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Abstract 
This paper presents a method of voice activity detection 
(VAD) for high noise scenarios, using a noise robust voiced 
speech detection feature. The developed method is based on 
the fusion of two systems. The first system utilises the 
maximum peak of the normalised time-domain autocorrelation 
function (MaxPeak). The second system uses a novel 
combination of cross-correlation and zero-crossing rate of the 
normalised autocorrelation to approximate a measure of signal 
pitch and periodicity (CrossCorr) that is hypothesised to be 
noise robust. The score outputs by the two systems are then 
merged using weighted sum fusion to create the proposed 
autocorrelation zero-crossing rate (AZR) VAD. Accuracy of 
AZR was compared to state-of-the-art and standardised VAD 
methods and was shown to outperform the best performing 
system with an average relative improvement of 24.8% in 
half-total error rate (HTER) on the QUT-NOISE-TIMIT 
database created using real recordings from high-noise 
environments.  
Index Terms: voice activity detection, high noise, 
autocorrelation, zero-crossing rate, time-domain analysis 

1. Introduction 
Voice activity detection (VAD) is an essential technique in 
speech processing. It is commonly utilised in automatic speech 
recognition, speaker recognition, speaker diarisation, and 
speech enhancement [1]. This has led to the proposal of a 
variety of VAD algorithms, however, the need for noise robust 
and efficient speech processing methods has increased, and 
thus, so has the need for high precision VAD algorithms that 
operate under extremely noisy conditions - scenarios with a 
signal-to-noise ratio (SNR) of <5 dB. This has been the 
motivation behind the design of the autocorrelation zero-
crossing rate (AZR) system presented in this paper. 

VAD algorithms typically consist of a feature extraction 
stage followed by a classification/segmentation process. Some 
of the features utilised include: energy, zero crossing rate, 
cepstral coefficients [1], higher order spectra (HOS) [2], LPC 
analysis [3], autocorrelation [4], spectral divergence [4], 
harmonic features [5], and spectral pattern [6]. Most VAD 
methods utilise a combination of features. The classification 
methods employed in recent VAD algorithms include: 
Gaussian mixture models (GMM) [7], support vector machine 
(SVM) [8], and Gaussian likelihood ratio test (LRT) [9]. 

Analysis of available VAD methods reveals that such 
algorithms are commonly more successful in the detection of 
voiced speech segments rather than unvoiced speech. This is 
expected, as the statistical nature of unvoiced speech is more 
random and typically more similar to background noise [4-6]. 
It is the quasi-periodic nature of voiced speech that makes it 
different to unvoiced speech and thus more robust to 
background noise [10]. For this reason, the AZR VAD system 
is implemented to focus on the detection of voiced speech 

segments. To do this, two features for conducting VAD, and 
specifically voiced speech detection, in high noise scenarios 
are proposed. Each feature is implemented as an autonomous 
system that carries out an independent measure of voicing. The 
first system utilises the maximum peak value of the 
normalised time-domain autocorrelation. This feature is titled 
the MaxPeak score. The second system utilises a combination 
of the zero-crossing rate and cross-correlation of the time-
domain autocorrelation to provide an approximate measure of 
signal pitch and periodicity. This feature is titled the 
CrossCorr score. The raw output scores from the two systems 
are fused using a weighted sum fusion. The fused scores are 
then thresholded and smoothed to attain final speech/non-
speech decisions. These decisions are then utilised to evaluate 
the proposed method with respect to reference VAD data.  

Section 2 provides a description of the proposed AZR 
VAD through describing the MaxPeak and CrossCorr 
algorithms in Sections 2.1 and 2.2, respectively. The fusion of 
the two algorithms and the smoothing process used to estimate 
unvoiced speech frames is explained in Section 2.3. Section 3 
provides a brief description of the QUT-NOISE-TIMIT 
database [11] utilised for evaluation, and Section 4 describes 
the experiments conducted and results obtained. These results 
are compared to the performance of the ITU-T G.729 Annex B 
[12], advanced front-end (AFE) ETSI [13], long term spectral 
divergence (LTSD) [14], and Sohn’s likelihood ratio test 
(LRT) VAD [9] systems. It is shown that the developed 
system provides greater accuracy, than the baseline methods, 
across all tested noise levels and scenarios. 

2. AZR VAD 
The method proposed in this paper is designed to obtain 
voiced speech segments. This method is titled AZR and is 
implemented as a fusion of two independent systems, 
MaxPeak and CrossCorr. Each of the two systems utilise 
features extracted from the autocorrelation function to produce 
voiced speech scores. Unvoiced speech segments are 
estimated using smoothing in the AZR VAD.  

Voiced speech is quasi-periodic and has a pitch. The pitch 
frequency for an adult typically ranges from 50 to 500 Hz [5]. 
This corresponds to pitch periods of 2 to 20 ms, hence, the 
time-domain autocorrelation is calculated using a frame size of 
(> 20 ms). A frame size of 50 ms, with no overlapping frames 
was chosen for both the MaxPeak and CrossCorr algorithms. 
Experiments with overlapping frames demonstrated no real 
benefit over no-overlap, thus a non-overlapping 
implementation was chosen to reduce computation time. 

2.1. MaxPeak Algorithm 
One method of classifying voiced speech is using the 
maximum peak of the normalised autocorrelation within the 
lag range corresponding to the expected pitch periods of 
voiced speech (2 to 20ms) [4, 5]. The MaxPeak system 



follows this process and outputs a score vector containing
values o  this peak per analysed frame. 

 the 
f

The MaxPeak system segments an input signal, ݏሾ݅ሿ 
(where ݅  represe , 50 ms frames, 
such that,            

nts sample number), into  ݇

ሾ݅ሿݏ             ൌ ሼݏଵሾ݅ሿ|ݏଶሾ݅ሿ| …  ௞ሾ݅ሿሽ  (1)ݏ|

Figure 1: ܴ௞ሾݖሿ of a voiced speech frame for 2 to 20 
ms lag. The CrossCorr algorithm initially performs a 
count of the marked zero-crossing points to estimate 
the pitch and perform a cross-correlation similarity 
check of adjacent  ௬ܲ segments for ݕ ൌ 1, 2, … , ݉.  

 a DC remo a s s d ame, v l and pre-empha i  is then applie to each fr

௞ሾ݅ሿݔ         ൌ ሺݏ௞ሾ݅ሿ ሻ െ ߙ ሾ݅ െ 1ሿ െ        െ ௞ߤ ሺݏ௞ ௞ሻߤ (2) 

where ߤ௞ is the mean of ݏ௞ሾ݅ሿ (t  ݇௧௛ frame of ݏሾ݅ሿ) and ݔ௞ሾ݅ሿ 
is the pre-emphasised and DC removed version of ݏ௞ሾ݅ሿ. 

he

The pre-emphasis constant ߙ , in (2), is typically chosen 
between 0.9 and 1. In this case ߙ is set to 0.96 and the pre-
emphasis is conducted to correct the roll-off in the spectrum of 
voiced speech that is caused by radiation from the mouth and 
the voiced excitation source [10]. 

suggesting that a signal is “more periodic” if a higher 
correlation exists between its “periods”, and “less periodic” if 
the opposite is true. The CrossCorr method first segments the 
2 to 20 ms lag range of the autocorrelation (ܴ௞ሾݖሿ), for a given 
frame, into its “periods”. To do this, it is assumed that a 
“period” is observed every two zero-crossing points. Each 
segment is then cross-correlated with its posterior segment and 
the summation of the maximum values obtained from each 
cross-correlation is recorded as the CrossCorr score, ܥሾ݇ሿ, for 
the analysed frame. It must be noted that the cross-correlated 
“periods” will not have equal lengths in most cases and are 
thus zero-padded to adjust segment lengths for the 
correlation process. 

After pre-emphasis, the normalised time-domain 
autocorrelation, ܴ௞ሾݖሿ, at lags corresponding to pitch periods 
of 2 to 20 ms, is lca culated for ݔ௞ሾ݅ሿ, 

                ܴ௞ሾݖሿ ൌ  
∑ ௫ೖሾ௜ሿ௫ೖሾ௜ା௭ሿ೙ష೥

೔సభ
∑ ௫ೖ

మሾ௜ሿ೙
೔సభ

                     (3) 

where ݖ is the autocorrelation lag and ݊  is the number of 
samples in ݔ௞ሾ݅ሿ, hence, the MaxPeak score (ܯሾ݇ሿ), for the 
݇௧௛ frame, ݔ௞ሾ݅ሿ, is 

cross-

Figure 1 shows that once the zero-crossing rate of ܴ௞ሾݖሿ, 
which indicates the approximate pitch of the analysed frame, 
satisfies the specified upper and lower limits (it is within the 
approximate 50 to 500 Hz pitch period) the CrossCorr, ܥሾ݇ሿ, 
feature can then and

calculated as, 

ሾ݇ሿܯ   ൌ  max ሺܴ௞ሾݖሿሻ   (4) 

it is expected that voiced speech would produce a higher 
maximum peak value than unvoiced or silence/noise frames. 

 be calculated using (5)  (6), 

          ෠ܴ௬ሾݖᇱሿ ൌ  ∑ ௬ܲሾ݆ሿ ௬ܲ ଵሾ݆ ൅ ᇱሿ௡ᇲି௭ᇲݖ
ଵ               (5) ା௝ୀ

ሾ݇ሿܥ                ൌ  ∑ max ሺ௠ିଵ
௬ୀଵ ෠ܴ௬ሾݖ ሻ           

2.2. CrossCorr Algorithm 
The MaxPeak feature alone cannot serve as a noise robust 
VAD feature. It has been shown that the maximum peak value 
of the normalised autocorrelation reduces as SNR decreases 
[4], making it more difficult to distinguish between voiced and 
unvoiced/noise frames. For this reason a novel feature, titled 
CrossCorr, was developed to conduct noise robust voiced 
speech detection. 

therefore, 
ᇱሿ          (6) 

where ௬ܲ specifies an assumed “period” of ܴ௞ሾݖሿ, and ෠ܴ௬ሾݖᇱሿ 
is the cross-correlation function between ௬ܲ and its posterior 
“period”. This adjacent cross-correlation is used to ensure 
maximum CrossCorr score value in cases such as that in 
Figure 1, where the magnitud he autocorrelation decreases 
with lag increase. 

The quasi-periodic nature of voiced speech causes the 
autocorrelation function of voiced frames to be approximately 
periodic within the 2 to 20 ms lag range. It is hypothesised that 
this “periodicity” is more robust to noise than the MaxPeak 
feature. In the case of high noise scenarios, it can be observed 
that while the peak value of the normalised autocorrelation 
drops, the “periodicity” is preserved. A novel feature, 
CrossCorr, is proposed to measure this “periodicity” and thus 
distinguish between voiced and unvoiced/noise frames at low 
SNR. 
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The CrossCorr feature, ሾ݇ሿܥ  , is thus an indicator of 
“periodicity” within a desired pitch range and is therefore 
robust to both random and quasi-periodic noise. Figures 2 
displays the projection of the “periods” of ܴ௞ሾݖሿfor voiced and 
unvoiced/noise frames onto one another, which indicates the 
correlation of these “periods” in each case. 

The CrossCorr algorithm follows the same process as that 
in section 2.1 to obtain the normalised autocorrelation 
function ܴ௞ሾݖሿ, however, pre-emphasis filtering is not carried 
out in order to preserve the original pitch of the input signal. 

The pitch of the signal can be approximated by calculating 
the zero-crossing rate of the autocorrelation. The CrossCorr 
system utilises the zero-crossing rate of the autocorrelation 
within the 2 to 20 ms lag range to selectively analyse signals 
with approximate pitch frequencies corresponding to a pitch 
range of 50 to 500 Hz. This acts as an initial screening process 
and is done to ensure further analysis is only carried out on 
signals that are deemed as potential voiced speech segments. Figure 2: (a) ܴ௞ሾݖሿ of a noise frame (2 to 20 ms lag) 

from a noisy speech file at SNR=(-5)dB. (b) Similarity 
check of ௬ܲ “periods” every second zero-crossing 

indicates low correlation. (c) ܴ௞ሾݖሿ of a voiced speech 
frame at SNR=(-5)dB. (d) Similarity check of 

௬ܲ“periods” indicates high correlation. 

 

A signal is defined as periodic if it repeats its values every 
period. If a periodic signal is segmented into its periods, the 
segments will display perfect correlation with one another. 
The CrossCorr   method     utilises    this    definition    loosely,  



2.3. Fusion and Smoothing 
A normalisation process was carried out prior to the weighted 
sum fusion of the output scores. This was conducted to 
achieve a wider score range for the MaxPeak system, 
efficiently employ the fusion, and obtain the AZR scores. To 
do this, the MaxPeak and CrossCorr scores were 
independently calculated, and the MaxPeak scores, which 
initially covered an expected range of ሺ0 ൏ ሾ݇ሿܯ ൏ 1ሻ were 
modified according to, 

ᇱሾ݇ሿܯ                                ൌ  െlog ሺ1 െ  ሾ݇ሿሻ   (7)ܯ

scores were then divided into two independent sets, location-1 
and 2, as described in Section 3. The medians of the speech 
score distributions for each location set, of each system, were 
calculated and utilised to normalise the scores for the 
independent location set of that system to obtain unbiased 
results. This score normalisation was followed by the weighted 
sum fusion. Experiments were conducted for various weighted 
summations. It was observed that maximum accuracy was 
achieved using an e i in AZR scores: qual we ghted sum to obta

ሾ݇ሿܴܼܣ                 ൌ ᇱሾ݇ሿܯ  ൅  ሾ݇ሿ   (8)ܥ 

The AZR method conducts voiced speech detection. For 
this reason the unvoiced frames must be estimated to complete 
the VAD process. Based on the study in [4], voiced speech is 
typically preceded by 300ms and followed by 500ms of 
unvoiced speech, hence, a moving average smoothing filter, 
with a length of 1 second, was employed to smooth the raw 
AZR scores and compensate for the missed unvoiced frames. 
The smoothed scores were then thresholded and segmented to 
complete the AZR VAD. 

3. QUT-NOISE-TIMIT Corpus 
The QUT-NOISE-TIMIT database [11], consisting of 600 
hours of noisy speech was produced and utilised for testing. 
The files were created at set lengths of 60 and 120 seconds at 
various SNR, using clean speech from the TIMIT database and 
realistic noise recordings from the QUT-NOISE corpus. A 
total of 24,000 files were created and used for testing.  

The noise recordings were collected from 10 independent 
real-noise locations, with each recording having a length of 30 
minutes. The clean speech files were then added, at random, to 
random selections of the real-noise recordings to produce 
noisy speech files at set SNR levels and recording length for 
each scenario location. The files had a sampling rate of 16,000 
Hz and were grouped based on noise type and location.  

It can be seen from Table 1 that the database consists of 5 
distinct real-life recorded noise scenarios, with each divided 
into two equal sized sets based on recording location or noise 
type. Each location is then divided into 3 equal sized noise-
level sets: low noise (SNR=10 or 15 dB), medium noise (0 or 
5 dB), and high noise (-5 or -10 dB). Each set contains an 
equal number of files. For example, CAFE scenario, at 
location “Food court”, contains 2,400 noisy speech files, with 
1,200 of the files having a length of 60 seconds and the 
remaining 1,200 files at 120 seconds. In addition, the set 
contains 800 files at each noise level. 

4. Experiment 
The proposed AZR VAD was evaluated against state-of-the-
art methods, long term spectral divergence (LTSD) [14] and 
Sohn’s likelihood ratio test (LRT) VAD [9], and standardised 
VAD systems, advanced front-end (AFE) ETSI [13] and the 
ITU-T G.729 Annex B [14]. 

Table 1. QUT-NOISE-TIMIT scenarios and locations. 

Scenarios Location 1 Location 2 
CAFE Cafe Food court 
CAR Window down Window up 

HOME Kitchen Living room 
REVERB Car park Pool 
STREET City Suburb 

4.1. Evaluation 
Errors were calculated as percentages of time. The metrics 
utilised included, false alarm rate (FAR), miss rate (MR), and 
half-total error rate (HTER). HTER was calculated as the 
average of FAR and MR. The errors were obtained with 
respect to reference speech/non-speech boundaries. 
 

% FAR ൌ ൬
݄ܿ݁݁݌ݏ ݏܽ ݀݁ݐܿ݁ݐ݁݀ ݏ݈݁݌݉ܽݏ ݄ܿ݁݁݌ݏ݊݋݊

ݏ݈݁݌݉ܽݏ ݄ܿ݁݁݌ݏ݊݋݊ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ܶ ൰ ൈ 100 

 

% MR ൌ ൬
݄ܿ݁݁݌ݏ݊݋݊ ݏܽ ݀݁ݐܿ݁ݐ݁݀ ݏ݈݁݌݉ܽݏ ݄ܿ݁݁݌ݏ

ݏ݈݁݌݉ܽݏ ݄ܿ݁݁݌ݏ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ܶ ൰ ൈ 100 

4.2. Training and Testing 
To obtain unbiased test results over the entire corpus, 
thresholds for the location-1 scenarios were generated using 
systems trained on the location-2 data, and vice versa. That is, 
a 2-fold cross-validation approach was employed to minimise 
HTER with folds defined according to noise location. This 
was employed for the training and testing of the developed and 
baseline methods, except G.729-B and ETSI systems, as their 
parameters are fixed according to their standard specification. 

4.3. Results 
Figure 3 displays the HTER percentages, per noise level and 
scenario, as bar graphs for each VAD system. Each bar 
consists of a light and dark shade of colour. The dark shade 
represents the proportion of the HTER that is caused by the 
MR, while the lighter shade indicates the contribution of the 
FAR to the HTER. The exact error percentages obtained at 
each noise level, for the systems, can be found in Table 2. 

From Figure 3, high FAR error proportions are observed 
for all systems in the CAFE and HOME scenarios. This can be 
attributed to the presence of background speech in the CAFE 
and HOME scenarios. This background speech may be falsely 
considered as target speech, especially at negative SNR, thus 
causing the FAR errors.  

High MR error proportions and HTER, are observed for all 
systems in the REVERB scenario, with the exception of ETSI 
displaying a high FAR proportion. This may be due to reverb 
corrupting the speech signal. It is, however, apparent that AZR 
is less affected by reverb with respect to baseline methods. 

From Table 2, it can be concluded that AZR outperforms 
the baseline methods over the entire database. The AZR VAD 
achieves 33.6%, 28.5%, and 12.2% relative improvements in 
HTER over the best performing baseline VAD (LTSD) for the 
low, medium, and high-noise scenarios, respectively. 

5. Conclusion 
In this paper, a noise robust VAD was proposed based on, only 
the detection of voiced speech. It was suggested that the quasi-
periodic nature of voiced speech, captured by the 
autocorrelation function, can be utilised as a noise robust 
feature while unvoiced speech can be approximated using 
smoothing. This was achieved through the implementation of a 



novel feature (CrossCorr), which employs the cross-
correlation and zero-crossing rate of the normalised 
autocorrelation to approximate signal pitch and conduct a 
periodicity measure. The pitch approximation ensures that the 
analysed signal is within a reasonable pitch range, with 
reference to the pitch of a typical adult, and the periodicity 
measure indicates the level of periodicity of the signal. 

The maximum peak of the normalised autocorrelation 
(MaxPeak) was utilised to aid the voiced speech detection. The 
two features were fused using summation to obtain the 
proposed AZR VAD. AZR was evaluated against four baseline 
systems using the QUT-NOISE-TIMIT corpus. It was shown 
that AZR outperforms the best performing baseline system 
(LTSD) with an average relative improvement of 24.8%.

Table 2. Overall %FAR, %MR, and %HTER for the AZR VAD and baseline systems at each tested noise level. 

VAD Systems Low Noise (SNR=10 or 15dB) Medium Noise (SNR=0 or 5dB) High Noise (SNR=-10 or -5dB) 
% FAR % MR % HTER % FAR % MR % HTER % FAR % MR % HTER 

AZR 15.6 6.6 20.5 12.1 31.9 25.5 11.1 16.3 28.7 
LTSD 20.7 12.8 26.2 19.5 28.6 36.8 16.7 22.8 32.7 

Sohn’s (LRT) 24.6 20.4 33.5 28.9 56.5 25.0 22.5 31.2 40.8 
G.729-B 33.7 18.8 34.2 31.5 35.0 50.2 26.2 32.9 42.6 

ETSI 68.3 0.2 66.8 2.2 65.1 13.6 34.2 34.5 39.4 

 

 

 
Figure 3: %HTER performance of AZR VAD and baseline methods for each noise scenario at three tested noise levels. The 

dark shading of each bar represents the %MR and lighter shade displays the %FAR of the overall %HTER. 
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