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Abstract—The use of appropriate features to represent an 

output class or object is critical for all classification problems. In 
this paper, we propose a biologically inspired object descriptor to 
represent the spectral-texture patterns of image-objects. The 
proposed feature descriptor is generated from the pulse spectral 
frequencies (PSF) of a pulse coupled neural network (PCNN), 
which is invariant to rotation, translation and small scale changes. 
The proposed method is first evaluated in a rotation and scale 
invariant texture classification using USC-SIPI texture database. 
It is further evaluated in an application of vegetation species 
classification in power line corridor monitoring using airborne 
multi-spectral aerial imagery. The results from the two 
experiments demonstrate that the PSF feature is effective to 
represent spectral-texture patterns of objects and it shows better 
results than classic color histogram and texture features. 
 

Index Terms—feature descriptor, pulse spectral frequency, 
PCNN, rotation and scale invariance, spectral-texture analysis, 
vegetation species classification  

I. INTRODUCTION 
rees, shrubs and other vegetation are of continued 
importance to the environment and our daily life. However, 

vegetation touching power lines is a risk to public safety and the 
environment, and one of the main causes of power supply 
problems. Aerial remote sensing techniques have great 
potential in assisting vegetation management in power line 
corridors [1]. In power line corridors, some tree species are of 
particular interest and are generally categorized as undesirable 
species and desirable species. The undesirable species with fast 
growth rates that also have the potential to reach a certain 
mature height which can pose risks to the infrastructure should 
be identified and removed.  

The use of appropriate features to characterize an output 
class or object is fundamental for all classification problems. 
There is no generically best feature for image classification. 
The selection of an appropriate feature descriptor must reflect a 
specific classification task in hand and usually need to be 
obtained through experimental evaluation. Tree crowns often 
present different shapes when viewed from different directions 
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and positions (Fig. 1). Due to the perspective view and the 
spatial resolution of aerial photographs, the sizes and shapes of 
tree crowns can look quite different. This motivates the use of 
appropriate features to represent image structures which are 
invariant to rotation and scale changes.  

 
Rotation invariant features have been investigated in image 

texture classification for a long time, with many of them 
generated from filtered images or by converting rotation variant 
features to rotation invariant features using a circular neighbor 
set [2]. The human eye is remarkable in its ability to interpret 
color-textured objects and there are a number of models 
developed for image feature analysis based on biological 
models of the visual cortex [3]. To the best of our knowledge, 
there has been little research to validate the capabilities of 
biologically inspired feature extraction mechanisms in remote 
sensing image classification problems. In this context, we 
present a biologically inspired spectral-texture feature 
descriptor by utilizing pulse spectral frequency (PSF) of a pulse 
coupled neural network (PCNN) model. This feature is capable 
of capturing the local structure of image and is invariant to 
rotation, translation and scale changes. The proposed method is 
evaluated against several classic color and texture descriptors 
in standard texture classification using USC-SIPI texture 
database and also an application of vegetation species 
classification using airborne multi-spectral images. 

II. SPECTRAL-TEXTURE REPRESENTATION USING THE PULSE 
SPECTRAL FREQUENCY OF A PCNN  

A. Pulse Coupled Neural Networks 
The pulse coupled neural network (PCNN) is a relatively 

new biologically inspired spiking neural network model based 
on the understanding of visual cortical models of small 
mammals. Most PCNNs are based on the Eckhorn model [4] 
sharing a common mathematical foundation but with variations 
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Fig. 1. Tree crown shapes from triple views. 
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each having their own unique terms [5]. PCNNs are 
spatial-temporal-coding models which attract much attention 
from researchers in that they mimic real neurons better and 
have more powerful computation performance than traditional 
neural network models due to the use of time.  

In this paper, a simplified spiking cortical model called 
unit-linking PCNN [6] is employed to generate image features. 
We introduce multi-spectral channels in this PCNN model. 
Compared with original unit-linking PCNN, the advantage of 
this model is that it has more external inputs so that both 
spectral and spatial information are considered in the derived 
features. Fig. 2 illustrates the structure of this PCNN model. 
Each neuron corresponds to one pixel in an input image. 

 
(a) 

 
(b) 

Fig. 2. The structure of the PCNN model. (a) Each neuron is 
coupled with its 3*3 neighboring neurons, receiving local 
stimuli (i.e. pulse outputs) from its neighboring neurons and 
also the external stimuli from the corresponding pixel values. (b) 
local stimuli and external stimuli are modulated and input to the 
pulse generator. The neuron pulses if the modulated input is 
larger than a dynamic threshold. 

The model can be mathematically represented as: 
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where t refers to time (the number of iterations); ),( ji  indicates 
the index of the current neuron (i.e. pixel ),( ji ) and ),( lk  
indicates the neighboring field of the neuron (i.e. 3*3 window)); 
m indicates that the external input from  channel of the 
image; ,  is the pulse output of the neighboring neurons; ,  

is the internal activity; , is the threshold magnitude scale 
(greater than 1); ,  is the dynamic threshold which controls 
whether the neuron pulse or not. In this paper, the firing 
threshold is linear-depending threshold. ,  is the maximum 
value of the input image; The linking strength coefficient  
determines the weight of linking input to the internal status of 
the neuron. The weight factor  is the importance of 

spectral channel ( is the total number of channels, 
∑ 1). 

B. Properties of Behaviors of PCNN 
Unlike most other neural network models, the processing is 

automatic and there is no training required in a PCNN. The 
PCNN algorithm consists of iteratively computing until some 
stopping criterion is reached. Through iterative computation, 
neurons produce a temporal series of pulse outputs, which 
indicates the pulse status of each neuron (pixel). At each 
iteration, different neurons fire sequentially according to the 
internal status of neurons and the firing threshold. Similarities 
in the input pixels cause the associated neurons to pulse 
synchronously, thus indicating similar structures. 

The dynamic properties of PCNN are very complex. In this 
section, the property and behavior of a single neuron is 
analyzed under the assumption that there are no linking 
connections. Biologically there is a fatigue period called the 
refractory period after a neuron fires. A neuron cannot be 
captured by other neurons if it is in the refractory period. Fig. 3, 
obtained from equation (3)-(5), illustrates the periodical pulse 
of a neuron , , and its capture and refractory period. ,  
is the possible maximum value of the internal activities, ,  is 
the refractory period and ,  is the capture period, ,  is the 
combination of the external stimulus , ∑ wM

F , t .  

 
Fig. 3. Periodical pulse of the neuron ,   

When a neuron ,  fires, its threshold increases to , , and 
then linearly decreases to ,  to make the neuron fire again. 
The pulse process continues periodically with the time , . 
During the refractory period , , the neuron cannot fire no 
matter whether its neighbors fire or not  because its threshold 

,  is larger than the maximum internal activity , . Only 
during the capture time  , , the neuron can pulse or be excited 
by other neurons as the threshold is lower than the maximum 
internal activity , .  There is a period changing from the 
refractory time to the capture time. Therefore, PCNN mimics 
the mechanism of the biological neuron.  
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shows some examples of bark texture images and their 
corresponding PSF features at different scales and rotation 
angles. As we can see, the PSF histograms are not exact the 
same for the three texture images, but the changing trends of 
PSF histogram in a time period is approximately the same.  

A well-known texture descriptor, local binary patterns (LBP), 
is also evaluated for comparison purposes. In this experiment, 
we use the rotation invariant LBP proposed by Ojala et al. [2] 
and a SVM classifier is employed in the classification test. 
Table 2 compares the performance of LBP and PSF when 
textures are rotated only and with both rotation and scale 
changes. From the results we can see LBP performs slightly 
better than PSF when images are with rotation only. However, 
PSF generated much higher classification accuracy when the 
images have both rotation and scale changes. Table 2 compares 
the average computational costs of PSF and LBO per image. 
The experiment is conducted under a desktop PC configuration 
of core duo 2.66GHz CUP and 2GB memory. Since PSF 
involves iterative computation of the neural network, the 
computational cost is much higher than LBP. 

Table1 Classification accuracies of PSF and LBP (%) 
 Rotation Only Rotation and Scale 

PSF 98.9 99.18 
LBP 100 94.51 

Table2 Average computational costs of PSF and LBP (s) 
 PSF LBP 

computational cost 0.937 0.136 

B. Vegetation Species Classification in Power Line Corridor 
The experiment data used in the second experiment were 

captured in a 1.5 kilometres corridor in rural Queensland 
Australia by a high resolution digital 4-band multi-spectral 
camera (DuncanTech MS-4100) with a DGPS/INS mounted in 
the cargo area of a Piper Cub [1]. The 4 spectral bands of the 
camera are: NIR (800-966nm), red (670-840nm), green 
(540-640nm), blue (460-545nm). The spatial resolution of the 
captured images is about 15 cm. It should be noted that 
classifying all types of species in power line corridors requires 
significantly more resources than are currently available. In this 
research, we focus on three dominant species in our test field. 
We abbreviate the species names to Euc-Ter, Euc-Mel and 
Cor-Tes. Through a field survey with a botanist’s participation, 
121 trees were selected and labeled for the experiment with 64 
Euc-Ter, 30 Euc-Mel and 27 Cor-Tes trees.  

 
Fig. 6. Experiment test site 

Object-based classification is used in this paper. Individual 
tree crowns are firstly segmented from image and local features 
are extracted from the crown regions and after that the 
classification is conducted in object-feature space. Since the 

main aim of this research is to evaluate the effectiveness of 
object feature descriptors, we assume that the segmentation is 
perfect and thus individual tree crowns are manually segmented 
from the images during the field survey.  For comparison 
purposes, we also evaluated some classic color and texture 
feature descriptors, which include GLCM, Gabor filters, LBP 
and color histogram features extracted from 4 spectral bands 
and also HSV color space. It is also worth mentioning that 
plants have distinctive spectral signature which is often 
modeled by combinations of reflectance measured in two or 
more spectral bands [10]. This motivates us to investigate 
whether spectral-texture features extracted from spectral 
vegetation indices could help in vegetation species 
classification. In the experiment, three widely used vegetation 
index maps are employed: the Normalized Difference 
Vegetation Index (NDVI), the Soil Adjusted Vegetation Index 
(SAVI), and the 2-band Enhanced Vegetation Index (EVI2). 
PSF histogram features are generated from both the original 
spectral bands and the three vegetation index maps. 

Table 3 compares the overall classification accuracies of the 
PSF feature and three classic texture descriptors using different 
machine classifiers. The results clearly show that the selection 
of both feature descriptors and classifiers will strongly 
influence the classification accuracies. Nevertheless, the PSF 
feature obtains the best overall classification accuracy on all 
three benchmark classifiers, which confirm its use as an 
effective feature descriptor for this data. We also evaluated the 
performance of PSF features extracted from multiple spectral 
bands. Table 3 summarizes the overall classification accuracies 
of these features. Hist_RGBNIR and Hist_HSV refer to the 
color histograms extracted from four spectral bands (R, G, B 
and NIR) and HSV color space; similar names are used for PSF 
features extracted from four spectral bands and also HSV color 
space; PSF_HSV_VI represents the PSF feature extracted from 
both HSV color space and three vegetation index maps. From 
the results, we can see that PSF features show significant 
improvement over color histograms. While the color 
histograms characterize the color distribution of the pattern, 
they do not exploit the spatial layout of the colors. It is also 
noted that PSF-HSV outperforms the PSF feature calculated 
from original spectral bands. Another interesting result is that 
when we incorporate the spectral vegetation index into the 
PSF-HSV feature, a significant improvement is achieved.  

It is worth noting that overall accuracy does not distinguish 
between the types of errors the classifier makes (i.e. False 
Positive versus False Negative). Receiver Operating 
Characteristic (ROC) analysis is a more comprehensive 
performance measure and provides more detail of the 
classification result. ROC analysis plots the False Positive Rate 
(FPR) on the x-axis of a graph and True Positive Rate (TPR) on 
the y-axis. A ROC graph depicts relative trade-offs between 
true positive (benefits) and false positive (costs), and the goal in 
ROC space is to be in the upper-left-hand corner [11]. Fig. 7 
presents the analysis results of different feature descriptors 
using a SVM classifier in ROC space. As we can see, generally 
most features get better performance for class ‘Cor-Tes’ than 
the other two classes. PSF-HSV-VI performs the best for 
classes ‘Euc-Ter’ and ‘Cor-Tes’ and PSF_HSV performs the 
best for ‘Euc_Mol’. Overall the PSF features outperform other 
color and texture descriptors for all three classes.  
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We attribute the success of PSF feature to its capability of 
capturing the local structure of image and its unique property of 
rotation and scale invariance. These properties make PSF 
especially useful in object classification from aerial images 
because the same object type has different shapes when viewed 
from different heights and directions. Moreover, PSF can be 
easily extended to represent the spectral-texture patterns by 
integrating the PSF histograms extracted from the pulse images 
of multiple spectral bands. However, a critical issue for the use 
of PSF feature is the adaptive parameter setting of the PCNN 

model, which is also a hard problem for all PCNN related 
research. Optimal feature dimension selection is also an 
interesting future work. 

Table 2 Overall classification accuracies of PSF and texture 
measures (%) 

 GLCM Gabor LBP PSF 
MLP 69.42 71.9 66.94 70.25 
DTF 56.2 71.07 71.07 77.69 
SVM 69.42 69.42 77.69 77.69 

Table 3 Overall Classification accuracies of color histogram features and PSF features in multiple spectral bands (%) 
 Hist-RGBNIR Hist-HSV PSF-RGBNIR PSF-HSV PSF-HSV-VI 

MLP 71.9 75.21 75.21 80.17 85.12 
DTF 71.9 78.51 80.17 80.99 78.51 
SVM 76.03 69.42 79.34 81.82 85.95 

 
Fig. 7. Analysis of different feature descriptors in ROC space 

IV. CONCLUSION 

This paper presents a new object spectral-texture feature 
descriptor which is obtained by calculating the pulse spectral 
frequency of the outputs of a biological inspired PCNN model. 
The proposed method has been evaluated against classic color 
and texture descriptors in two experiments. Experimental 
results revealed that the PSF feature is able to capture the 
structure of images and is invariant to rotation and small scale 
changes. The quantitative evaluation results shows that the 
proposed feature outperforms color histograms and three 
classic texture measures. In addition, an interesting result is that 
incorporating the spectral vegetation index into the PSF 
features greatly improves vegetation species classification. 
However, the selection of optimal parameter and feature 
dimension is still an open problem. In addition, to achieve 
practical application in vegetation management, precise 
automatic tree crown segmentation is needed prior to the 
generation of PSF features.  
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