AllApprox: A set of all approximate association rules

1. AllExact := ∅, MinMaxApprox := ReliableApprox
2. for i = 2 to maximum size of closed itemsets
3. for rule (r1 : a1 ⇒ c1, r1.supp, r1.conf) ∈ MinMaxApprox

and |c1| = i
4. for subset c2 ⊂ c1
5. if (r2 : a1 ⇒ c2, r2.supp, r2.conf) ̸∈ AllApprox
6. and r2.conf ̸= 1//r2 is not an exact rule
7. then AllApprox := AllApprox ∪

{(r2 : a1 ⇒ c2, r1.supp, r1.conf)}
8. end-for
9. for each closed itemset c3
10. for generator a such that a ⊇ a1 and a.closure ⊂ c3
11. if a ⊇ ((c3\(c1 ∪ a1)) ∪ a1) and r1.conf ≥ c3.supp

a.supp

12. then MinMaxApprox := MinMaxApprox ∪
{(a ⇒ (c3\a), c3.supp, c3.suppa.supp

)}
13. end-for
14. end-for
15. end-for
16. end-for
17. for rule (r1 : a1 ⇒ c1, r1.supp, r1.conf) ∈ AllApprox
18. for each subset c3 ⊆ c2 where c2 = a1.closure\a1,
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(a1.closure).supp
a1.supp

= 1
19. AllApprox := AllApprox ∪

{(a1 ∪ c3 ⇒ c1\c3, r1.supp, r1.conf)}
20. end-for
21. end-for
22.return AllExact

In Algorithm 4, a rule is denoted as a 3-tuple (r, support, confidence),
r.supp, r.conf , and r.closure represent the support, confidence, and closure
of r, respectively.

5. Experiments and Evaluation

We have conducted experiments to evaluate the effectiveness of the pro-
posed Reliable bases. In this section, we first discuss the experimental hy-
potheses, then separately report on the experiments used to test the two
hypotheses including descriptions of the datasets used in the experiments,
evaluation metrics, experimental results and discussion.

5.1. Hypotheses

As discussed in the Introduction, three factors should be taken into con-
sideration to evaluate the effectiveness of non-redundant rule mining algo-
rithms. Firstly, the algorithm should be able to remove as much redundancy
as possible. The smaller the size of the extracted rule set, the easier and
more effective it is to use and maintain the rules. Secondly, all association
rules should be able to be derived from the extracted non-redundant rules.
This indicates that the extracted non-redundant rules capture all the infor-
mation contained in the whole rule set. Instead of using the whole rule set,
only using the non-redundant rules will not result in any loss of information
for the application. Thirdly, the extracted non-redundant rules should retain
the same inference capacity. That means, any problems that can be solved
by using the whole rules can be solved by using the non-redundant rules.
In Section 4, we have proved theoretically that the Reliable bases are more
concise than the Min-Max bases and thus should contain a lesser number
of basis rules. We have also proved that, from the Reliable bases, we can
deduce all association rules. In this section, we will experimentally evaluate
the Reliable bases in terms of the following two hypotheses which cover the
three factors mentioned above.
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• Hypothesis 1: The number of non-redundant rules generated by the
Reliable bases is not larger than the number of non-redundant rules
generated by the Min-Max bases for both exact rules and approximate
rules. Both the Reliable bases and the Min-Max bases can deduce all
association rules from the bases for both exact rules and approximate
rules.

• Hypothesis 2: The non-redundant rules generated by the Reliable bases
can provide a similar or even a higher capability to solve problems as
compared to the non-redundant rules generated by the Min-Max bases.

5.2. Experiments for Testing Hypothesis 1

5.2.1. Datasets

The datasets used in the experiment for testing hypothesis 1 were ob-
tained from UCI KDDMachine Learning Repository (http://kdd.ics.uci.edu/).
The Mushroom dataset contains 8,124 transactions each of which describes
the characteristics of one mushroom object. Originally each mushroom object
has 23 attributes some of which are multiple value attributes. After convert-
ing the multiple value attributes to binary ones, the number of attributes of
each object becomes 126. The other datasets include the Connect-4, Chess
datasets which were derived from their respective game steps, the Breast
Cancer dataset which was obtained from the University of Wisconsin Hos-
pitals, the Annealing dataset containing annealing instances, and the Flare2
dataset containing solar flare instances each of which represents captured
features for one active region on the sun. Table 5 shows some characteristics
of the 6 datasets. Some of these datasets are very dense such as Connect-4
and Chess. They produce large numbers of frequent itemsets and thus a huge
number of association rules even for very high values of support. Redundancy
elimination is particularly important to these dense datasets.

5.2.2. Evaluation Metrics

Hypothesis 1 is concerned with the size of the extracted rule sets. The
evaluation metric is straightforward. We simply check the number of rules
generated by the Min-Max bases and the Reliable bases to compare their
effectiveness in generating non-redundant rules. In order to measure the
improvement achieved via use of the Reliable bases, we designed the following
metrics to measure the volume of the rules reduced by using the Min-Max
bases or the volume reduced by using the Reliable bases. Let NTotal be
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Table 5: Dataset characteristics

Datasets #transactions #original attributes #attributes after conversion

Mushroom 8,124 23 126
Connect-4 67,557 43 129
Chess 3,196 36 108
Breast Cancer 699 10 91
Annealing 898 38 276
Flare2 1,066 13 50

Table 6: Number of exact rules and reduction (Mushroom, minconf=0.5)

Total exact rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.3 2,142 453, 79% 117, 95% 74%
0.4 493 145, 71% 51, 90% 65%
0.5 161 44, 73% 18, 89% 60%
0.6 46 20, 57% 12, 74% 40%
0.7 27 12, 56% 6, 78% 50%

Average 67% 85% 58%

the number of total rules (exact rules or approximate rules), NMM be the
number of Min-Max basis rules (exact rules or approximate rules), and NRE

be the number of Reliable basis rules (exact rules or approximate rules),
three reduction ratios are defined as below:

• Reduction ratio achieved by Min-Max against the entire rule set:
RMM

Total = (NTotal −NMM)/NTotal

• Reduction ratio achieved by Reliable against the entire rule set:
RRE

Total = (NTotal −NRE)/NTotal

• Reduction ratio achieved by Reliable against Min-Max:
RRE

MM = (NMM −NRE)/NMM

5.2.3. Results and Discussion

The experiment results are given in Table 6 to Table 17. For all tests,
the minconf was set to 0.5. Table 6 to Table 11 present the test results
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Table 7: Number of exact rules and reduction (Connect-4, minconf=0.5)

Total exact rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.94 4,862 1,110, 77% 50, 99% 95%
0.95 2,096 684, 67% 32, 98% 95%
0.96 746 354, 53% 15, 98% 96%
0.97 245 161,34% 7, 97% 96%

Average 58% 98% 96%

Table 8: Number of exact rules and reduction (Chess, minconf=0.5)

Total exact rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.90 132 116, 12% 3, 98% 97%
0.91 59 59, 0% 2, 97% 97%
0.93 32 32, 0% 2, 94% 94%
0.95 4 4, 0% 1, 75% 75%

Average 3% 91% 91%

of the exact bases, and Table 12 to Table 17 present the test results of the
approximate bases. In this experiment, firstly we confirmed that from both
the MinMax bases and the Reliable bases we can deduce all exact rules and
all approximate rules as indicated in the second column of tables 6 to 17. For
example, when Minsupp is 0.3, both MinMax and Reliable bases produce
2,142 exact rules and 21,377 approximate rules for the Mushroom dataset as
showed in Table 6 and Table 12, respectively. Secondly, we tested the re-
duction ratio between the size of the MinMax bases and the size of Reliable
bases for different Minsupp settings.

We surprisingly found that the reduction ratios achieved by the Reliable
bases against the Min-Max bases are very high. As indicated by the aver-
age reduction ratios displayed in the bottom row of tables 6 to 12, for exact
rules, the highest average reduction ratio is 96% for the Connect-4 dataset.
Even for the lowest average reduction ratio which is 58% for the Mushroom
dataset, more than half of the exact rules generated by the Min Max base are
considered redundant and therefore not generated by the Reliable base. The
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Table 9: Number of exact rules and reduction (Breast cancer, minconf=0.5)

Total exact rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.2 79 79, 0% 10, 87% 87 %
0.3 74 74, 0% 9, 88% 88%
0.4 25 25, 0% 7, 72% 72%

Average 0% 82% 82%

Table 10: Number of exact rules and reduction (Annealing, minconf=0.5)

Total exact rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.3 650 194, 70% 44, 93% 77%
0.4 265 89, 66% 23, 91% 74%
0.5 104 44, 58% 7, 93% 84%
0.6 44 28, 36% 6, 86% 79%

Average 58% 91% 79%

highest reduction ratio was obtained for the Chess dataset for Minsupp=0.9.
In this case, the Min-Max exact basis generates 116 exact rules as shown in
Table 8, while the Reliable exact basis generates only 3 exact rules. 113
out of the 116 rules are considered redundant by the Reliable basis and the
reduction ratio is 97% which is a very significant reduction. For the approx-
imate bases, the reduction is also considerably high. The highest average
reduction ratio is 77% for the Connect-4 dataset. As an example, we can see
from Table 13, when Minsupp was set to 0.94, the Min-Max approximate
basis generates 49,407 approximate basis rules, while the Reliable approxi-
mate basis generates 10,220 basis rules with a reduction ratio of 79%.

After carefully checking the rules in each of the bases, we found that there
indeed exists a great amount of redundancy in the Min-Max basis for each of
the tests we conducted. For example, in the case of Minsupp = 0.5 for the
Annealing dataset, for the rule carbon-00 ⇒ product-type-C in the Reliable
exact basis, we found that the following 13 rules in the Min-Max exact basis
are redundant to carbon-00 ⇒ product-type-C:
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Table 11: Number of exact rules and reduction (Flare2, minconf=0.5)

Total exact rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.3 957 241, 75% 41, 96% 83%
0.4 364 154, 58% 47, 87% 69%
0.5 383 107, 72% 20, 95% 81%
0.6 230 90, 61% 11, 95% 88%

Average 66% 93% 80%

carbon-00,hardness-00 ⇒ product-type-C
carbon-00,strength-000 ⇒ product-type-C
carbon-00,bore-0000 ⇒ product-type-C
carbon-00,class-3 ⇒ product-type-C
carbon-00,hardness-00,strength-000 ⇒ product-type-C
carbon-00,hardness-00,bore-0000 ⇒ product-type-C
carbon-00,hardness-00,class-3 ⇒ product-type-C
carbon-00,strength-000,bore-0000 ⇒ product-type-C
carbon-00,strength-000,class-3 ⇒ product-type-C
carbon-00,bore-0000,class-3 ⇒ product-type-C
carbon-00,hardness-00,strength-000,bore-0000 ⇒ product-type-C
carbon-00,hardness-00,bore-0000,class-3 ⇒ product-type-C
carbon-00,strength-000,bore-0000,class-3 ⇒ product-type-C

Similarly for the approximate bases, for example, the following 9 rules in
the MinMax approximate basis are redundant to the reliable rule steel-A
⇒ product-type-C,strength-000 (0.4844, 0.9886) in the Reliable approximate
basis:

steel-A,carbon-00 ⇒ product-type-C,strength-000, (0.47327,0.9884)
steel-A,hardness-00 ⇒ product-type-C,strength-000, (0.30512,0.9821)
steel-A,bore-0000 ⇒ product-type-C,strength-000, (0.4655,0.9882)
steel-A,class-3 ⇒ product-type-C,strength-000, (0.3853,0.9858)
steel-A,carbon-00,bore-0000 ⇒ product-type-C,strength-000, (0.4543,0.9879)
steel-A,carbon-00,class-3 ⇒ product-type-C,strength-000, (0.3775,0.9854)
steel-A,hardness-00,bore-0000⇒ product-type-C,strength-000, (0.3040,0.9820)
steel-A,bore-0000,class-3 ⇒ product-type-C,strength-000, (0.3731,0.9853)
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steel-A,carbon-00,bore-0000,class-3⇒ product-type-C,strength-000, (0.3653,0.9850)

The 13 exact rules in the Min-Max exact basis have the same consequent
but a larger antecedent than those of the rule carbon-00 ⇒ product-type-C,
their support values are different, but they have exactly the same confidence
and the same CF value. In real world problem solving, if we know that
carbon-00 is true, by applying the rule carbon-00 ⇒ product-type-C, we can
conclude that product-type-C is true. We don’t have to know hardness-00,
strength-000, or bore-0000, etc. in order to reach this conclusion. That
means, all the 13 rules are useless if we have the rule carbon-00 ⇒ product-
type-C at hand. Similarly, for the 9 approximate rules in the Min-Max ap-
proximate basis, they have the same consequent but a larger antecedent than
that of the reliable rule steel-A ⇒ product-type-C,strength-000. Both the sup-
port and confidence values, as indicated as (support, confidence) at the end
of each rule, of these 9 rules are smaller than those of the reliable rule. There-
fore, according to Theory 1, their CF value won’t be greater than that of the
reliable rule. Therefore, if we know that steel-A is true, by applying the
rule steel-A ⇒ product-type-C,strength-000, we can conclude that product-
type-C,strength-000 is true. We don’t have to know hardness-00, class-3, or
bore-0000, etc. in order to reach this consequence. That means, all the 9
rules are useless or redundant if we have the rule steel-A ⇒ product-type-
C,strength-000 at hand. By eliminating these redundant rules, the size of
the Reliable bases is much smaller than that of the Min-Max bases, but the
capacity of solving problems remains the same. This reduction provides a
great potential to improve the effectiveness of using the extracted association
rules.

The shortcoming of the proposed method is its efficiency. The complex-
ity of the proposed Reliable exact and approximate algorithms are O(n2)
and O((mn)2), respectively, while the Min-Max exact and approximate algo-
rithms areO(n) andO(mn), respectively, where n is the number of generators
andm is the number of closed itemsets. For large datasets, the proposed algo-
rithms may have efficiency problems to generate the non-redundant Reliable
basis rules. However, since the number of closed itemsets and the num-
ber of generators are usually much smaller than that of frequent itemsets,
generating the non-redundant Reliable basis rules will still be more efficient
than generating the entire rules using frequent itemsets. The proposed algo-
rithms have the potential to be implemented in a parallel way. For both the
reliable exact and approximate bases, the non-redundant association rules
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Table 12: Number of approximate rules and reduction (Mushroom, minconf=0.5)

Total approx rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.3 21,377 2,634, 88% 1,970, 91% 25%
0.4 2,528 465, 82% 361, 86% 22%
0.5 835 175, 79% 135, 84% 23%
0.6 228 59, 74% 52, 77% 12%
0.7 161 39, 76% 34, 79% 13%

Average 80% 83% 19%

Table 13: Number of approximate rules and reduction (Connect-4, minconf=0.5)

Total approx rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.94 199,560 49,407, 75% 10,220, 95% 79%
0.95 77,206 24,794, 68% 5,245, 93% 79%
0.96 26,856 11,452, 57% 2,538, 91% 78%
0.97 7,895 4,439, 44% 1,214, 85% 73%

Average 61% 91% 77%

are generated from and only from the closed itemsets and their correspond-
ing minimal generators, and the process of generating rules from one closed
itemset is independent from the process of generating other rules using other
closed itemsets. Moreover, during the whole process, the closed itemsets and
minimal generators remain unchanged. Therefore, a possible approach could
be to divide the set of closed itemsets into several subsets and conduct the
rule mining on the subsets in parallel. The efficiency issue will be addressed
in our future work and detailed parallel algorithms will be developed in par-
ticular.

5.3. Experiments for Testing Hypothesis 2

Recommender systems have been widely used in many e-commerce sites to
help users find products or items of interest [SKKR00]. The most popularly
used technique is the collaborative filtering method [SKR01] that makes rec-
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Table 14: Number of approximate rules and reduction (Chess, minconf=0.5)

Total approx rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.90 1,0614 8,371, 21% 2,483, 77% 70%
0.91 5,785 5,050 , 13% 1,571, 73% 69%
0.93 2,338 1,948, 17% 688, 71% 65%
0.95 468 459, 2% 196, 58% 57%

Average 13% 70% 65%

Table 15: Number of approximate rules and reduction (Breast cancer, minconf=0.5)

Total approx rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.2 5,917 3,661, 38% 2,592, 56% 26%
0.3 5,134 3,269, 36% 2,391, 53% 27%
0.4 1,207 966, 20% 851, 29% 12%

Average 31% 46% 22%

ommendations based on users’ previous ratings to products (also called user
profiles). Recommender systems usually work effectively when user ratings
are extensive and the applicable dataset has a high information density. One
of the shortcomings of the collaborative-filtering recommendation approach
is that it must be initialized with a large amount of user’s rating data in or-
der to make meaningful recommendations. When there is insufficient rating
data, e.g., a user has very few ratings in their profile, recommender systems
may fail to provide recommendations that interest the user. In this section,
we report the experimental results that show that applying association rules
to product recommendation can improve the quality of recommendations.
Especially, we show that using the Reliable rules results in the same or bet-
ter performance as compared to using the Min-max rules even the number
of the Reliable rules is less than that of the Min-Max rules.
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Table 16: Number of approximate rules (Annealing, minconf=0.5)

Total approx rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.3 5,052 865, 83% 554, 89% 36%
0.4 1,835 435, 76% 296, 84% 32%
0.5 1,186 300, 75% 218, 82% 27%
0.6 416 137, 67% 102, 75% 26%

Average 75% 83% 30%

Table 17: Number of approximate rules and reduction (Flare2, minconf=0.5)

Total approx rules MinMax Reliable
Minsupp (NTotal) (NMM ,RMM

Total) (NRE,R
RE
Total) RRE

MM

0.3 7,604 1216, 84% 710,91% 42%
0.4 2,420 644, 73% 479, 81% 30%
0.5 5,599 1081, 81% 730, 87% 34%
0.6 5,368 1203, 78% 687, 87% 43%

Average 79% 87% 37%

5.3.1. User Profile Expansion Using Association Rules

For collaborative filtering recommender systems, a user’s profile consists
of the user’s ratings of items. Very often the number of items is huge and
only a very small number of items were rated by each user. Ziegler et al.
have proposed a technique to convert users’ item ratings to item categories
ratings [ZLST04]. The resulting user profiles are more dense because the
number of categories is usually much smaller than that of items. In this pa-
per, by using Ziegler’s technique we construct a dataset consisting of users’
item category ratings. Even though the new dataset is more dense than the
original dataset, there still exists many users who have a short list of cate-
gories. In order to improve the quality of recommendations being made to
users with short profiles, we propose to use association rules to expand user
profiles. We firstly construct a transactional dataset, each of the transac-
tions in the dataset consists of the categories that interest a user. Secondly
we mine the transactional dataset for association rules between categories.
Each rule represents the association between two sets of categories. These

33



rules allow us to discover categories that may also be of interest to users.
Finally, we expand the user profiles with the association rules. For each
user profile which provides a list of categories that the user is interested,
we generate all combinations from the categories. A rule whose antecedent
is matched with one of the combinations will be used to expand the user’s
profile by adding the rule’s consequent, which is a set of categories, into the
profile. Our experiments show that the expanded user profiles have the po-
tential to improve recommendation quality over profiles that have not been
expanded and, most importantly, the non-redundant rules discovered using
our proposed methods can achieve the same as or even better performance
than the rules discovered using the Min-Max methods.

5.3.2. Datasets

For this investigation, we use the BookCrossing dataset obtained from
http://www.informatik.uni-freiburg.de/cziegler/BX which contains 278,858
users, 271,379 books and about 1,149,780 ratings given to those books by
the users. For the purpose of evaluation, each user profile (i.e., a set of
ratings) was split into two parts with a ratio of 50-50. 50% of the ratings
form a training dataset and the remaining 50% forms a test dataset. The
training dataset is converted into a dataset containing user category ratings
using Ziegler’s conversion technique [ZLST04]. The book taxonomy data for
converting users’ book ratings to category ratings is obtained from Ama-
zon.com web site. Not every book in the BookCrossing dataset is available
in Amazon.com, we were only able to extract taxonomy data for 270,868
books. After the conversion, a transactional dataset is constructed that con-
tains 85,415 transactions (i.e., distinct users ) involving 270,868 unique books
and 10,662 taxonomy categories. The average number of categories in a user
profile is 27.08 and the highest number of categories in a user profile is 3,173.
This set of user profiles will serve as our baseline dataset and is also the
dataset that will be expanded using the derived association rules. The test
data set will be used to evaluate the quality of recommendations.

5.3.3. Evaluation Metrics

The recommender used in this experiment is the Taxonomy-driven Prod-
uct Recommender proposed in [ZLST04] and implemented using the Taste
framework (http://taste.sourceforge.net/). The goal of this experiment is to
evaluate the capacity of the rules generated by the Min-Max and the Reliable
algorithms through comparing the quality of the recommendations generated
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based on various user profiles including the baseline dataset and the expanded
datasets obtained by using the Min-Max and the Reliable rules. For a user
ui, the recommender system will recommend a list of items, denoted as Pi,
based on the user profiles. The recommendation list Pi will then be eval-
uated against the test dataset using the evaluation metrics precision, recall
and F1-measure [HKTR04] which are defined below.

For a user ui and an item t, let Ti be the set of items in the test dataset
that are rated by the user, rating(ui, t) denote the rating that the user gave
the item and avg(ui) denote the average of the user’s ratings, we define the
set of items that are preferred by the user as:

T̂i = {t|t ∈ Ti, rating(ui, t) > avg(ui)}

The precision, recall, and F1 measure are calculated using the following equa-
tions:

Precision =
|T̂i

∩
Pi|

|Pi|

Recall =
|T̂i

∩
Pi|

|T̂i|

F1 =
2× Precision×Recall

Precision+Recall

5.3.4. Results and Discussion

To test the hypothesis 2, we conducted a series of experiments to deter-
mine the improvement in the recommender system obtained by using different
rule sets. The dataset is extremely sparse. In order to find frequent patterns
and thus rules, we set the minimum support to 0.06. We mine the transac-
tional dataset for association rules using the two non-redundant rule mining
algorithms with minimum confident threshold being set to 0.5. Table 18
shows the number of rules found by the two algorithms, from which we can
see that the entire rule set and the non-redundant rule set generated by the
Min-Max algorithm are actually identical. This means that, for this sparse
dataset, none of the rules discovered by the Min-Max algorithm are con-
sidered redundant based on the Min-Max redundancy definition, while our
Reliable algorithm finds and removes 6% of the rules which are considered
redundant based on Definition 5.

35



Table 18: Number of rules and reduction (BookCrossing, minconf=0.5, minSup=0.06)

Algorithm Total rules Non-redundant rules RRE
MM

MinMax 9,520 9,520
Reliable 9,520 8,950 6%

In these experiments, the user profiles with 5 or less ratings are con-
sidered short user profiles. This yields a total of 15,912 short user profiles
which are expanded using the discovered association rules. When expanding
a user profile, it is possible that a large number of rules are matched with
the user’s profile. In the experiments, we select the top rules based on the
confidence of the rules to expand user profiles. Table 19 to Table 21 show
the precision, recall and F1 measure of the recommendations produced based
on user profiles including the baseline profile and the profiles expanded using
the top 1, 2, 3, 4 or 5 rules selected based on the confidence of the rules,
where MM and RE stand for the Min-Max and the Reliable methods, re-
spectively. As shown in the tables, the precision, recall, and F1 measure of
the recommendations produced by using the expanded datasets are improved
compared to those produced by using the baseline dataset, which means that
the association rules are useful in improving the quality of the user profiles.
The non-redundant rules can be used in place of a larger rule set that con-
tains redundancy without degrading performance. The results also indicate
that the performance of the recommender improves as more rules are used
in expanding the user profiles. For instance, by using the rules generated
by the Reliable algorithm to expand the user profiles, the precision of the
recommender is improved over the baseline by approximately 4.85% for us-
ing 1 rule to 32.31% for using the top 5 rules. Most importantly, the results
clearly show that the performance of the recommender system is very similar
for all the three measures when using different user profiles expanded by the
two algorithms (MM and RE). Actually, for the BookCrossing dataset, the
recommender achieved better results when using the Reliable rule set than
using the Min-Max rule set for all the three measures even though the size
of the Reliable rule set is 6% smaller than that of the Min-Max rule set.
This reinforces the hypothesis that a smaller non-redundant rule set can be
used instead of a larger rule set that contains redundancy. Therefore, we
believe that the experiment results strongly support the hypothesis 2 that
the non-redundant rules generated by the Reliable bases can provide simi-
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Table 19: Precision of recommendations based on various user profiles

Improvement
User Profiles Precision over Baseline Improvement

MM RE MM RE RE over MM

Baseline 0.00619
Expanded (top 1 rule) 0.00649 0.00649 4.85% 4.85% 0%
Expanded (top 2 rules) 0.00714 0.00714 15.35% 15.35% 0%
Expanded (top 3 rules) 0.00732 0.00734 18.26% 18.58% 1.77%
Expanded (top 4 rules) 0.00792 0.00798 27.95% 28.92% 3.47%
Expanded (top 5 rules) 0.00815 0.00819 31.66% 32.31% 2.04%

Table 20: Recall of recommendations based on various user profiles

Improvement
User Profiles Recall to Baseline Improvement

MM RE MM RE RE over MM

Baseline 0.0571
Expanded (top 1 rule) 0.0596 0.00596 4.38% 4.38% 0%
Expanded (top 2 rules) 0.0655 0.0655 14.71% 14.71% 0%
Expanded (top 3 rules) 0.0673 0.0674 17.86% 18.04% 0.98%
Expanded (top 4 rules) 0.073 0.0736 27.85% 28.90% 3.77%
Expanded (top 5 rules) 0.0749 0.0754 31.17% 32.05% 2.81%

lar or even higher capability to solve problems as the non-redundant rules
generated by the Min-Max bases. It is also supports the theory behind the
non-redundant rule mining algorithms, that the redundant rules removed by
these algorithms do not contain new information that can not be captured
by the non-redundant rules.

6. Related Work

One approach to address the quality of association rules is to apply con-
straints to generate only those association rules that are interesting to users.
[NLHP98] and [SVA97] proposed some algorithms that incorporate item con-
straints to the process of generating frequent itemsets. Some work has also
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Table 21: F1 measure of recommendations based on various user profiles

Improvement
User Profiles F1 to Baseline Improvement

MM RE MM RE RE over MM

Baseline 0.0112
Expanded (top 1 rule) 0.0117 0.0117 4.51% 4.51% 0%
Expanded (top 2 rules) 0.0129 0.0129 14.97% 14.97% 0%
Expanded (top 3 rules) 0.01320 0.01324 17.89% 18.20% 1.72%
Expanded (top 4 rules) 0.0143 0.0144 27.59% 28.56 % 3.53%
Expanded (top 5 rules) 0.0147 0.0148 31.25% 31.92% 2.13%

been done on measuring association rules with interestingness parameters
[BMUT97]. These approaches focus on pruning the association rules to get
more general or informative association rules based on interestingness param-
eters. The approach proposed in [BAG00] integrates various constraints into
the mining process including consequent constraint and minimal improve-
ment constraint. The consequent constraint is used to restrict rules with cer-
tain consequent specified by the user. The minimal improvement constraint
is used to simplify the antecedents of rules based on items’ contribution to
the confidence and therefore prune association rules that have more specific
antecedent but do not make more contribution to the confidence. Another
approach is to use a taxonomy of items to extract generalized association
rules [HF00], i.e., to generate rules between itemsets that belong to differ-
ent abstract levels in the taxonomy, especially between high abstract levels,
aiming at reducing the number of extracted rules. The approaches men-
tioned above aim to reduce the number of extracted rules and also improve
the“usefulness” of the rules, but eliminating redundancy of rules is not a fo-
cus. The approaches proposed in [Zak04], [PTB+05], [GMT05], and [CG07]
focus on extracting non-redundant itemsets and association rules. Recently,
the investigation of redundancy elimination has been extended to multi-level
datasets [SXG08] and sequential datasets [LKW09] which are related but
beyond the scope of this paper. In the rest of this section, we will focus on
discussing the approaches proposed in [Zak04], [PTB+05], [GMT05], [CG07],
and some other relevant works.

[Zak04] and [PTB+05] make use of the closure of the Galois connection
[GW99] to extract non-redundant rules from frequent closed itemsets instead
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of from frequent itemsets. The difference between the two approaches is the
definition of redundancy. The approach proposed in [Zak04] extracts rules,
called the most general rules, that have the shortest antecedent and shortest
consequent in an equivalent class of rules with the same confidence and the
same support. All other rules in the equivalent class are considered redun-
dant to the extracted rules. The extracted rules (i.e., the most general rules)
constitute a generating rule set from which all other rules can be derived.
However, the generating set may not retain the same inference capacity as
the entire rule set. For example, for the equivalent class of rules TW ⇒ A,
TW ⇒ AC, and CTW ⇒ A given in [Zak04], the most general rule in this
class is TW ⇒ A, the other two rules are considered redundant to this rule
and won’t be included in the generating set. But by using the extracted rule
TW ⇒ A we can’t derive the consequent that can be derived by using rule
TW ⇒ AC which is considered redundant. Therefore, using the extracted
rules alone can’t guarantee the same results derived by using the entire rule
set. However, this problem won’t occur when using the methods proposed in
this paper and [PTB+05] as well. The non-redundant rule set generated by
the methods proposed in this paper and [PTB+05] retain the same capacity
as that of the entire rule set. While both [PTB+05] and this paper define the
non-redundant rules are those which have minimal antecedents and maximal
consequents in an equivalent class, our definition relaxed the requirement to
redundancy that the redundant rules don’t have to have the same support
and confidence as their corresponding non-redundant rules. The relaxed re-
quirement allows more rules to be considered redundant and thus eliminated.
Most importantly, we proved that the elimination of such redundant rules
does not reduce the belief of the extracted rules and the capacity of the ex-
tracted rules for solving problems is also not reduced.

The concept of non-derivable itemsets was first introduced in [CG02]
and further studied in [CG07]. Based on the inclusion-exclusion principle
[Knu97], Calders and Goethals [CG02] proposed a method to derive a lower
and an upper bound on the support of an itemset from the supports of all
its subsets. When these bounds are equal, the itemset is considered deriv-
able. The itemsets whose lower bound and upper bound are different are
called non-derivable itemsets from which the supports of all derivable item-
sets can be derived and as such the non-derivable itemsets form a concise
representation of all itemsets. Another important concept is the closed non-
derivable itemset proposed by Muhonen and Toivonen in [MT06]. A closed
non-derivable itemset is defined as the closure of a non-derivable itemset.
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But unlike the closed frequent itemsets which must be frequent itemsets,
the closed non-derivable itemsets are not necessarily non-derivable itemsets.
However, it was proved in [MT06] that for a given dataset, the number of
closed non-derivable itemsets is smaller than or equal to the number of the
non-derivable itemsets and also smaller than or equal to the number of closed
itemsets. Furthermore, an algorithm was also proposed in [MT06] to derive
all frequent itemsets and their supports from the closed non-derivable item-
sets. For concisely representing frequent itemsets, there is no doubt that
the set of closed non-derivable itemsets as well as the set of non-derivable
itemsets is a concise representation of all itemsets. Since the set of closed
non-derivable itemsets is smaller than that of the closed itemsets and the
non-derivable itemsets as well [MT06], it is a more concise representation
than closed itemsets and non-derivable itemsets.

However, for generating concise representations of association rules which
is the focus of this paper, no work has been found that generates concise
representations of association rules based on the non-derivable itemsets or
closed non-derivable itemsets except for the work done by Goethals et al.
[GMT05] which presents methods for deriving the lower and upper bounds
of confidence of an association rule from the supports and confidences of all
its subrules. A rule is considered derivable if the lower bound and the upper
bound of its confidence are equal. Because the confidence of a derivable rule
can be derived given its subrules, it is considered redundant with respect to
its subrules [GMT05]. According to [GMT05], the non-derivable rules can
be generated using the non-derivable itemsets. One important feature of a
concise representation of association rules is that the representation is a gen-
erating set from which all other rules can be derived. However, the set of
non-derivable association rules can’t be used as a generating set to derive
all other rules. If the user wants other rules, traditional techniques have to
be used to generate all rules by re-scanning the dataset. Another important
difference between the non-derivable association rules and the Reliable ba-
sis rules proposed in this paper is that the set of non-derivable rules may
not provide the same capacity as that of the entire rule set. Therefore, un-
like the Reliable basis and the Min-Max basis, the set of non-derivable rules
can’t replace the entire rule set in solving problems. For example, for the
simple dataset {abcd, cd, ab, abd, ac, acd} with 6 transactions, d and ad are
two non-derivable itemsets from which we can generate a non-derivable rule
d ⇒ a with confidence 0.67. But this rule is considered redundant by the
Reliable method and the Min-Max method as well since these two methods
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can generate a rule d ⇒ ac which has the same confidence (i.e., 0.67) as that
of d ⇒ a but derives a longer consequent (i.e., ac instead of a). In contrast,
for the non-derivable rule mining, d ⇒ ac is considered redundant since its
confidence can be derived from its subrules and therefore eliminated. We
argue that the rule d ⇒ ac is more useful than d ⇒ a since it derives a
longer consequent than that derived by d ⇒ a with the same confidence. On
the other hand, some non-derivable rules are actually redundant according
to the Reliable and Min-Max redundancy definitions. Still using the same
example above, b, bd, and abd are non-derivable itemsets from which we can
generate two non-derivable rules b ⇒ d and b ⇒ ad, both rules have the
confidence 0.33. Obviously, rule b ⇒ d concludes less information than that
of rule b ⇒ ad and therefore is considered redundant to b ⇒ ad in terms of
the Reliable or Min-Max redundancy definition. In fact, both rules are con-
sidered redundant because both the Reliable and the Min-Max algorithms
can generate a non-redundant rule b ⇒ acd with exactly the same confidence
0.33. The consequent produced by using rule b ⇒ acd covers the consequent
produced by using b ⇒ d or b ⇒ ad. Therefore b ⇒ d and b ⇒ ad are
actually useless if b ⇒ acd is provided. However, b ⇒ acd is considered a
derivable rule and won’t be included in the non-derivable rule set.

The certainty factors have been used to determine useful association rules
in many works. For example, in [BBSV02, DSMB01], the authors pointed
out the insufficiency of only using support and confidence to determine use-
ful rules. They proposed to choose rules based on both certainty factors and
supports. They conducted experiments on large medical datasets and have
shown good results in practice [DSMB01]. In this paper we proposed to use
the certainty factor as the criterion to measure the strength of the discov-
ered association rules. The difference from previous works is that we use the
certainty factor to verify that the redundancy elimination proposed in this
paper will not damage the quality of the extracted rules. We proved that the
elimination of the redundant rules defined in this paper will not reduce the
certainty factor values of the extracted rules.

7. Conclusion

One challenging problem with association rule mining is the redundancy
existing in the extracted association rules which greatly impacts the effective
use of the extracted rules in solving real world problems. A satisfactory so-
lution to the problem should be one that can maximally remove redundancy
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but does not damage the inference capacity of and the belief in the extracted
rules. Moreover, an appropriate criterion to define a boundary between re-
dundancy and non-redundancy is desirable. Since the late 1990s, many efforts
have been made to improve the quality of association rules by eliminating
redundancy. The approaches proposed in [Zak04] and [PTB+05] are success-
ful approaches. Both approaches generate association rules from frequent
closed itemsets instead of from frequent items. The approach proposed in
[Zak04] generates the most general rules which have the shortest antecedent
and shortest consequent in an equivalent class, while the approach proposed
in [PTB+05] generates the Min-max rules which have the shortest antecedent
and longest consequent in an equivalent class. Both approaches can signifi-
cantly remove redundancy. However, as we have pointed out that the most
general rules generated in [Zak04] may not retain the same inference capac-
ity as the entire rule set and the Min-max rules generated in [PTB+05] still
contain redundancy. In this paper, a concise representation of association
rules called Reliable basis was presented which can ensure the removal of the
maximal amount of redundancy without reducing the inference capacity of
the remaining extracted rules. Moreover, we proposed to use the certainty
factor as the criterion to measure the strength of the discovered association
rules. Based on the certainty factor theory, we theoretically proved that the
Reliable basis contains no redundancy and the strength of belief in the as-
sociations captured by the extracted Reliable basis rules are not less than
that of the entire set of rules. We also experimentally demonstrated that the
proposed Reliable basis retains the same inference capacity as the entire rule
set. Furthermore, we theoretically proved and experimentally confirmed that
the proposed Reliable basis is not only concise but also lossless because all
association rules can be retrieved from the Reliable basis. The time complex-
ity of the proposed algorithms to generate the Reliable basis rules is higher
than that of generating the Mix-max basis rules. Developing parallel algo-
rithms could be a way to improve the efficiency of generating the Reliable
basis rules. This issue will be addressed in our future work.
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