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SUMMARY

A method of eliciting prior distributions for Bayesian models using expert knowledge is proposed. Elicita-

tion is a widely studied problem, from a psychological perspective as well as from a statistical perspective.

Here, we are interested in combining opinions from more than one expert using an explicitly model-based

approach so that we may account for various sources of variation affecting elicited expert opinions. We
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use a hierarchical model to achieve this. We apply this approach to two problems. The first problem in-

volves a food risk assessment problem involving modelling dose-response for Listeria monocytogenes

contamination of mice. The second concerns the time taken by PhD students to submit their thesis in a

particular school.

Keywords: Bayesian statistics; Expert opinions; Hierarchical model; Random effects; Prior elicitation; Risk assess-

ment

1. INTRODUCTION

In this paper we consider the problem of combining opinions from different experts in an explicitly model-

based way to construct a valid subjective prior in a Bayesian statistical approach. In many applied prob-

lems, it is necessary to construct complex models. In these models some parts are well informed by what

we could call good data, that is informative data, whereas in other parts, it is very difficult to collect appro-

priate data to provide the required information. This occurs for instance, when considering contamination

by ingestion of some bacteria, say campylobacter (Albert et al., 2008) [1]. A complex model is built by

specifying sub-models, which are then combined. Data are provided to inform some sub-models, in order

to obtain as much information as possible on the global model. However in other sub-models very little

data are available so that it is necessary to use expert opinions to supplement the information provided in

the other well-informed sub-models. From a Bayesian perspective, this corresponds to constructing infor-

mative priors on some of the parameters for which data can provide little information. The construction

of such informative priors using expert opinions is a delicate problem, because the human mind finds it

difficult to quantify qualitative knowledge, see for instance O’Hagan et al. (2006) [10] for a good review

on the subject.
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To simplify the presentation, consider a sampling model with observation X distributed from a prob-

ability distribution Pθ, with unknown parameter θ. In a Bayesian approach θ is considered as random and

a probability distribution π, called the prior probability, is considered on θ. The aim of prior elicitation

is then to construct such a prior probability distribution for θ using expert knowledge. In most cases, it is

more realistic to base the prior probability elaboration on a parametric family, say π ∈ {πγ , γ ∈ Γ} where

γ is also estimated from the experts’ knowledge. Indeed, it is often the case that we may not be able to

feasibly elicit more than a few quantities from experts, which we call the elicited data.

With more than one expert, we may elicit from each expert a different γ and in many situations it

is desirable to combine these different priors into a single “consensus” prior estimate of θ. There are

various methods proposed in the literature to achieve this, although most are not entirely satisfactory for

applications such as the case studies considered here. The most common methods, referred to as linear

or logarithmic “pooling”, define the overall prior as an additive or multiplicative mixture, respectively, of

the individual priors see Cooke and Goossens, 2004 [2], for instance. However in these cases, it is hard

to account for the various sources of variation affecting the elicited expert opinion. In our approach we

propose a Bayesian hierarchical (random effects) model that reflects the elicitation process involving var-

ious experts: bias and precision of individual experts as well as consensus and diversity in opinion among

experts, both overall and within known groups. We treat the elicited information as data, in the spirit of the

other Bayesian approaches to pooling expert opinions (see for instance Winkler, 1968 [17]; Lindley 1983

[7]; West 1983 [16]; Genest and Zidek, 1986 [4] ). Unlike other approaches (such as pooling), Bayesian

updating provides a model-based framework for capturing elicited information.

The method is generic and we consider two applications. One deals with risk assessment using a dose-

response model for Listeria monocytogenes on mice, the second deals with the time to thesis submis-
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sion for PhD students in applied mathematics in an Australian university. The first case study is simpler

mathematically since the underlying distributions are log-Normal, but more complex since three lev-

els of variation are considered—between schools-of-thought, between experts within schools of thought,

and intra-expert elicitation error. The second case study is more complex mathematically due to inver-

sions required to support indirect encoding of a probit regression, but only two levels of variation are

considered—between and within experts.

In Section 2 we describe the approach and the hierarchical model we consider. In Section 3 we consider

the the dose-response and the PhD example and Section 5 contains some conclusions.

2. METHOD

In this Section we describe the generic approach. Let X be a possible vector of observations from a

distribution Pθ, θ ∈ Θ, with density f(X |θ).

The aim is to construct an informative prior probability distribution on θ based on expert knowledge.

Such a prior for θ can be specified as the posterior from a Bayesian analysis that begins with a vague prior

π0 and treats elicited expert knowledge as data (e.g. Lindley, 1983 [7]), from the following scheme:

π(θ|Delicit) =

∫
π(θ|γ)π(γ|Delicit)dγ (2.1)

where Delicit are the elicited data and π(γ|Delicit) ∝ f(Delicit|γ)π0(γ). In this formula, π(θ|γ) be-

longs to a parametric class {πγ , γ ∈ Γ ⊂ Rp}.
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2.1 About the experts and the elicited data

In the following, we assume that we interviewN experts who can be grouped into J homogeneity classes

(of respective sizes Nj) , corresponding to similar background or similar schools of thought for instance.

In each class j, (i, j) denotes the i-th expert. To each expert (i, j) corresponds an unknown hyperpa-

rameter γij resulting into their own prior distribution π(θ|γij ), which reflects their conceptual model for

the distribution of X . To estimate this hyperparameter, we interview each expert (i, j) and encode their

knowledge. A more complete view of their knowledge is obtained by asking two styles of questions corre-

sponding to different approaches to statistically encoding their information into probability distributions

(see O’Hagan et al, 2006 [10] for a review of encoding techniques).

These two styles can, for instance, correspond to (i) eliciting quantiles for specified cumulative proba-

bilities (also known as fractile estimation) and (ii) eliciting cumulative probabilities for specified quantiles

(also known as interval estimation). Thus, in the PhD case study (Section 3), to address (i) we asked ques-

tions such as “For most students (95 in a hundred), what would you estimate to be the shortest and longest

time taken to submit their PhD thesis?” To address (ii) we asked questions such as “In a cohort of one

hundred PhD students, how many would you expect to submit their PhD thesis within 4 years?”. Here-

after, for the sake of presentation, we take these two types of elicited data but other quantities could be

elicited without changing the overall method. In the literature, these two approaches –(i) and (ii)– have

been used iteratively within a feedback cycle to elicit opinions (e.g. Low Choy et al, in press [14]). The

methodology presented here, however, allows us to retain information from both styles of elicitation, and

explicitly model the variability arising from each method separately.

In the following Qelicit = (Qijt) are elicited quantiles of the distribution of interest f(X |θ), and corre-

spond to specified cumulative probabilities pijt. Similarly, cumulative probabilities P elicit = (Pij`) for
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this same distribution of X are elicited at specified quantiles qij`. Delicit = (P elicit,Qelicit) = (Dijt)

denote the complete elicited data. Each block of answers (P elicit or Qelicit) can be used to provide

separate sources to estimate the parameter of interest γij (see below for more details).

For each question, the experts also provide a measure of uncertainty in their answer. More precisely, to

each answer corresponds a number cijt ∈ (0, 1) quantifying the expert’s confidence in their response. This

information allows to build a measurement error model to quantify their individual accuracy, adopting

similar ideas to earlier approaches to elicitation modelling (Lindley et al., 1979) [8]; Lindley,1983) [7])

as described below.

2.2 A model of error for elicited data

The individual inaccuracies for each expert are modelled via the following error model:

η(Dijt) = η(dt(γij)) + εijt, (2.2)

where dt(γij) is the theoretical response to the question relative to t-th quantity of the distribution of X

under the model X |θ ∼ Pθ and θ ∼ πγij . For instance the quantile qt(γij) and the probability p`(γij)

respectively satisfy:

∫
P (X 6 qt(γij)|θ)dπ(θ|γij ) = pijt and

∫
P (X 6 qij`|θ)dπ(θ|γij ) = p`(γij). (2.3)

η is a link function – such as the identity or the probit functions– depending on the situation. The εijt

are independent and have a known distribution hijt constructed using their given measure of uncertainty

cijt, together with measures of individual coherence and precision considered by the assessor, based for

instance on the training of the expert or on previous expertises (this point is detailed in the examples of

Section 3). Thus, the influence of the answers of the expert (i, j) is assessed via the error density hijt : an
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expert whose own measures of uncertainty are large typically would have error densities hijt with large

variance inducing a weak influence of Qijt on the likelihood.

Remark : In practice and in our examples, only a few quantiles (say 3 6 |T | 6 5) are generally elicited

from each expert, so that a sensible choice of the distribution of εijt will ensure the error model provides

a coherent set of quantiles that conforms to the order imposed by T . Should more quantiles be elicited,

or the error in quantiles cause incoherent overlap between quantiles, then a more complex model using a

Dirichlet distribution could be applied as suggested by West, 1983 [16].

2.3 Combining the experts opinions: a hierarchical model

The key issue is to derive a final unique distribution π(θ|Delicit) taking into account the fact that the

elicitations vary among the N experts. This pooling step relies on the building of the joint likelihood of

expert opinions. One option is to model this likelihood using a multivariate distribution, such as a mul-

tivariate normal (e.g. Lindley et al, 1983) [7]. This highly parameterized approach requires estimation,

and therefore specification of hyperparameters, for several fixed effects: bias (additive and multiplicative)

of individual experts as well as correlations between experts. A random effects model provides a more

parsimonious approach. We therefore consider an hierarchical formulation of a random effects model (e.g.

Lipscomb, Parmigiani and Hasselblad, 1998) [9], to represent variation between, and within individual,

expert opinions. Firstly, variation between experts reflects the level of consistency or diversity amongst

expert opinions, and can be as important as the “average” opinion for informing decision-making, partic-

ularly where decisions may have high impact. Secondly, variation within experts reflects both elicitation

(measurement) error, being the expert’s difficulty in accurately quantifying their knowledge, as well as

incoherence, being logical inconsistencies in their underlying knowledge. To help address incoherence
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we elicit expert opinion using two different constructs of their knowledge: quantiles and cumulative prob-

abilities. Elicitation error of individual experts is modelled at the within-expert level by the error model

(2.2). This model-based approach seeks to quantify these two variance components, which could be used

to inform design of elicitation. Indeed this is similar in aim to the approach of Osherson and Vardi (2006)

[11] who search for the “closest” though coherent set of probabilities that match the expert opinions.

To achieve this, these authors apply a simulated annealing algorithm to minimize logical incoherence at

these two levels (i.e. within each experts and between experts), whilst accounting for the first variance

component between experts. Our approach is also useful when a consensus expert model is desired, since

it explicitly combines potentially disparate expert elicitations in order to specify the prior distribution of

interest. Concretely, we propose the following hierarchical model:

γij
i.i.d∼ g(·|γj , bj), ∀i = 1, . . . , Nj ,

γj
i.i.d∼ g(·|γ, b), ∀j = 1, . . . , J,

γ ∼ π0

(2.4)

where π0 is typically some weakly informative prior. In other words the expert opinions grouped into the

same homogeneity class have the same distribution g(.|γj , bj). Then the different groups have knowledge

that can be linked via a common distribution g(.|γ, b). Finally in the last level a prior is used, representing

the overall uncertainty on γ prior to the hierarchical modelling. Thus γ can be understood as the true

parameter of model (2.1), or more realistically as the parameter representing the agreement of experts. In

model (2.4), the γj’s are location parameters and so is γ. The hyperparameters bj , b are typically dispersion

parameters.

Finally, we have constructed a Bayesian hierarchical framework to model the imprecision and inco-

herence of individual experts as well as their variability (between experts). We now present two estimation

methods deriving from two ways of formulating the model to utilize both sources of elicitation data.
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2.4 Estimation of the elicited distribution

Method A: Two-Stage Estimation of π(θ|Delicit) in Practice.

In method A, we propose to split the elicited data Delicit into two natural blocks namely P elicit and

Qelicit. In a first step, from the P -elicitation data P elicit, we estimate the hyperparameters (bj)j=1...J

and b. In a second step, we plug in these dispersion hyperparameter estimators into the likelihood of

elicited data Qelicit, as described in (2.7) and derive the posterior distribution π(θ, γ|Delicit) using a

MCMC algorithm. This is similar to an empirical Bayesian procedure, except that there is no double-use

of the data, different data is used in estimating the prior and the likelihood. More precisely,

• from P elicit we derive preliminary estimators of γij by minimizing the least squares objective

(Low Choy et al, 2008) [15]:

γ̂ij = argminγ
∑

`∈L
[Pij` − p`(γij)]2 (2.5)

Estimators of (bj)j=1,...,J and b are then deduced using moment estimators for instance. Various es-

timates are available, depending on the models and on the elicited quantities. This point is discussed

in the two examples (Section 3). We denote (b̂j)j=1...J and b̂ the obtained estimates.

• Using (2.1), (2.2) and (2.4) and plugging in the estimated dispersion hyperparameters, we deduce

the likelihood of elicited dataQelicit:

f
(
Qelicit|γ, (b̂j)j=1...J , b̂

)
=

∫ ∏

ijt

hijt(η(Qijt)−η(qt(γij)))
∏

ij

g(γij |γj , b̂j)
∏

j

g(γj |γ, b̂)dγjdγij

(2.6)

• Finally using:

π(θ|Delicit) ∝
∫
π(θ|γ)f

(
Qelicit|γ, (b̂j)j=1...J , b̂

)
π0(γ)dγ (2.7)
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we generate Markov realizations of (γ, θ) under the posterior distribution π(θ, γ|Delicit) through

Markov Chain Monte Carlo.

By splitting the elicited data into two parts used respectively for the estimation of the hyperparameters and

for the computation of the likelihood, we avoid the double use of the elicited data. This method is useful

in situations where the elicited cumulative probabilities are obtained in a different phase of elicitation. We

found this approach well-suited to the dose-response case study on food risk.

In the case of sufficient numbers of experts and so sufficient amount of elicited data, we could implement

a global MCMC approach, avoiding the plug-in step for the dispersion hyperparameters. This is described

in Method B.

Method B: All-in-one Estimation of π(θ|Delicit) in Practice.

The second method of utilizing both sources of elicitation data specifies weakly informative priors

π0(b), π0(bj), π0(γ), π0(γj) for the hyperparameters, and defines a Bayesian elicitation model for both

Qelicit and P elicit:

π(θ|Delicit) ∝
∫

γ,c,d

π(θ|γ)f
(
Qelicit,P elicit|γ, c, d

)
π0(γ)π0(c, d)dγdb (2.8)

where as before c = (cijt; i = 1, . . . , Nj , j = 1, . . . , J, t ∈ T ) represent imprecision in Q-elicitation and

we also introduce d = (dij`; i = 1, . . . , Nj , j = 1, . . . , J, ` ∈ L) to represent imprecision in P -elicitation.

These two likelihood contributions are separable, since the Q-elicitations and P -elicitations provided by

each expert can be considered independent when we condition on the their underlying conceptual model

γij , this leads to the following likelihood for the elicited data:

f(Delicit,ij |γij , cij·, dij) = f(P elicit,ij |γij , dij)f(Qelicit,ij |γij , cij·) (2.9)

Thus the likelihood of elicited dataQelicit and defined in (2.6) is modified to consider elicited data incor-
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porating P elicit as well as Qelicit, simply by including an additional factor
∏
ijt fij`(Pij`|p`(γij), dij`).

Hence we replace the Q-elicitation likelihood f
(
Qelicit|γ, . . .

)
by the full Q- and P -elicitation likeli-

hoods f
(
Qelicit,P elicit|γ, . . .

)
in the posterior distribution defined in (2.7).

Method B gives equal weight to the P -elicitations and Q-elicitations, and is also fully Bayesian, so

in this latter regard is more satisfying. Method A can be interpreted as a two-stage modelling approach,

where the second stage is Bayesian, but the first stage utilizes simple Frequentist point-estimates of hy-

perparameters in the prior. Method A has the advantage of simplifying the computation. We also believe

that by anchoring, Method A is more adapted to a smaller sets of experts.

2.5 Remarks and modifications of the method

This methodology contrasts with a ‘hybrid’ approach (e.g. Garthwaite and O’Hagan, 2000) [3] where

questioning oscillates between both styles of question, providing feedback from an alternative viewpoint,

to improve estimates obtained, and iterate towards a single estimated parameter γ. This can be done prior

to our analysis or, contrarywise, we can retain estimates obtained using each style. In the latter case, the

order in which the styles of questions are delivered is important, due to the opportunity for feedback,

as in the hybrid approach. This can be managed as a source of variation in the study, either explicitly

estimated or controlled by randomisation. For example, in the PhD case study, the order of the styles of

questions was randomly assigned to each expert. Finally, by introducing variability parameters and the

measurement error model, we may model cognitive uncertainty. We also reduce the bias arising from the

potential for experts to ‘anchor’ on estimates provided using the first approach encountered. Moreover

elicitations obtained using different techniques and uncertainty measures can be interpreted as assessing

slightly different perspectives on the expert’s knowledge or alternatively as assessing only one version of
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the expert’s underlying knowledge.

In the above formulation we have implicitly considered that we have no extra knowledge on the quality

of the groups of experts that have been interrogated nor on the specific reliability of a specific expert

within a group. However it is possible to consider other scenarii where for instance one of the groups is

a priori known to be less reliable than the other groups, in which case we can use this extra knowledge

(based on previous elicitations made by this group, for instance) to consider a specific distribution for the

parameter γj corresponding to this group. Such a scenario can happen for instance in a case where the

groups correspond to different school of thoughts, say you have two groups corresponding two schools

of thoughts, one corresponding to the majority of the population of experts and the other one being more

marginal. In such a situation, even though it is important to take into account the second group we may

not want to put too much weight on the answers of these experts. One way to take into the possible

different reliability of this group is to assume a higher level parameter for its distribution, in which case

γj would follow a distribution in the form g(·|γ, b′j) with b′j greater than b. Or, if the group is known

to have systematically a bias of some order of magnitude we could consider a distribution in the form:

γj ∼ g(·|γ + δ, b) where δ is assessed using this extra knowledge. Hence any other knowledge on the

behaviour of each expert or group of experts could be and should be included in the model, using variations

such as the one just described. However in the following we focus on the proposal (2.4), assuming that in

our examples the groups are not known to behave either much better or worse compared to one another.

An alternative parameterization has proved to be useful: γij = γ + ∆ij explicitly models bias ∆ij in the

expert’s description of π. In equation (2.4) all instances of γij can then be replaced with ∆ij , γj with ∆j ,

so that the ∆j ’s are typically centered on 0 (unless the assessor decides otherwise).
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To illustrate the generic approach we consider 2 examples based on the same formulation of model (2.4).

3. EXAMPLES

In this section, we detail a particular case of the hierarchical model (2.4) and discuss some technical

points such as the model for hyperparameters (bj)j=1...J , and b and the error model. In a second step,

we use this hierarchical model and our methodology on two examples. The first example is issued from

food risk science and is a model for a dose-response to a pathogen for mice. In the second example we

are interested in the time to thesis submission for an applied mathematical PhD student in an Australian

university. Although the two problems are of very different nature, the hierarchical structures of the models

used for the combination of the different expert opinions follow a similar pattern, following either Method

A or B detailed above.

3.1 Description of a particular hierarchical model (2.4) used for both examples

Suppose that the parameter of interest γ is composed of a mean µ and a variance σ2: γ = (µ, σ2). We

build a hierarchical model on γ using the second formulation of the model discussed in Section 2.5. More

precisely, we set µij = µ+ ∆µ
ij and σ2

ij = σ2 ×∆σ
ij . In each group j, we set:

∆µ
ij

i.i.d∼ ∆µ
j +N (0, τj) , ∆σ

ij
i.i.d∼ ∆σ

j × Γ(ξj , ξj) (3.10)

and the relations between groups are modelled by:

∆µ
j

i.i.d∼ N (0, τ) , ∆σ
j

i.i.d∼ Γ(ξ, ξ)

µ ∼ N (µ0, V ) , σ2 ∼ Γ(a, a/σ2
0).

(3.11)

The hyperparameters (bj)j=1...J = (τj , ξj)j=1...J , b = (τ, ξ) and (µ0, σ
2
0 , a, V ) must be modelled

carefully since their influence might be important, specially when the number of experts and elicited
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quantities are small, which is a common situation. As exposed previously under Method A, we may use

the group of elicited data P elicit to derive estimates µ̂ij , σ̂2
ij via least squares (see (2.5)). The solution of

this equation is proper to each example and is detailed in Sections 3.4 and 3.3. Once such estimates have

been obtained, we propose moment estimators for (bj)j=1...J and b. More precisely, since τj represents the

variance of ∆µ
ij in the group j, a natural estimate is given by τ̂j = 1

Nj−1

∑Nj
i=1(µ̂ij− µ̂j)2, where µ̂j is the

average of the µ̂ij ’s in the group j. The variance τ can also be estimated using τ̂ = 1
J−1

∑J
j=1(µ̂j − µ̂)2,

where µ̂ is the average of {µ̂j , j = 1, ..., J}. Similarly ξ−1
j represents the variance of ∆σ

ij

∆σ
j

so that a natural

estimate is ξ̂−1
j = 1

Nj−1

∑Nj
i=1

(
σ̂2
ij

σ̂2
j
− 1
)2

and ξ can be etimated using ξ̂−1 = 1
J−1

∑J
j=1

(
σ̂2
j

σ̂2 − 1
)2

,

where σ̂2 is the average of {σ̂2
j , j = 1, ..., J}. We then use µ̂ and σ̂2 as estimates for µ0 and σ2

0 . Finally

since V and a−1 are measures of uncertainty (variances) on µ and σ2

σ2
0

we replace them by our observed

uncertainty namely: V̂ = 1
J

∑J
j=1 τ̂j + τ̂ and â−1 = 1

J

∑J
j=1 ξ̂

−1
j + ξ̂−1.

These hyperparameters are then plugged into the likelihood to propose an elicited prior distribution using

a MCMC algorithm. The resulting approach can thus be understood as a Bayesian estimation of the prior

distribution based on a part of elicited data. Note that we could also have considered all the elicited

data together (P elicit,Qelicit) and used all of them both for the computation of the likelihood and for

the computation of the estimates of hyperparameters (τj , ξj , τ, ξ, a, V, µ0, σ
2
0). However this would have

implied a strong double use of the elicited data,

The third alternative (Method B) is to use all elicited data (P elicit,Qelicit) for the computation of the

elicitation likelihood and instead use noninformative priors for hyperparameters (τj , ξj , τ, ξ, a, V, µ0, σ
2
0).

We now describe the error model we have considered to construct the elicitation likelihood.
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3.2 Description of the likelihood : error model (2.2)

In our examples, to make it simple, we consider Gaussian errors in the elicitation error model for quantiles

(2.2):

η(Qijt) ∼ N (η(qt(γij)), vijt) (3.12)

where qt satisfies formula (2.3) with P (X |γ) specific to each example (detailed below) and η is a link

function. In Method B, we may also consider Gaussian errors in the elicitation error model for probit-

transformed cumulative probabilities (2.2):

Φ(Pij`) ∼ N (Φ(p`(γij)), ξij`) (3.13)

Similarly to vijt the variances ξij` are assigned weakly informative priors.

For either method, the variances vijt (and potentially ξij`) may be estimated using all the available

information on the precision of the experts. In particular this allows some flexibility so that experts can

provide this information in whatever form they find most natural. Some experts are amenable to providing

measures of confidence cijt, for the elicited quantiles. Suppose that cijt ∈ (0, 1) is elicited as the expert’s

degree of confidence in their answer, or the probability of being right, then cijt can be considered as a

coverage probability of a confidence interval and

1− cijt = P
[
|η(Qijt)− η((qt(γij))| > q?ij

]

= P
[
|η(Qijt)− η(qt(γij))| /√vijt > q?ij/

√
vijt
]

= 2(1− Φ(q?ij/
√
vijt)),
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so that

√
vijt =

q?ij
Φ−1((1 + cijt)/2)

. (3.14)

The reference value q?ij reflects the assessor’s estimate of the precision. This can be evaluated from the

training of the expert, or from other constraints on the precision such as discretization. The choice of the

q?ij ’s is illustrated in the two examples.

In some other cases the confidence is given in terms of an interval around a given value, then setting a

level for the confidence interval we obtain a value for vijt using a formula similar to before.

Remark: In the PhD example, η is the identity link and in the food risk example, η is the probit link since

Qijt ∈ [0, 1].

We now describe the two examples. In the first example we develop a model to describe the mortality rate

for mice under a dose do of Listeria monocytogenes EGD or EGDe and the second example concerns the

time students take to submit their mathematical PhD thesis in an Australian university.

3.3 Dose-response example

Contrary to the PhD example, the model used for the dose response example is highly nonlinear and the

number of experts is expected to be small in practice, hence we have only considered Method A. We

consider a typical bioassay problem where dose of some treatment affects a response, often mortality. In

this example we model the dose-response curve for the contamination of BALB/c, C57 Black/6 or Swiss

mice from Listeria monocytogenes EGD or EGDe by intravenous injection. Let X be the number of dead

mice out of n mice exposed to a dose do. Then, the sampling model is, conditionally on the injected dose,

a binomial model of parameter p(do, θ) where p(do, θ) is the probability for a mouse to die from a dose
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do of Listeria depending of an unknown parameter θ. We consider an exponential dose-response model

(see for instance Haas, Rose and Gerba, 1999, p. 264) [5]. In that case, we have:

X ∼ Bin(n, p(do)) with p(do, θ) = 1− e−θdo, θ > 0. (3.15)

We are interested in the elicitation of the prior distribution of the unobservable parameter θ. We consider

a log-normal distribution: log θ ∼ N (µ, σ2) and denote γ = (µ, σ2). θ being not observable, we ask

questions on the proportions of dead mice in some specific experimental context. Each expert chooses a

dose do = doij , which he finds easier to work with and is then asked questions about the probability of

mortality, to help formulate the distribution of p(do, θ).

We suppose that the experts are issued from 2 groups of respective sizesN1 andN2. We first ask questions

regarding the quantiles of p(do, θ). The answer given by the expert i of group j is denoted Qijt and

qt(µij , σij) is the theoretical quantile. qt(µij , σij) verifies:

qt(µij , σij) = 1− exp{−doij × exp(σijΦ−1(t) + µij)}.

The second set of questions concerns the probabilities P [X10 6 `|doij ], whereX10 is the number of dead

mice out of 10 mice submitted to dose doij and ` ∈ L. We denote by Pij` the answer given by the expert

i of group j and by p`(µij , σij) the theoretical probabibility:

p`(µij , σij) =
∑̀

j=0

Cj10

∫ ∞

0

(1− e−θdoij )je−(10−j)θdoijϕ((log(θ) − µij)/σij)σ−1
ij θ

−1dθ

where ϕ(.) is the density function of a standard Gaussian random variable.

To prove the robustness of our method and to illustrate its behaviour, we propose various simulated sce-

narii. On each simulated data set, we apply the methodology described in Section 2 and compare the

elicited prior distribution obtained with this hierarchical approach to those obtained with standard meth-
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ods namely the plugin and mixture methods. For these two last methods, the posterior distributions are

respectively:

log(θ)|Delicit ∼ N


 1

N

∑

i,j

µ̃ij ,
1

N

∑

i,j

σ̃2
ij


 and log(θ)|Delicit ∼

1

N

∑

i,j

N
(
µ̃ij , σ̃

2
ij

)
.

where µ̃ij and σ̃2
ij are estimates of (µij , σij) minimizing

∑
t∈T [Qijt − qt(µij , σij)]2+

∑
`∈L [Pij` − p`(µij , σij)]2.

Note that the comparison is not aimed at showing some superiority of our method, compared to other

methods, since we are only comparing with two naive methods and more sophisticated versions of the

plug-in or the mixture combination of experts exist in the literature, but merely to understand better how

the hierarchical modelling stands in terms of consensus of experts.

3.3.1 Simulation study
We now describe four simulated datasets and comment the results. In each dataset, the doses do are differ-

ent for all the experts and fixed arbitrarily between 103 and 107. These values correspond to realistic situa-

tions. We simulate elicitated probabilities withL = {3, 8} and quantiles with T = {0.1, 0.25, 0.5, 0.75, 0.9}.

We add an error term of variance vijt = 0.1 for all the experts and all the questions.

Dataset 1. Balanced case: In this dataset, we consider a balanced case where we interview 10 experts

divided into two groups of the same size (N1 = N2 = 5). We set:

N1 = 5 N2 = 5
µ1 = −2 µ2 = −1.1, ξ1 = 100 ξ2 = 100,
ρ1 = 1 ρ2 = 1 τ1 = 0.01 τ2 = 0.01
σ = 1

and we simulate the individual parameters (µij) and (σij) following:

µij ∼ N (µj , τj) , ρij ∼ Γ(ξj ,
ξj
ρj

) , σij = σρij

The resulting elicited prior distribution are plotted in Figure 1. This standard dataset clearly illustrates the

specific behaviour of our hierarchical method. On the one hand, the plugin method (solid line) proposes a
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Fig. 1. Dataset 1. Balanced case. Comparison of methods for combination of experts using p(log θ|Delicit): mixture

(−−), plugin (solid line), hierarchical (−·)

forced agreement between the experts’ answers, smoothing the variabilities due to the origin of knowledge

for instance. On the other hand, the mixture model (−−) takes into account the variabilities and models

the difference between experts. The hierarchical model is an intermediate approach allowing to consider

the interactions between experts: the elicited prior distribution of p(log θ|Delicit) (−·) (which is thus a

posterior) is smoother than the mixture one but has a wider support than the plugin posterior distribution.

Dataset 2. Unbalanced groups of experts: On this dataset, we suppose that the numbers of experts in the
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groups are strongly unbalanced. More precisely, we set:

N1 = 10 N2 = 2
µ1 = −2.5 µ2 = −1, ξ1 = 100 ξ2 = 100,
ρ1 = 1 ρ2 = 1 τ1 = 0.01 τ2 = 0.01
σ = 0.5

On Figure 2, we obviously see again that the mixture method takes into account the global variability

whereas the plugin method proposes a forced consensus, leading to a narrow posterior distribution; the

hierarchical method is a compromise between the two previous methods. In that particular case, it has

the additional advantage to take into account the small group, which has been ‘forgotten’ by the plugin

method. Indeed, the mode of the hierarchical distribution is slightly shifted toward the small group (cor-

responding to µ2 = −1) considering the members of this group in the global posterior distribution. This

shows that the hierarchical approach clearly does what it is aimed at: take into account the dependencies

between experts to avoid redundancies.

Dataset 3. Mis-specification of the number of groups: In this dataset, we suppose that the experts are

issued from a unique group but the elicitation procedure is performed assuming that there are two groups.

In the simulated (elicitation) data all the individuals belong to the same group which is caracterized by the

following parameters:
N = 10
µ1 = µ2 = −1.5, ξ1 = ξ2 = 100,
ρ1 = ρ2 = 1 τ1 = τ2 = 0.05
σ = 0.5

We apply our procedure assuming that the experts are divided into two groups of size N1 = N2 = 5.

Results: We obtain the following graph (see Figure 3). The mixture and plugin methods are expected

to lead to similar posterior distributions. And, as expected, we observe the same behaviour for the hierar-

chical modelling: the three candidate elicited priors are similar. As a consequence, artificially creating a

group of experts does not deteriorate the performance of our method.
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Fig. 2. Dataset 2. Unbalanced groups of experts. Comparison of methods for combination of experts using

p(log θ|Delicit): mixture (−−), plugin (solid line), hierarchical (−·)

3.3.2 Real elicited data

A real elicitation has been conducted in this example. Five French experts of Listeria dose-response exper-

iments on mice have been questioned: 3 from Institut Pasteur and 2 from INRA (French National Institute

for Agricultural Research). We asked questions about the quantiles of p(do):

P (p(do) 6 Qt) = t with t ∈ T

(|T | = 3) and about the probabilities

P`(µ, σ) = P [X10 6 `] with ` ∈ L (|L| = 2).
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Fig. 3. Dataset 3. Mis-specification of the number of groups. Comparison of methods for combination of experts using

p(log θ|Delicit): mixture (−−), plugin (solid line), hierarchical (−·)

T and L have been chosen by the experts, and then are different for an expert to another, depending

on their knowledge. The doses do have also been chosen by each expert. For lack of information in the

elicited data and so for convergence reasons, we simplify the model by considering the same variance σi2

in the second group (smaller one): σ2
i2 ≡ σ2

2 . To illustrate results, Figure 4 presents posterior densities

of p(do) for a fixed usual dose do = 4 by mixture, plugin and hierarchical approaches. The density of

Beta
(

1
2 ,

1
2

)
(· · ·) is added as an example of non-informative prior on p(do) classically used when no

expert opinion is available. In this case, the higher a priori weights on values of 0 or 1 may be interpreted

as reflecting an expert’s tendency to think concretely of whether mortality occurs or not on a single trial.
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As shown on simulation, the mixture approach models the differences between experts and the plugin

method proposes an agreement between the experts’ answers. The two modes in the mixture model results

reflect the large inter-expert variability, indicating that two experts have quite different opinions. In gen-

eral, the hierarchical model provides results close to the plugin method results but with a larger support

and a slight translation towards the left probably due to a smaller weight on the second group. Practi-

cally this leads to quite different inferences in the lower tail, which could be pivotal for decision-making

related to limitations in the efficacy of the dose, reflected by estimated probabilities of mortality in both

the lower and the upper tails. After accounting for both intra- and inter-expert variability, the hierarchical

model provides a larger estimated probability (compared to the plug-in) that the mortality rate (at fixed

dose of 4) is lower than 20%, and consequently weaker evidence that mortality will be greater than 20%

at this dosage. The hierarchical formulation is the only model which both reflects this increased chance

of low efficacy at low dose, as well as smoothing the estimated probability of survival rate near the mode

(approx. 60%). The differences between the non informative prior (Beta
(

1
2 ,

1
2

)
) and the elicited posterior

distributions clearly indicate that experts supply information on the parameter.

3.4 PhD example

Contrarywise to the first example, in this Section we apply Method B and the relations that are involved

are mainly linear. This example illustrated that using a vague prior (on the scale of the parameter) at the

lower level of the hierarchy does not necessarily lead to excessively wide elicited distributions on the time

to submissions of a PhD thesis.

Let X∗ be the time to submission for a PhD student in applied mathematics in the Queensland Uni-

versity of Technology in Australia. The experts were much more comfortable with answering questions
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Fig. 4. Non-informative prior Beta
`

1
2
, 1

2

´
(· · ·) and posterior densities of p(do = 4) with real experts data using:

mixture (−−), plugin (solid line), hierarchical (−·) approaches

based on X∗, which correspond to observable quantities. This agrees with advice (Kadane et al. (1980)

[13]; Low Choy et al., in press [14]). Hence we work with the marginal distribution of X ∗ given µ, σ2,

which differs between experts since they each have their own conceptual model for µ and σ2.

There is a logical constraint on minimum submission times; experts agreed that except in very rare

situations which fall beyond the scope of this model, PhD students would need a minimum of δ = 2

years’ candidature before submitting a thesis. This reflects both administrative and practical constraints

particular to the university and faculty. Therefore, the quantity of interest is based onX ∗−2 > 0. Also, the
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time to submission for a PhD is expected to have quite fat tails, as a random variable, we therefore assume

that X = log(X∗ − 2) follows a Normal distribution with mean µ and variance σ2. Such a marginal

distribution can be obtained for instance from the following model:

X |θ, v ∼ N (θ, v), θ|µ, v, ρ2 ∼ N (µ, vρ2), σ2 = v(1 + ρ2)

Recall that µij = µ + ∆µ
ij , σ

2
ij = σ2 ×∆σ

ij . We apply the hierarchical model for describing variation in

µij and σij across experts and groups, as described in Section 3.1.

Elicitation was conducted in two phases. In each phase different styles of questions were asked. The

order of assigning styles to the two phases was randomized for each expert to eliminate anchoring effects.

These two styles correspond to (i) eliciting quantiles for specified cumulative probabilities (also known

as fractile estimation) and (ii) eliciting cumulative probabilities for specified quantiles (also known as

interval estimation). To address (i) we asked questions such as “For most students (95 in a hundred), what

would you estimate to be the shortest and longest time taken to submit their PhD thesis?” To address

(ii) we asked questions such as “In a cohort of one hundred PhD students, how many would you expect

to submit their PhD thesis within 4 years?” These two approaches have been used iteratively within a

feedback cycle to elicit opinions (e.g. Low Choy et al, in press [14]). The methodology presented here,

however, allows us to retain information from both styles of elicitation, and explicitly model the variability

arising from each method separately.

We report results from four experts interviewed in phase I, who were asked for five quantiles associated

with probabilities in {0.025, 0.25, 0.5, 0.75, 0.975}, and two probabilities associated with quantiles in

{log(3− 2) = 0, log(4− 2) ≈ 0.7}. We report on results from another five experts interviewed in phase

II, who were asked for six quantiles associated with probabilities in {0.01, 0.025, 0.25, 0.75, 0.975, 0.99},

and four probabilities associated with quantiles in {log 0.5 ≈ −0.7, 0, log 1.5 ≈ 0.4, log 2 ≈ 0.7}. Only
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two experts in the latter group could estimate with any level of confidence the cumulative probability

associated with the quantile corresponding to the proportion of students that submit in under 2.5 years,

we are thus, similarly to the dose-response example, in a case where the experts did not provide the same

quantities. Here eliciting three or four cumulative probabilities was satisfactory given that we desired a

minimum of two such values, and since elicitation best targets information that experts can conceptualize

[13]. Similarly to before we assume that the error model is Gaussian so that the likelihood associated with

the error model forQ-elicitations is given by
∏Nj
i=1

∏J
j=1 φ(Qijt−qt(µij , σ2

ij)|wijt). with φ(.|w) denotes

the density of a centered Gaussian random variable with variance w.

The above model implies that for each t, and corresponding pijt ∈ (0, 1), the theoretical quantile cor-

responding to the expert’s conceptual model (parameterized by µij , σij) is qt(µij , σij) = σijΦ
−1(pijt) +

µij and for each ` ∈ R, the theoretical probability associated with the quantile qij` is given by p`(µij , σij) =

Φ((qij` −µij)/σij). This provides the basis for both approaches to estimation. For Method A, the second

set of equations allow us to determine estimates for µij and σij by solving for each (i, j)

argminµ,σ
∑

`∈L

(
Φ−1(Pij`)σ + µ− qij`

)2
,

which leads to:

µ̂ij = q̄ij − Φ̄−1(Pij`)σ̂ij and σ̂ij =

∑
`∈L(Φ−1(Pij`)− Φ̄−1(Pij`))(qij` − q̄ij)∑

`∈L(Φ−1(Pij`)− Φ̄−1(Pij`))2
,

where q̄ij is the average of the values qij` over ` and Φ̄−1(Pij`) is the average of the values Φ−1(Pij`)

over ` ∈ L. In other words (µ̂ij , σ̂ij) is the least square estimate associated with the linear model

Φ−1(Pij`)σij + µij + εij` = qij`, where εij` represents the individual error of elicitation. Hence we

implicitely consider an error model on the elicitated probabilities similar to the error model on the elici-

tated quantiles. Then the hyperparameters are estimated as described in Section 3.1.
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We consider both the two-stage modelling approach (A), as described in the previous example and the

fully Bayes (one-stage) approach (B). For the latter, the likelihood for the Q-elicitations is supplemented

by a likelihood for the P -elicitations:

f(Delicit; γij , vij , wij) =

[∏

t

p(qijt|γij , vitj)
] [∏

`

p(pij`|γij , wij`)
]

where

qijt ∼ N (qt(µij , σij), vijt) (3.16)

Φ−1(pijt) ∼ N
(
Φ−1(p`(µij , σij), wij`

)
(3.17)

leading to a joint distribution given by

p(µ|µ0, τ0)p(σ2|σ0, ξ0)

J∏

j=1

p(µj |µ, τ)p(σ2
j |σ, ξ)

Nj∏

i=1

p(µij |µj , τj)p(σ2
ij |σj , ξj)f(Delicit; γij , v, w)p(v, w)

Recall that the variances v = (vijt, i, j, t ∈ T ) and w = (wij`, ` ∈ L) are determined using (3.14), and in

this example we consider the following prior that is vague on the scale of the quantile: q∗ij ∼ N+(0, 10).

We group the experts depending on their domain of interest and of their formation, an important con-

sideration for their estimation of PhD thesis submission times. A group is formed of applied statisticians

(3 individuals), another group is formed of more theoretical mathematicians (4 individuals), a third group

is formed of computational mathematicians (2 individuals). Here it is evident that although the methods-

of-moment approach provides a consensus opinion, it overstates the confidence in that opinion, by not

addressing variability across and within experts. The pooled estimate focuses on diversity of opinions at

the expense of diversity, and also does not adjust for within-expert variation. In contrast, the hierarchical

approaches distribute the weight of expert opinion more widely across potential submission times than

the pooling or method-of-moments approaches. Consensus is concentrated on a mode of 3 years (Method
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B) or 3.12 years (Method A), much lower than the modal estimate of approximately 3.5 years provided

by the other methods. However the weight of expert opinion on the mode is much lower, indicating that

there is a wider possibility of submission times away from that most commonly achieved. Interestingly,

the expected submission time is fairly similar across all methods (all means lie between 3.55 and 3.72

years), regardless of the shift in the weight of expert opinion for shorter and longer submission times.

Practically this translates to quite different inferences from expert opinion. Following the hierarchical

model (Method B) results suggests that administration should be ready for the majority of students to

submit around the 3 year (rather than 3.5 year) mark, however a fairly large (rather than small) minority

take longer than 4.5 years to submit (about 17%). In addition, administration should be ready to accept

a non-negligible (rather than negligible) proportion of theses to be submitted within 2.3-2.7 years (9%).

This suggests that it may be important to account for covariates responsible for shorter or longer sub-

mission times. From a more theoretical viewpoint, we comment that the hierarchical models provide a

skewed consensus distribution, whilst accounting for within expert as well as between expert variation.

This contrasts with the more symmetric consensus distributions encoded using the other methods, which

have ignored within-expert variation.

Figure 5 displays the marginal posterior predictive and prior predictive distributions of the time to

submission of each expert, resulting from the hierarchical model based on methods A and B. It is inter-

esting to note that the hierarchical approaches lead to a wider posterior distribution on X and that it is

shifted to the left compared to the other two methods, taking into account the smaller group of more math-

ematical experts. Note that this method still allows for the individual experts prior distributions, since we

can recover them from the MCMC algorithm. Figure 6 displays such distributions, corresponding to the

hierarchical model using Method B. The groups can be easily recognized, forming three different clusters.
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Fig. 5. Marginal posterior predictive densities ofX based on: pooled (mixture model) (−−), plug-in (−·), hierarchical

approaches, method A (· · ·) and method B both posterior predictive density (thick solid) and prior predictive density

(thin solid).

4. DISCUSSION

As a conclusion, the approach we describe in the paper, is quite generic in the sense that it does not depend

on the particular distributions involved in the elicitation process, neither does it depend on the questions

that are asked to the experts. In particular the experts could be aksed questions of a very different na-

ture, without changing the overall hierarchical approach to combining expert elicitations. It does however

require some extra information on the nature and the sources of their knowledge to form the different

groups. However this information is usually asked of the experts, since it helps them remember all (or at

least most) of their knowledge on the subject.

To our mind, one of the great advantages of such a method is that it does not suffer from the various

paradoxes that the other (ad-hoc) approaches might suffer, since it is a fully probabilistic and coherent
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Fig. 6. Contour plots of the individual prior distributions on (µij , σij)

approach.

A critical aspect of our method compared to pooled (mixture model) or plug-in approaches is that it

is computationally more demanding, in order to facilitate the hierarchical combination of opinions whilst

accounting for within-expert error. In the examples we have considered in this paper, this led to some

practically important differences in inferences. In the PhD case study, compared to other methods, the

hierarchical approach to combining opinions led to a much lower typical thesis submission time, but

a greater minority with shorter or longer thesis submission times. In the dose-response case study, the

hierarchical permitted the possibility that the dose could be of lower efficacy compared to the plug-in
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approach, but provided smoother estimates of efficacy for mid-range probabilities of mortality. These

differences between approaches were evident even though elicitation was based on a small number of

parameters; we estimate these differences to be further magnified under higher dimensional models. We

believe that the approach described in this paper has potential even for larger dimensional setups.

For a very limited number of experts (only two in the dose-response case study), Method A provided

stable estimates of parameters. Interestingly the fully Bayesian approach (Method B) also leads to very

reasonable priors, at least in the particular case of the PhD example considered here. Hence, even with a

few elicited quantities per experts the information is good enough to compensate for the complexity of the

hierarchical model.

This hierarchical approach takes an “independence prior” approach , whereby the priors for γ compo-

nents are independent, e.g. the µ and σ components in the PhD case study. For other applications, it may

be fruitful to instead assume a conditionally conjugate prior which explicitly models dependence between

the mean and variance via p(µ, σ) = p(µ|σ)p(σ), and similarly for the components.

The dose-response case study shares the same structure as the PhD case study in that we are asking

experts about (quantiles and cumulative probabilities) of the possible response (the number of mortalities

among n mice at specific dose), rather than focussing on the parameter governing the response, here iter-

pretable as the proportion of dead mice. This approach was chosen to be consistent with recent elicitation

research (Kynn, 2008) [6], which has confirmed that elicitation based on counts is less prone to cognitive

errors than elicitation of probabilities. However the method we use here, of deliberately structuring the

elicitation model to relate observable counts to the underlying probability, is quite new; typically a prob-

ability is imputed from a count, without accounting for the sampling issues inherent in counts (e.g. Low

Choy et al, 2010) [14].
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