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Abstract 

Traditional approaches to the use of machine 
learning algorithms do not provide a method to 
learn multiple tasks in one-shot on an embodied 
robot. It is proposed that grounding actions within 
the sensory space leads to the development of 
action-state relationships which can be re-used 
despite a change in task. A novel approach called 
an Experience Network is developed and assessed 
on a real-world robot required to perform three 
separate tasks. After grounded representations 
were developed in the initial task, only minimal 
further learning was required to perform the 
second and third task. 

1 Introduction 

The interactive, companionable, robotic worker of the 
future requires the ability to operate in a range of 
environments performing many different tasks. The 
skill-set required often needs to be quite specific to the 
task-at-hand and the environment, though it is impractical 
to program environment recognition and movement 
behaviours for all conceivable situations directly into the 
robot. Therefore there is a need for the robot to learn the 
world around it and the consequences of its actions for 
successful interaction with the entities encountered. 
 Machine learning algorithms, traditionally used 
for outcome prediction and data mining, have been adopted 
by the robotics community as an approach to solve the key 
problems encountered. Various manifestations of neural 
networks, Bayesian networks with inference, and error 
minimisation have been used to solve low-level control of 
manipulators [Lewis, 1996; Nguyen-Tuong, et al., 2008], 
obstacle avoidance [Glasius, et al., 1995; Samejima and 
Omori, 1999], navigation [Koenig and Simmons, 1998; 
Thrun, 1998] and visual recognition [Fei-Fei, et al., 2007] 
through both supervised and unsupervised approaches. In 
keeping with the algorithms original design, the focus is 
generally on optimising action towards achieving a goal, or 
to estimate an unknown target function given a feedback 
signal [Thrun, 1996]. 
 Although it has been shown that behaviours can 

be learned to solve specific problems using machine 
learning techniques, an adaptive robot should be able to 
switch problem goal or context and complete a novel task 
without having to completely relearn and re-optimise 
towards solving this new problem. Many reinforcement 
algorithms [Sutton and Barto, 1998], such as neural 
networks and Q-learning, store only the optimised 
outcomes, or a policy, used towards achieving a goal and 
learning occurs due to the update equations alone. 
Disregarding the storage and organisation of the data that 
was used to develop the policy results in development of a 
policy that has only been learned with the initial goal in 
mind; it will not bootstrap the learning of a secondary task. 
These types of learning paradigms do not fit with the nature 
of the problems encountered when developing an 
embodied, adaptive robot. 
 The term grounding is most often referred to in 
the field of artificial intelligence for linking computational 
symbols to the physical environment [Harnad, 1990]. 
However the idea of grounding can be extended to that of 
linking any set of internalised representations to a second 
set. In general terms, a robot which has learned the 
outcomes of its actions within the world has grounded its 
action representations within its sensory representations. 
Given a goal in sensory space, an action policy can be 
extracted from the grounded action representations. The 
‘learning’ is achieved through the grounding of actions 
within sensory information, rather than performing a 
policy optimisation. 
 A system that combines motor actions with 
sensory data in order to learn actions for interacting with 
the environment performs sensorimotor coordination 
[Lungarella, et al., 2003].  The principles of sensorimotor 
coordination have been used to learn self-motion 
[Bongard, et al., 2006; Lungarella and Berthouze, 2003],  
manipulation [Metta and Fitzpatrick, 2003], and for 
forming environment representations [Fitzpatrick and 
Metta, 2003; Modayil and Kuipers, 2008; Scheier and 
Lambrinos, 1996]. This paper proposes that a system 
developing sensorimotor coordination through the 
principles of grounding will provide the flexible 
action-outcome learning required for an adaptive robot 
interacting with the world. Grounding actions within the 
sensory system instigates a ‘knowledge’ development 



rather than only modelling a single solution function. 
Grounding the relationship between action and sensory 
state gives the advantage of allowing the agent to re-use the 
information to complete a novel task. 
 This paper proposes the Experience Network 
(EN) as a mechanism to perform sensorimotor grounding. 
The EN develops representations of visuo-haptic 
experiences (snapshots of the sensory system at any given 
time) that are linked through the actions performed by the 
agent. The relationship between change in sensory state 
and performed actions can be utilised to learn a task by 
conceptually navigating back through past experiences in 
the network.  
 The EN is evaluated on three typical robotic 
challenges: learning to navigate to interact with an object, 
learning to navigate to a particular physical relationship 
with an object and performing obstacle avoidance. The EN 
is assessed on a real-world robot platform using a colour 
segmented object feature. By grounding the actions within 
the sensory system no further re-learning is required to 
perform the second and third task after the first task has 
been achieved. 
 The development of an EN is described in section 
2, the application to a real robotic platform and studies are 
described in section 3, with results being presented in 
section 4. A discussion on grounding with respect to the 
performed studies and future work is presented in section 5 
and 6 respectively. 

2 Experience Networks 

An EN links a set of sensory experiences through the 
agent’s motor actions that are executed to change 
experiences from one to another. Sensorimotor 
coordination is achieved as the agent begins to ground the 
relationship between action and sensation and use the 
learned relationship to direct future action. The main 
components of the EN are the experiences and the action 
links between them. 

2.1 Experiences and Actions 

The nodes of the EN are the experiences, or snapshots, of 
the perceived state of the world at a given point in time. 
Each experience is a combination of visual perception and 
haptic sensing; what the world looks and feels like. An 
experience node, ei  is defined: 
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where p is the perceptual sense, h is the haptic and n is the 
recognition count. 
 While sensation is stored in the nodes of the 
network, action is stored in the links. A link is formed 
between two experiences when the experience changes 
from one to the other. The link stores the motor or actuator 
commands that were performed during the change of 
experience and the time taken to do so. The link keeps a 
record of how the agent traversed from one state to the next 
and forms the motor half of sensorimotor coordination. A 
link, li, is defined as follows: 
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where m are the motor commands, t is the time taken and n 
is the traversal count. 
 

2.2 Network Construction 

An EN is constructed as the agent senses and acts in the 
world and grounds more experience and action 
relationships over time. A naive approach would result in a 
linear chain of experiences over time; however the same 
experience can occur multiple times in the agent’s lifetime. 
A recognised past-experience can be revisited forming 
loops of experiences rather than a single chain. The benefit 
of closing the loop is that when the same, or similar, 
experience is recognised the consequences or actions can 
be recalled and used to direct future action. Given two 
experiences ei and ej the, the probability, P(ei=ej), that they 
are the same is calculated via prior assumption of the given 
state and by assuming a Gaussian distribution for each 
element of an experience, as follows: 
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where t is the current time, g is an element of an 
experience, and vg is the variance of element g. 
 A new experience is added to the network when 
the probability of being at a previous experience is less 
than the experience similarity threshold (Et). The two 
experiences ei and ej are deemed recognised when P(ei=ej) 
is above the threshold. Every time an experience is 
recognised and 'revisited' each element of the 
representative experience (eg) can be updated to include the 
newly experienced sensory information. 
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 In a predictable world the actions from a given 
experience often lead to the same resulting experiences. 
When two consecutive experiences are visited more than 
once there will be multiple links between these 
experiences. Links li and lj can be compared in a similar 
fashion to experiences using the probability comparison 
measure P(li=lj). 
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where k is an element of a link and vk is the variance of 
element k. 
 A new link will be formed when no current link's 
probability is above the link similarity threshold Lt. A link 
that is above the similarity threshold can consolidate each 
element (lk) as follows: 
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 The network is constructed as the agent interacts 
with the world. For each new sensory experience that 
occurs, the probability of it being an already known 
experience is calculated, given all the current experience 
nodes in the EN. New nodes are added when no current 
experience is sufficiently similar. New links are created 
when an action leads from one experience to another which 
has never been performed before, regardless of when the 
experience was created. The result over time is a 
connection graph of sensory experience nodes linked 
together by the actions that allow them to change from one 
to another. 
 The EN grounds actions directly in the 
sensorimotor space of the agent as the nodes and links are 
derived from sensorimotor interaction with the world.  



2.4 Network Navigation 

A central aim for this study is to direct action using 
grounded sensorimotor representations. The EN grounds 
representations in such a way that navigation through the 
network provides a method for using the grounded 
representations to predict consequences and decide a 
course of action. 
 EN navigation initially requires two things: a 
current experience or position in the network and a goal 
experience. The current experience can be set as the most 
likely experience according to Equation 1. Goal 
experiences can be set according to any applied criteria or 
constraints on sensory data. 
 Given the current and goal experiences in the 
network, an action path can be found through the network 
to achieve the desired state. The path found will result in a 
chain of actions that can be performed to change the 
sensory state of the agent. The path is selected based on a 
time minimisation algorithm using the time element of 
each link and the probability of a link achieving a goal. An 
iterative algorithm is used to calculate the time to goal for 
each node. The update equation, for node Ti, is similar to 
that of a single horizon Markov decision process update. 

 







 




N

j

jijij
Aa

i
TlaPT

t

0

))((min  (5) 

for each action a in all available actions A, where Tj is the 
time at node j, lij is the link from node i to node j, and Pij is 
the probability of action a leading to node j. The Pij(a) is 
calculated as: 
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where Li is the set of links from node i, P(lij) is calculated 
from the number of times a link is traversed and P(a|lij) is 
calculated using Equation 3. 
 The next action to perform, a* is then chosen to 
minimise time to goal: 
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where Ti(a) is the time to goal of experience i given action 
a is chosen. 
 It is possible that the EN will not have a well 
grounded set of nodes and actions, due to incomplete 
network construction, sensory noise or random 
environmental disturbances. The probability that the goal 
will be reached from experience ei given action a* can be 
calculated and used to guide behaviours.  
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where N is the number of links from node i. 
 A low probability of achieving a goal can mean 
that the goal is very unlikely to occur from the current state 
or the network is not well grounded. For example, when 
the goal state is unknown, or has not previously been 
experienced, the probability of reaching it is zero. Further 
exploration of the sensory space is necessary to more 
concretely ground representations. 
 

3 Experimental Set-up 

The EN was demonstrated in its use to ground egocentric 
motion in the visual and haptic senses of a real-world 
robot. The grounded representations were learnt and used 
simultaneously over three goal directed tasks. Importantly, 
the later tasks show the re-use of knowledge gained in 
earlier tasks. 

3.1 Robot Platform 

The experiments were conducted on a Pioneer 3-DX from 
MobileRobots (see Figure 1). The Pioneer is driven by a 
2-wheel differential drive with wheel encoders and was 
equipped with a two degree of freedom 'gripper' with 
limited haptic sensors. The gripper was able to detect when 
an object is positioned within the paddles using infrared 
break-beams between the paddles. A Logitech Pro 9000 
webcam was positioned to provide 320x240 pixel colour 
images facing forward, including the space between 
gripper paddles. A Hokuyo URG-04LX laser range finder 
(LRF) was used to avoid walls but provided no input to the 
network. All processing was performed on-board using a 2 
GHz Pentium M processor. 

 
Figure 1: The Pioneer robot used for experiments. The camera 
was placed to give as large a field of view as possible while still 
viewing the contents of the gripper. The object used was a distinct 
blue plastic marker. 

3.2 Applying the EN 

3.2.1 Experience 

The experiences were generated from a combination of 
visual and haptic sensory information. The camera image 
was processed to extract patches of a given colour hue as 
defined in Table 4. The visual half of the experience 
consisted of the presence, and the x and y coordinates, of 
the largest detected colour patch. The haptic half of the 
experience consisted of the value of the infrared 
break-beam. The sensory experience of the Pioneer is 
summarised in Table 1. 

Table 1: Summary of EN experiences used on the Pioneer 

Experience  

Feature Detection di ϵ {true, false} 

Feature Position pi = <xi, yi> ϵℝ 

Break-beam State hi ϵ {true, false} 
 
 
 



 The range of experiences available to the Pioneer 
consisted of any combination of the three elements 
categorised as per Equation 1 using the parameters in Table 
4. The ‘undetected feature’ (di = false) is a unique state as 
it often has multiple links to it and defines all experiences 
outside the range of sensor limitations.  

3.2.2 Link 

The link is the action sequence taken between experiences. 
The Pioneer actions consist of the wheel motion as 
measured by the wheel encoders. The motion is processed 
and split into translational and rotational velocity. The time 
taken for each link is measured in number of frames 
assuming a constant 10 Hz update rate. The self-motion 
link of the Pioneer is summarised in Table 2. 

Table 2: Summary of EN links used on the Pioneer 

Link  

Self Translational Velocity Ti ϵ ℝ  

Self Rotational Velocity Ri ϵ ℝ 

Time ti ϵ ℝ 
 

3.2.3 Pioneer Behaviour 

The Pioneer selects actions according to two different 
behaviour patterns. The first behaviour is exploration, in 
which actions are performed solely to gain more 
experiences and sensorimotor relationships. The second 
behaviour is experience following, in which a path to the 
given goal state has been well grounded and can be 
followed to achieve it. Grounding still occurs while 
performing experience following. 
 The selection of behaviour is based upon the 
calculation of P(goal|ei) as per Equation 8 and performed 
until a new experience is reached, or the experience 
timeout Etimeout occurs (see Table 4). The behaviour is 
chosen randomly at a ratio equal to P(goal|ei) where ei is 
the current experience. When a well grounded path to the 
goal is known experience following will always be 
performed. When the path to the goal is less well grounded, 
the chance of performing exploration is increased.  
 Initially the robot has no grounded experiences 
and exploration of the sensory space will always be 
performed until a goal is reached. Explorative behaviour is 
chosen from a set of pre-defined actions shown in Table 3 
and performed until a new experience is reached. The 
action is selected randomly based on the number of times 
each action has previously been performed from the given 
state, with less performed actions given preference. 

Table 3: Standard behaviours to perform when exploring the 
sensory space 

Action Translational Velocity Rotational Velocity 

Forward 10mm/sec 0 
Backward -10mm/sec 0 
Left 0 5deg/sec 
Right 0 -5deg/sec 
 
 When experience following, the best link to 
follow towards a goal is chosen as per Equation 7 and the 
action a* associated with the link is performed. as defined 
in Table 4. 
 
 
 

Table 4: Summary of parameters used in the EN and Pioneer 
behaviours 

Parameter Value 

Experience Positional Variance σp = 2000 pixels
2 

Link Translation Velocity Variance σt = 750 (mm/s)
2 

Link Rotational Velocity Variance σr = 1.5 (deg/sec)
2 

Feature Detection Hue Fhue = 214 
Minimum Feature Size Fmin = 500 pixels 
Experience Prior P(ej,t|ejt-1) = 0.9 
Experience Similarity Threshold Et = 0.5 
Link Similarity Threshold Lt = 0.5 
Experience Timeout Etimeout = 5 s 

3.3  Overview of Studies 

3.3.1 Study 1: Learning to Achieve a Goal 

The first study evaluated the effectiveness of the EN to 
ground motion in the visual and haptic sensory space of the 
pioneer. The EN was evaluated on its ability to guide the 
agent towards a goal state of hi = true, that is, moving such 
that the object feature entered the gripper and triggered the 
break-beam detector (see Figure 2). 
 The experiment was conducted in a flat, empty 
space using a blue marker as the visual feature. The object 
was placed randomly within the visual field and the EN 
directed actions based on the behaviours described in 
section 3.2.3. When the object exited the visual field the 
Pioneer paused and the object was placed randomly back 
within the field of view. When the Pioneer achieved the 
goal state, the Pioneer again paused and the object was 
placed in a random position. The procedure was performed 
until the Pioneer achieved the goal state 20 times. 

 
Figure 2: The goal state of study 1. The dotted line indicates the 
approximate location of the break-beam sensor. The blue object 
triggered the sensor when located between the gripper paddles. 

3.3.2 Study 2: Learning a Second Goal 

The second study evaluated the effectiveness of an EN 
which was grounded when attempting the goal in study 1 to 
achieve a new goal. The experience-action relationships 
grounded in study 1 were not explicit to the task of 
achieving the desired state, but rather in the predictable 
nature of the environment in which the agent was 
embodied. A robot with grounded representations should 
be as effective at achieving any goal state within the 
sensory space, not only the initial goal, once sufficient 
grounding has occurred. 
 The new goal was defined as any experience with 
the visual property pi = <50±15, 80±15>. In visual space 
the goal corresponded to a 30 × 30 pixel box, 80 pixels 



down and 50 pixels across from the top left corner of the 
input image (see Figure 3). Using the EN grounding in 
study one, a further 20 runs of achieving the new goal state 
was performed using the same methodology as in study 1. 
An empty EN was also trained in achieving secondary goal 
only, in order to provide a baseline performance 
comparison. 

 
Figure 3: The goal state of study 2. The dotted square indicates 
the approximate area in which any experience is designated a 
goal. The goal state is a 30 × 30 pixel box centred over pixel (50, 
80). 
 

3.3.3 Study 3: Obstacle Avoidance 

The third study evaluated the effectiveness of using the EN 
to perform obstacle avoidance. Avoiding obstacles 
involved the EN achieving the 'undetected' state (di = 
false). The potential number of goal experiences available 
to the EN increased as any experience near the 'edge' of the 
sensory space could lead to the undetected state. A 
successful avoidance would direct action to remove the 
obstacle from vision via the closest visual edge and not an 
edge on the opposite side of the image. 
 The Pioneer was placed in a 2.5m by 2.5m arena 
sectioned off by large obstacles (see Figure 4) which could 
be detected, and avoided, using the LRF. The object 
(undetectable by LRF) was placed in the centre of the arena 
which the Pioneer was given the goal of also avoiding.  
 A third ‘wander' behaviour was added to the robot 
to perform action when not in view of the object. When in 
the undetected state the robot continually drove forward 
while turning left and right at random intervals. A 
command from the LRF or EN to turn also influenced the 
turning direction to provide smooth transition between 
behaviours. 
 The EN grounded in study 1 and study 2 was used 
as the pre-grounded network, again having never learnt the 
task prior to performing it. The EN was compared against 
wander-only baseline behaviour to determine effectiveness 
of the EN. Three trials of five minutes were performed both 
with and without the use of the EN. 
 

 
Figure 4: The arena for study 3. A 2.5m x 2.5m area was cordoned 
off by large obstacles that could be detected by the laser range 
finder. The Pioneer was set to roam inside the area while avoiding 
the blue object. 
 

4 Results 

4.1 Study 1: Learning to Achieve a Goal 

The initially empty EN began by performing 
exploration-based actions resulting in experience-action 
relationships developing across the sensory space. As more 
of the sensory space was explored the exploration 
behaviour eventually led to achieving the goal state. The 
amount of time exploring the sensory space was reduced as 
more experiences were available as ‘entry points’ to an 
action path to the goal, and less sensory space became 
unknown (see Figure 5). Subsequent runs achieved the 
goal state more quickly as less of the sensory space was 
required to be grounded (see Figure 6). To complement the 
reduction in exploration, the amount of time spent 
experience following increased. The last five indicate a 
well grounded EN as the amount of time required for 
exploration reduced to very low levels, and the majority of 
time was spent following grounded action-experience 
relationships. 
 As a measure of control the EN was compared to 
performing only random exploration movements to 
achieve the desired goal. Using results averaged over three 
trials the random movement took approximately 147 
seconds, whereas the EN, after grounding, took 
approximately 10 seconds. 
 
 



 
(a) 

 
(b) 

 
(c) 

 
Figure 5: The development of the EN for achieving the goal of 
haptically detecting the object (hi = true). The ENs are displayed 
by placing each experience at the (x,y) coordinate of the visual 
feature (pi). Links leading to an undetected experience (di=false) 
are displayed as short red links pointing away from the centre and 
are featured on the outside experiences. Each node is labelled 
with the node id, the time to the goal node and the probability of 
achieving the goal. The weight of each link signifies the traversal 
count n. The ENs after 1 successful run (a), after 5 successful runs 
(b) and after 20 successful runs (c) are shown.  

 
Figure 6: The time to achieve a goal state in study 1. The total 
time was split into the amount of time exploring and the amount 
of time following a grounded action path to the goal. As further 
runs were completed and more sensorimotor relationships were 
grounded the amount of time having to explore decreased and the 
amount of time grounded experiences were followed increased. 

4.2 Study 2: Learning a Second Goal 

The EN pre-grounded on the first task was able to achieve 
the secondary goal in similar times as it took to achieve the 
goal of study 1 (see Figure 7). Some further grounding was 
performed as the number of experiences in increased from 
41 to 46 and the number of links increased from 117 to 177, 
and as indicated by the small amount of time exploring. 
The learning curve to fulfil the secondary goal was very 
minimal as the majority of the sensorimotor relationships 
required were already grounded. The results indicate the 
effectiveness of grounding to perform tasks within the 
same sensory space without having to re-learn the new 
goal.  

 
Figure 7: The amount of exploration and experience following to 
achieve the goal state for the pre-grounded EN in study 2. 
Although the network was grounded when performing study 1 
there is minimal learning curve to achieve the second goal. 
 
 The newly grounded network, as expected, 
required time to ground enough experiences to reliably 
achieve the goal. The large spike on run 8 was caused as 
the network grounded the action of continually running 
into the object and pushing it along the ground, which was 
performed until the timeout (Et) occurred. 
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Figure 8: The amount of exploration and experience following to 
achieve the goal state for the new EN in study 2. The EN requires 
time to ground the sensorimotor relationships before stable 
performance is reached. 

4.3 Study 3: Obstacle Avoidance 

 The pre-grounded EN was evaluated on the 
effectiveness for obstacle avoidance; the opposite of the 
goal for which it was originally built. Measurements of the 
total time that the object was visually detected (see Figure 
9), and the number of collisions with the object (see Figure 
10), were compared to the wander-only behaviour. Results 
indicate success at performing the task as the amount of 
time with the object in view was reduced by approximately 
a half. The EN was quickly able to steer away from the 
object and choose a new direction to wander. The 
pre-grounded network did not need to learn the behaviour 
of colliding with the object to learn what not to do, 
indicating the usefulness of the grounded sensorimotor 
relationships. 

 

Figure 9: Results of the obstacle avoidance task in terms of 
amount of time the object was in view of the Pioneer. The 
avoidance of the EN was compared to the amount of time with 
random motion.  Results for three separate trials are presented 
and it can be seen that the EN successfully reduces the amount of 
time the object is visually detected. 

 

Figure 10: Results of the obstacle avoidance task in terms of the 
amount of times a front on collision with the visual object 
occurred. The EN was compared to a random wander within the 
arena and results for three trials of each are presented. It can be 
seen that the EN is successful at performing obstacle avoidance 
given a grounded network. 

5 Discussion 

An EN was developed to ground the relationship between 
action and change in sensory state from an egocentric 
perspective. The network was able to successfully learn the 
actions required to move an object from any location in the 
visual space to an experience in which it could be 
haptically detected. The initially empty EN demonstrated a 
learning curve during which the amount of time to achieve 
the goal decreased as more action-state relationships were 
grounded. 
 The benefit of grounding over directly supervised 
learning was demonstrated in the ability of the EN to 
perform additional tasks without having to relearn 
optimised actions towards the new goal states. The EN 
previously grounded when performing study 1 was able to 
move to a given position relative to an object and also 
perform obstacle avoidance successfully. Both tasks were 
able to be completed without repeating the initial learning 
curve experienced in study 1. Only minimal extra 
grounding was required, which was bootstrapped from 
previous grounding without notable performance decrease. 
 The EN was successful in the second and third 
task as it had grounded the action-state relationships during 
study 1, rather than estimating a function that would 
achieve the same goal. The action-state relationships are a 
property of the world in which the robot is embodied, not 
the task itself, and are therefore useful to perform a range 
of tasks in the sensorimotor space. 
 An adaptable robot able to interact with different 
entities in the environments while performing various tasks 
should be able to subsequently perform a novel task 
without having to relearn specific actions required to 
achieve it. Grounding action representations within the 
sensory representations builds sensorimotor relationships 
which can be used irrespective of the specific goal. 
Developing adaptive robots through the principles of 
grounding has the potential to lead towards robots that can 
easily adapt and perform novel tasks. 

0 5 10 15 20
0

20

40

60

80

100

120

Run

T
im

e
 (

s
e

c
)

Study 2: Visual Position Goal - New EN

 

 

Explore

Experience Follow

Random Motion Grounded Obstacle Avoidance
0

5

10

15

20

25

T
im

e
 O

b
st

a
cl

e
 V

is
ib

le
 (
%

)

Study 3: Obstacle Avoidance - Visibility

 

 

Trial 1

Trial 2

Trial 3

Random Motion Grounded Obstacle Avoidance
0

2

4

6

8

10

N
u
m

b
e
r 
o
f H

e
a
d
-o

n
 C

o
lli

si
o
n
s

Study 3: Obstacle Avoidance - Collisions

 

 

Trial 1

Trial 2

Trial 3



6 Future Work 

The EN built in the presented studies provides a foundation 
for developing grounded representations of sensorimotor 
coordination. Future work entails increasing the richness of 
the grounded sensorimotor coordination. In particular 
issues such as: expanding the range of actions available to 
allow more complex environment interaction, expanding 
the range of objects with different affordances which are 
interacted with, removing the pre-programmed 
segmentation of the environment, and managing 
interaction with multiple objects within a cluttered scene, 
will be investigated. An example problem could be the 
tidying of a room, which requires a grounded 
representation of allocentric space (as the location of 
objects is important for determining whether they have 
been tidied or not); a grounded representation of different 
types of object which can be visually recognised; and 
grounded representations of how different objects should 
be manipulated. 
 As more information is used in the sensory input, 
the environment and the action output, issues arising 
through the increase in dimensionality will affect 
performance due to a larger state space and limited 
computational resources. One of the advantages of 
sensorimotor coordination on an embodied robot is the 
ability to reduce dimensionality [Pfeifer and Scheier, 
1997]. A system to reduce visual input to a grounded 
visual-affordance relationship will allow the 
dimensionality of further systems to be reduced. 
 To perform more complex tasks the detail and 
resolution at which the environment can be sensed need to 
be enhanced. The computer vision community has 
investigated advanced techniques to represent a scene 
through identifying interesting or informative points within 
the image and further probabilistic methods have been 
developed to manipulate these representations. Employing 
these techniques will allow for sufficient visual sensory 
detail. More advanced methods for efficiently storing the 
complex multi-modal data in experience networks will also 
need to be investigated. 
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