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Abstract 

New-generation biomaterials for bone regenerations should be highly bioactive, resorbable 

and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, 

has been used for the study of bone regeneration due to its excellent bioactivity, degradation 

and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other 

bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due 

to its/their inherit brittleness and low strength. In this brief communication, we reported a 

new facile method to prepare hierarchical and multifunctional MBG scaffolds with 

controllable pore architecture, excellent mechanical strength and mineralization ability for 

bone regeneration application by a modified 3D-printing technique using polyvinylalcohol 

(PVA), as a binder. The method provides a new way to solve the commonly existing issues 

for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, 

high brittleness and the requirement for the second sintering at high temperature. The 

obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 

times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have 

highly controllable pore architecture, excellent apatite-mineralization ability and sustained 

drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an 

excellent candidate for bone regeneration. 
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1. Introduction 

New-generation biomaterials for bone regeneration should be highly bioactive (enabling good 

tissue growth), resorbable and mechanically strong [1]. Bioactive inorganic materials, such as 

hydroxyapatite [2], β-tricalcium phosphate (β-TCP), and bioactive glasses have been 

designed as 3D porous scaffolds for bone regeneration due to their excellent 

osteoconductivity; however, their inherent brittleness and generally low mechanical strength 

(of porous specimens) are the main disadvantages for developing 3D scaffolds, limiting their 

further application in the clinic [3-6]. Traditionally, polyurethane foam templating, 

porogen-created pores and gas foaming are the main methods to prepare porous bioceramic 

and bioactive glass scaffolds. Although polyurethane foam templating and gas foaming 

methods are able to create highly interconnective pores, the mechanical strength of the 

prepared porous scaffolds is low [7-9]. Porogen-based methods can produce porous scaffolds 

with higher mechanical strength; however, the pores are not always interconnective [10]. In 

addition, with these traditional methods it is difficult to control the pore morphology, pore 

size and overall porosity of the scaffolds. Another issue is that the present bioactive ceramic 

and glass scaffolds are quite brittle and not easy to handle. Ceramic particles can be released 

in the process of handling and implantation, which may be detrimental to cells and tissues 

[11,12]. To better control the pore morphology, pore size and porosity, 3D plotting technique 

(also called direct writing or printing) was developed to prepare porous scaffolds in the past 

several years [13-15]. The significant advantage of this technique is that the architectures of 

the scaffolds can be concisely controlled by layer-by-layer plotting under mild conditions. 

Recently, HAp and β-TCP ceramic scaffolds with controllable pore structure and improved 
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mechanical strength have been prepared by this method; however, they need a second 

sintering process at high temperature after the plotting and the obtained ceramic scaffolds are 

still brittle [16-18]. 

Mesoporous bioactive glass (MBG) has a highly ordered mesopore channel structure with a 

pore size ranging from 5–20 nm [19]. Compared to non-mesopore bioactive glass, MBG 

possesses a more optimal surface area and pore volume, evident by greatly enhanced 

drug-delivery capability, in vitro apatite mineralization and suitable degradation behavior 

[19-22]. For this reason, MBG has received much attention for the applications of bone tissue 

engineering [7,22-25]. We have recently shown that MBG scaffolds prepared by 

polyurethane foam template method can support cell adhesion; however, the MBG scaffolds 

prepared by this method are quite brittle and the mechanical strength is low [7]. Yun and 

Garcia, et al. prepared hierarchical 3D porous MBG scaffolds using a combination of sol-gel, 

double polymer template and rapid prototyping techniques [26,27]. In their study, they mixed 

MBG gel with methylcellulose and then printed, sintered at 500-700ºC to remove polymer 

templates and obtain MBG scaffolds. This method for preparing MBG scaffolds is 

inconvenient, because of the need of methylcellulose and the additional sintering procedure. 

Although the obtained MBG scaffolds have uniform pore structure, they are still brittle and 

not easy to handle. In addition, the mechanical strength of the obtained MBG scaffolds is 

unknown, but it is speculated that the strength is low as the scaffolds were sintered only at 

500-700ºC, and therefore at a low temperature. Furthermore, the incorporation of 

methylcellulose created some micropores with diameters of several micrometers, which will 

further decrease the mechanical strength of those MBG scaffolds.  
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Herein, we report a new facile method to prepare hierarchical and multifunctional MBG 

scaffolds with controllable pore architecture, excellent mechanical strength and calcium 

phosphate mineralization ability for bone regeneration by a modified 3D printing method 

using polyvinyl alcohol (PVA) as a binder. The method provides a new way to solve the 

commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore 

architecture, low strength, high brittleness and the requirement for a second sintering at high 

temperature.  

 

2. Materials and methods 

2.1 Synthesis of MBG powders 

Mesoporous bioactive glass (MBG) powder (molar ratio: Si/Ca/P = 80/15/5) was synthesized 

according to previous publications [19,22]. In a typical synthesis, 4.0 g of P123 (Mw=5800, 

Sigma-Aldrich, Germany), 6.7 g of tetraethyl orthosilicate (TEOS, 98%, Sigma-Aldrich), 1.4 

g of Ca(NO3)2 · 4 H2O (Sigma-Aldrich), 0.73 g of triethyl phosphate (TEP, 99.8%, 

Sigma-Aldrich) and 1.0 g of 0.5 M HCl were dissolved in 60 g of ethanol and stirred at room 

temperature for 24 h. The resulting sol was introduced into a petri dish for an 

evaporation-induced self-assembly process for 24 h, and then the dry gel was calcined at 

700ºC for 5 h to obtain MBG powders. The obtained MBG powders were ground and sieved 

through 300-meshes (300 micropores for each square inch), resulting in a particle size lower 

than 45 µm. 

2.2. Preparation of MBG scaffolds by 3D printing 



 

 6 

The injectable MBG paste was prepared by mixing 3 g of MBG powder with 3.3 g of an 

aqueous polyvinyl alcohol solution (15 wt.%, PVA, Sigmar-Aldrich). The printing device 

(3D scaffold printer) was developed by the Fraunhofer Institute for Materials Research and 

Beam Technology (Dresden, Germany), based on a precision three-axis positioning system 

(Nano-Plotter NP 2.1, GeSiM, Grosserkmannsdorf, Germany). The dosing pressure to the 

syringe pump was 520-590 kPa and the moving speed of the dispensing unit was 3 mm/s. To 

control the scaffold morphology, pore structure, pore size and porosity, different plotting 

parameters and nozzle sizes were selected. The obtained MBG scaffolds were dried at 40ºC 

for overnight and heated at 150ºC for 30 min for heat-crosslinking of PVA. The final dry 

weight of MBG in the obtained scaffolds is 86%, and PVA is 14%. As a control, MBG 

scaffolds were prepared by polyurethane foam template method according to our previous 

publication [7] to compare their mechanical behavior. 

2.3. Characterization and mechanical testing 

The scaffold morphology, pore structure and pore size were observed by optical microscopy 

(Stemi 2000-C, Zeiss, Germany). The microstructure of pore walls was investigated by 

scanning electron microscopy (SEM, DSM982-Gemini, Zeiss) and transmission electron 

microscopy (TEM, FEI, Eindhoven, NL). The compressive strength and modulus of the 

obtained scaffolds (10×10×10 mm) were tested using a computer-controlled universal testing 

machine (Instron 5566, Instron Wolpert, Darmstadt, Germany) at a crosshead speed of 0.5 

mm/min. Four samples were used for the repeats of this experiment. 

2.4. In vitro mineralization and ion release 
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SBF containing ion concentrations similar to those in human blood plasma was prepared 

according to the method described by Kokubo [28]. MBG scaffolds were soaked in SBF at 

37°C for 1 and 3 d, and the ratio of the solution volume to the scaffold mass was 200 mL/g. 

0.2g of scaffolds were soaked in 40mL SBF and three samples were used for repeated 

experiment. Apatite mineralization of scaffolds was determined by SEM, energy dispersive 

spectrometry (EDS) (Jeol JSM6510, Tokyo, Japan) and Fourier transforms infrared 

spectroscopy (FTIR) (Spectrum 2000, Perkin Elmer, USA). 

To investigate the ion release and weight loss of MBG scaffolds, 0.2g of scaffolds were 

soaked in PBS for 1, 3 and 7 days. The concentration of Ca2+ and SiO4
4- ions were tested by 

by atomic emission spectrometry (Perkin-Elmer Optima 7000DV). As MBG contains 80% 

molar of SiO2, therefore, the weight loss of MBG scaffolds were calculated by the release 

SiO4
4- ions. 

2.5. Drug loading and release from MBG scaffolds 

Dexamethasone (DEX) as model drug was dissolved in ethanol with a concentration of 0.5 

mg/mL. 2 g of MBG powder were added to 24 mL of DEX/ethanol solution under stirring 

and the ethanol was evaporated. MBG powders loaded with DEX were obtained after drying 

at 50°C for 5 h. Then, DEX-loaded MBG powders were used for preparing MBG scaffolds by 

3D printing. The obtained MBG scaffolds loaded with DEX were heated again at 50ºC for 24 

h.  

DEX release was evaluated by placing the DEX-loaded MBG scaffolds into 4 mL of PBS 

(pH 7.4) at 37 ºC for 3, 6, 9, 24, 48, 96, 168 and 240 h. DEX release was determined by UV 

analysis (UV min-1240, Shimadzu, Japan) and the accumulative release rate of DEX (%) was 
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calculated with the following equation: DEX (%) = (total amount of DEX released / total 

loading amount of DEX in scaffolds) × 100%. Three samples were used for the repeated 

experiment and UV analysis for drug release was tested by three times for each sample. 

2.6. Proliferation and alkaline phosphatase (ALP) activity of BMSCs in scaffolds 

The culture of human bone marrow stromal cells (hBMSCs) was carried out according to our 

previous publication [29]. 3D-printed MBG scaffolds (6×6 mm) were used for cell culture. 

2×105 cells were added to each scaffolds and then cultured for 1, 3 and 7 days. The 

proliferation of MBSCs in scaffolds were tested by measuring the DNA content and the ALP 

activity was also tested according to our previous publication [29]. Cell culture plates were 

used for the control. 

3. Results and discussion 

3.1. Preparation and characterization of 3D-printed MBG scaffolds 

In this communication, PVA was selected as a binder because it is generally biocompatible, 

degradable and water-dissolvable. No toxic solvents have to be used in the process of 

preparation. In addition, PVA can be crosslinked to improve its crystallinity and to control its 

dissolution by a simple heat treatment at low temperature (50-180ºC) [30]. Thus, the formed 

MBG scaffolds bound by PVA after heat crosslinking will maintain their structure and will 

not collapse in the biological environment. Our study shows that it is very efficient to mix 

MBG powders with an aqueous PVA solution to form an injectable MBG paste (Fig. 1). The 

final dry weight of MBG in the obtained scaffolds is 86%, and PVA is 14%. This small 

amount of PVA, added to the MBG scaffolds, will not decrease the bioactivity of MBG. 
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By 3D printing of MBG scaffolds with PVA as binder the size (from millimeters to 

centimeters) as well as the morphology (from cube to hexahedral) can be controlled in a wide 

range (Fig. 2a). In our study, the pore size of MBG scaffolds was varied from 1307±40 µm 

(Fig. 2b), 1001±48 µm (Fig. 2c), to 624±40 µm (Fig. 2d) and even smaller (200 µm) (Fig. 2f). 

The pore structure is quite uniform and pore morphology was chosen as square or 

parallelogram as the morphology is much easier to control and prepare by a simple program. 

The pores on the bottom side are still open, even in the case of bigger samples in which the 

weight might deform the structure (Fig. 2g). SEM image shows that MBG particles were 

bound together by PVA and formed a dense pore-wall surface (Fig. 2h). TEM image shows 

that the pore walls contain well-ordered mesopore channel structure with a size of about 5 nm 

(Fig. 2i). The obtained MBG scaffolds therefore possess a hierarchical pore structure: large 

pores (several hundred micrometers to 1.3 millimeters) as well as well-ordered mesopores (5 

nm). The easily controllable large pore structure will benefit cell and tissue ingrowth [31], 

and the well-ordered mesopore structure makes the MBG scaffolds a potential drug carrier. 

Compared with the previous method to prepare MBG scaffolds, described by Yun and Garcia 

et al.[26,27], our method is much easier to control.  

3.2. Mechanical properties of 3D-printed MBG scaffolds 

Most importantly, MBG scaffolds obtained by our method possess excellent mechanical 

strength, a significant advance in comparison to the material developed by Yun et al., which 

seems to be mechanically too weak [26]. The compressive strength and modulus of the novel 

MBG scaffolds with square pore morphology and pore size of 1001 µm are 16.10±1.53 and 

155.13±14.89 MPa, respectively. The corresponding porosity is 60.4% (calculated according 
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to the pore and pore wall size). The mechanical profiles of 3D-printed MBG scaffolds and 

those prepared by polyurethane templating are shown in Figure 3. The compressive strength 

of 3D-printed MBG scaffolds increases almost linearly with the deformation (Fig. 3a). 

However, the compressive strength of polyurethane templated MBG scaffolds increases with 

a waving curve until the maximum value of only 0.08 MPa (Fig. 3e). The compressive 

strength of 3D-printed MBG scaffolds is about 200 times that of polyurethane templated ones. 

After compressive testing, 3D-printed MBG scaffolds still maintain their bulk-scaffold 

morphology (Fig. 3c); however, those fabricated by polyurethane templating are crashed and 

became powders (Fig. 3g). Our results indicate that novel 3D-printed MBG scaffolds have 

significantly improved mechanical strength and toughness, compared to polyurethane 

templated ones. There are two possible reasons to explain the significantly improved 

mechanical strength. One is that PVA, as a binder, reinforces the MBG scaffolds by binding 

the particles together and decreases the brittleness of MBG, which can be seen from Fig. 3d. 

After the compressive testing, lots of PVA fibers can be seen inside of 3D-printed MBG 

scaffolds which bind the MBG particles together (Fig. 3d, see white arrows); the other is that 

3D-printing method produces a more uniform and continuous pore structure. Generally, a 

uniform and continuous pore structure benefits the improvement of the mechanical strength 

[32]. In this study, the high brittleness of MBG scaffolds prepared by conventional methods 

resulted in more noncontinuous pores (or pore defects), which is detrimental to their 

mechanical strength; however, MBG scaffolds prepared by 3D-printing method had more  

uniform and continuous pore structures, which made them possess significantly improved 

mechanical strength. The average compressive strength of human trabecular bone is in the 
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range of 2-12 MPa; the compressive strength of 3D-printed MBG scaffolds is higher than that 

of trabecular bone, which makes them easy to handle and utilize. The obtained 3D-printed 

MBG scaffolds possessed significantly higher mechanical strength than other inorganic 

scaffolds prepared by traditional methods, for example, HAp (lower than 0.29MPa)[3], 45S5 

Bioglass® (lower than 0.4MPa)[5] and CaSiO3 (lower than 0.4MPa)[32] scaffolds. In this 

study, since the porosity of the 3D-printed MBG scaffolds is controllable, it is believed that 

their mechanical strength could be further improved by tailoring their porosity and pore 

structure. In addition, the method described here does not require a second sintering at high 

temperature, which can be used also for preparing other bioceramic scaffolds with improved 

mechanical strength. 

3.3. In vitro mineralization, weight loss, drug delivery and cell response of 3D-printed MBG 

scaffolds 

Previous studies have shown that apatite mineralization on the surface of biomaterials for 

bone replacement applications in simulated body fluid (SBF) plays an important role to 

improve osteoblast growth and differentiation, which further influences their in vivo 

bone-forming ability [4,10,28,33]. Our study shows that the 3D-printed MBG scaffolds 

possess excellent apatite mineralization ability in SBF (Fig. 4). After 1 and 3 days of soaking, 

platelet-like apatite crystals with 50 nm in diameter and 200 nm in length formed on the 

surface of MBG scaffolds (Fig. 4 a, b and c). EDS and FTIR analysis further confirmed the 

newly formed apatite on the surface of MBG scaffolds. Our result indicate that 3D-printed 

MBG scaffolds are highly bioactive and the incorporation of small amount of PVA as binder 

into MBG scaffolds does not decrease their bioactivity. Our study has further shown that 



 

 12 

MBG scaffolds has a very quick release of Si and the weight loss reached 10% after soaking 

in biological solution for 7 days (Fig. 4e). It is known that the quick ion release (dissolution) 

is one of important factor to contribute to the degradation of materials. Therefore, it is 

speculated that 3D-printed MBG scaffolds still maintain quick degradation. 

Another important characteristic of the obtained 3D-printed MBG scaffolds is that they 

possess a well-ordered mesopore channel structure with a size of 5 nm within their pore walls 

(see Fig. 2i), which suggest that they could be used for drug delivery purposes. In this study, 

dexamethasone (DEX) was selected as model drug as it is commonly used for stimulating cell 

differentiation and treating rheumatoid arthritis by virtue of its anti-inflammatory function 

[34]. We could demonstrate that in the first two days a burst release of DEX (about 75%) 

from MBG scaffolds occurs (Fig. 5a). After two days, DEX is released with a slow kinetic 

until ten days (Fig. 5a and b). The result indicates that the 3D-printed MBG scaffolds can 

carry some anti-inflammatory drugs with a sustained release for treating the inflammatory 

reaction after implantation. 

Our study further showed that BMSC proliferation on MBG scaffolds is lower than controls; 

however, the ALP activity of BMSCs on MBG scaffolds is significantly higher than that for 

controls (Fig. 6). Further study will be carried out to evaluate the gene-expression of human 

bone marrow mesenchymal stem cells on our scaffolds as well as their in vivo osteogenesis. 

 

4. Conclusions 

In conclusion, novel multifunctional MBG scaffolds with hierarchical pore architecture and 

well-ordered mesopores were successfully prepared using the method of 3D-printing 
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combined with utilization of PVA as binder. The obtained scaffolds possess a high 

compressive strength which is about 200 times higher than that of scaffolds prepared by 

polyurethane foam templating. The use of PVA as a binder in the MBG scaffolds decreases 

their brittleness and significantly improves their toughness. The method described in this 

study provides a new way to solve the commonly existing issues (uncontrollable pore 

architecture, low strength, high brittleness and the requirement for second sintering) for 

inorganic biodegradable scaffold materials. 3D-printed MBG scaffolds possess excellent 

apatite-mineralization ability and sustained drug-delivery property. These significant 

advantages concerning architecture, mechanical strength, bioactivity and the capability to act 

as drug carriers suggest that the 3D-printed MBG scaffolds may be an excellent candidate for 

bone regeneration. 
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