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A

Approximate Bayesian computation using indirect
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Christopher C. Drovandi, Anthony N. Pettitt and Malcolm J. Faddy

Queensland University of Technology, Brisbane, Australia

[Received October 2009. Revised October 2010]

Summary. We present a novel approach for developing summary statistics for use in approx-
imate Bayesian computation (ABC) algorithms by using indirect inference. ABC methods are
useful for posterior inference in the presence of an intractable likelihood function. In the indirect
inference approach to ABC the parameters of an auxiliary model fitted to the data become the
summary statistics.Although applicable to any ABC technique, we embed this approach within a
sequential Monte Carlo algorithm that is completely adaptive and requires very little tuning.This
methodological development was motivated by an application involving data on macroparasite
population evolution modelled by a trivariate stochastic process for which there is no tractable
likelihood function.The auxiliary model here is based on a beta–binomial distribution.The main
objective of the analysis is to determine which parameters of the stochastic model are estimable
from the observed data on mature parasite worms.

Keywords: Approximate Bayesian computation; Beta–binomial model; Indirect inference;
Macroparasite; Markov process; Sequential Monte Carlo methods

1. Introduction

In approximate Bayesian computation (ABC), we seek to make inferences about the parameters
of the posterior distribution when the likelihood function is computationally intractable. This
usually occurs when the model that is used to describe the data is complex, e.g. in Markov process
models (Tanaka et al., 2006) and population genetic models (Marjoram et al., 2003). Therefore
the ABC methodology allows for valid inferences to be carried out on model parameters for
increasingly realistic models.

Although the likelihood function itself cannot be computed easily, it is assumed that simu-
lation from the model is relatively straightforward. Data are simulated from the model, x, on
the basis of proposed parameter values, which are accepted if the simulated data are sufficiently
close to the true data y. There are varying measures of ‘closeness’. A popular approach, which
was originally proposed by Weiss and von Haeseler (1998), is to compare carefully chosen sum-
mary statistics. Say that there are p summary statistics, S.·/ = .S1.·/, . . . , Sp.·//T; the distance
between the true and simulated data, ρ.y, x/, can be obtained by using

ρ.y, x/=‖S.y/−S.x/‖,

for a suitably chosen norm. This method may be expected to be effective when the statistics are
sufficient for the parameters of the model, in which case the true posterior is achieved as the
discrepancy tends towards 0. However, in many applications sufficient statistics are not available
and the practitioner must resort to a selection of carefully chosen data summaries.
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In this paper we investigate an alternative approach to obtain summary statistics that is based
on indirect inference (Heggland and Frigessi, 2004). In indirect inference an auxiliary model is
proposed whose likelihood function is tractable and provides a good description of the data.
Alternatively, a set of estimating equations can be used (Heggland and Frigessi, 2004). The
objective is to search for parameter values of the model of interest that produce simulated
data that lead to auxiliary parameter estimates close to those based on maximum likelihood of
the original data. Therefore a comparison of summary statistics involves a similarity measure
involving estimates of such auxiliary parameters. We use an efficient searching strategy based
on an adaptive sequential Monte Carlo (SMC) algorithm yielding a posterior distribution of
the parameters that are involved in the model of interest.

We consider a stochastic process model that was developed by Riley et al. (2003) for a Brugia
pahangi population within a host. The Brugia pahangi parasite is known to infect domestic cats
and wild animals whereas Brugia malayi lives almost exclusively in humans. These are examples
of microfilarial nematodes that affect lymph vessels, causing what is known as lymphatic
filariasis. External symptoms of lymphatic filariasis include enlargement of the leg, arms,
genitals, vulva and breasts, which can have significant psychological effects on its sufferers
(Garcia, 2007). Furthermore, it is common for lymphatic filariasis to cause internal damage to
the kidneys and lymphatic system (Langhammer et al., 2003). The spread of infective larvae
(L3) is vector borne via mosquitoes that bite infected individuals. Several moult stages occur
within the host, producing L4 and L5 stage larvae, before the parasite matures into an adult
(Garcia, 2007).

In the experiment of Denham et al. (1972), each host is injected with many L3 larvae which
either mature into an adult parasite or die. An individual data point consists of the mature
parasite count at the time of necropsy for a particular host. The data, in the form of proportions
(mature parasite count at autopsy time divided by the initial larvae injection), exhibit more var-
iability than can be explained by the binomial distribution. A beta–binomial model is employed
here to capture the mean and variability and to provide a description of the data, whereas the
stochastic model encapsulates the biological system which drives the observed data.

Riley et al. (2003) showed that analytic approximations to the likelihood are not adequate in
the region of the parameter space of interest and so we adopt a likelihood-free approach based
on simulation from the model.

The indirect inference approach to obtaining summary statistics in this application arose as
the data are not identically distributed. In particular, each observation has its own mean and
variance owing to the presence of the autopsy time and initial juvenile infection covariates.
Therefore it is difficult to derive simple summary statistics to capture important aspects of the
data. Using the indirect inference approach, we can incorporate these regression effects through
an appropriate data analytic model (beta–binomial in this case) and use the corresponding
parameter estimates as summary statistics. If the autopsy time and initial injection were fixed
for each host then fitting a beta–binomial model would be equivalent to using the sample mean
and variance summaries. Drovandi and Pettitt (2010) used a goodness-of-fit statistic but fixed the
number of juveniles and marginalized the observed and expected counts over the time variable.
In this approach we can consider the full set of data by including the initial infection as a
covariate.

Our approach has additional advantages. In most instances of ABC, the summary statistics
are simple functions of the data. However, the parameter estimates of a well fitting auxiliary
model can be more complex functions of the data and can carry most of the information that
is contained in the full data likelihood. Furthermore, the ABC approach that is used here
could also be useful in investigating a range of plausible distributions to use in moment closure
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approximations for Markov-process-type models. For example, Krishnarajah et al. (2005)
developed a moment closure approximation for stochastic models which is similar to that used
here based on the beta–binomial distribution. Our approach using the beta–binomial distribu-
tion as an auxiliary model suggests that for these data a moment closure approximation based
on the beta–binomial distribution could be of value.

Using this method, a reliable determination can be made of posterior distributions of param-
eters describing the original stochastic model indicating what is estimable from the observed
data. We investigate a range of priors and two different models and find that posterior infer-
ences for ratios of some rate parameters are informative when inferences for the individual rate
parameters are quite imprecise. We also informally use the summary statistics to argue that one
model is preferable to the other simpler model.

This paper is structured as follows. In Section 2, the macroparasite data are described in more
detail. The stochastic model that was proposed by Riley et al. (2003) is presented in Section
3. Additionally in this section, the beta–binomial model is developed and fitted to the data of
Section 2. Section 4 introduces the concept of using indirect inference within the ABC frame-
work. Section 5 shows the results and a concluding discussion is presented in Section 6.

2. Data

As mentioned previously, the data available for analysis consist of mature parasite counts at
particular autopsy times for 212 hosts (Denham et al., 1972). Each host was injected with
approximately 100 or 200 larvae and necropsy time ranged between 24 and 1193 days after the
initial infection. The proportions of mature parasites alive at autopsy time are shown in Fig. 1.
There is clear evidence of overdispersion, which a binomial distribution alone cannot describe.

3. Modelling

In this section the stochastic process model of Riley et al. (2003) is presented and described. We
also outline the fitting of the beta–binomial auxiliary model, which entails an iterative process
of model estimation, comparison and evaluation.

3.1. Stochastic process model
The following stochastic model was developed by Riley et al. (2003) to help to explain the
population dynamics of Brugia pahangi. At time t any host is described by three random variables
{M.t/, L.t/, I.t/}, where M.t/ is the number of mature parasites, L.t/ is the number of larvae
and I.t/ is a discrete version of the host’s experience to infection, referred to as the number of
units of immunity attained by the host. Initially cats are infected with LI larvae and after a
certain time (in days) the hosts are autopsied and the number of mature parasites is counted
and recorded. Hence the initial conditions are M.0/=0, L.0/=LI and I.0/=0.

It is assumed that each larva matures at a constant rate of γ per day. Larvae die at a rate
μL +β I.t/ per larva where μL represents the rate at which natural death of larvae occurs and β
is a rate parameter that describes additional death of larvae due to the immune response of the
host. The acquisition of immunity is assumed to be dependent only on the number of larvae
and occurs at rate ν L.t/, and a host loses immunity at a rate μI per unit of immunity. Mature
parasites die at a rate of μM adults per day. Parameters γ and μM have been previously estimated
at 0.04 (Suswillo et al., 1982) and 0.0015 (Michael et al., 1998) respectively. We consider two
models; the first assumes that these two parameters are fixed and the second allows γ to be
estimated from the data. Two assumptions that Riley et al. (2003) applied in this application
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Fig. 1. (a) Proportion of mature parasite count to initial larvae infection for each host at their time of autopsy
(also shown is the mean of a beta–binomial fit to the data (see Section 3.2)) and (b) initial larvae injected
against the number of recorded mature parasites at autopsy: source of data, Denham et al. (1972)

are that all cats are independent of each other and that the parameters of the model do not vary
between hosts.

The analogous deterministic model can be represented by the following system of interacting
differential equations:

dL
dt

=−μLL−βIL−γL,

dM
dt

=γL−μMM,

dI
dt

=νL−μII,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.1/
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with the initial conditions as before. This approach is valid if there is relatively little variability
in the system, which can occur in large populations of parasites. However, as is clear from the
data in Fig. 1, there is a substantial amount of variability in the data. Therefore, Riley et al.
(2003) modelled the data stochastically via a continuous time discrete trivariate Markov pro-
cess. Given current values of the states at time t, M.t/= i, L.t/= j and I.t/=k, and a small time
interval Δt so that at most one event can occur, the transition probabilities at time t +Δt are
given by

P.i+1, j −1, k/=γjΔt +o.Δt/,

P.i, j −1, k/= .μL +βk/jΔt +o.Δt/,

P.i−1, j, k/=μMiΔt +o.Δt/,

P.i, j, k +1/=νjΔt +o.Δt/,

P.i, j, k −1/=μIkΔt +o.Δt/,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.2/

and the probability of remaining in the same state is 1 minus the sum of the above probabilities.
Only the final mature parasite count is observed whereas the immunity and larvae counts are
unobserved throughout the process. Moreover, the immune response variable I.t/ is unbounded.
One approach to determining the likelihood is to estimate it empirically by producing many
realizations of the stochastic process. Another would consist of bounding the immunity appro-
priately, yielding a finite state process, and using the matrix exponential formulation of the
transition probability matrix (Grimmett and Stirzaker (2001), page 258). Unfortunately both
approaches are not computationally feasible because of the large number of states in the process
due to the initial number of larvae, about 100 or 200 (see Fig. 1). Analytic approximations to
the likelihood by using moment closure were developed in Riley et al. (2003) but their accuracy
was restricted to a small range of parameter values which, when used in the simulations, could
not reproduce the variability of the data. Given these unsuccessful methods for likelihood calcu-
lation, an alternative approach uses the likelihood-free and simulation method that is adopted
here. The Markov process for each host is simulated independently by using the well-known
algorithm of Gillespie (1977).

3.2. Indirect model
3.2.1. Beta–binomial model
Since the Markov process model assumes that no reproduction occurs at either stage of the life
cycle, the number of mature parasites at necropsy times can be calculated by the number of
juveniles that matured minus the number that die. Hence each observation represents a propor-
tion. These proportions cannot be modelled appropriately by assuming a binomial distribution
owing to the high variability in the data.

To overcome this, we propose a beta–binomial model, which contains an extra parameter to
capture the overdispersion. More specifically, the ith observation has the probability distribution

P.Mi =mi|αi, βi/=
(

li

mi

)
B.mi +αi, li −mi +βi/

B.αi, βi/
,

where li is the larvae injection, mi is the mature parasite count and B.·, ·/ is the beta function. It
is convenient to use a reparameterization in terms of the proportion, pi =αi=.αi +βi/, and over-
dispersion, θi =1=.αi +βi/, parameters, with θ=0 corresponding to the binomial distribution.
These parameters can then be related to the necropsy time ti and initial larvae burden li through
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logit.pi/=fp.ti, li/,

log.θi/=fθ.ti, li/:
.3/

The choice of the link functions logit and log is to some extent arbitrary but appears to work
well here.

3.2.2. Model selection and comparison
The two functions fp.ti, li/ and fθ.ti, li/ are chosen appropriately to fit the data. The log-likeli-
hood function can be calculated straightforwardly in this instance and we compute the maximum
likelihood estimates of the parameters by using the simplex algorithm (Nelder and Mead, 1965).
Model comparison can then proceed by using, for example, the Akaike information criterion
AIC.

Initially we considered several choices of the functions fp.·/ and fθ.·/ of only the autopsy time
covariate ti. Table 1 reveals a subset of these. It can be seen from Table 1 that a linear trend in fθ.ti/

provides only slight improvements in fit and is thus neglected. We also tried the complementary
log–log-link function as opposed to the logit in model (3) and again there was a minimal change
in fit.

The model corresponding to the smallest AIC in Table 1 is that involving linear and quadratic
terms in log.ti/. To improve the model fit further we introduced a second covariate li into the
model. We found that adding this covariate into the proportion function fp.ti, li/ did not pro-
vide much improvement to the fit. However, including this additional covariate into fθ.ti, li/

did produce an enhanced model fit. We introduced two θ-parameters, θ100 and θ200, to account
for the overdispersion in the proportion of mature parasite count and initial larvae infection for
li ≈100 and li ≈200 respectively. Therefore

log.θi/=
{

η100, if li �100,
η200, if li > 100,

.4/

where η100 = log.θ100/ and η200 = log.θ200/. For this model (with a quadratic mean trend in log-
time) the AIC-value was 1897, demonstrating a substantial improvement in model fit. Therefore
the indirect model that we choose consists of five parameters, β0, β1, β2, η100 and η200 (see Fig.
1 for a mean based on these parameters fitted to the experimental data). Residual analysis
indicated that this beta–binomial model provides a good fit to the observed data.

Table 1. Set of functions tested for the beta–binomial model
together with their AIC-values

fp(ti) fθ(ti) AIC

β0 +β1ti η0 1930
β0 +β1ti η0 +η1ti 1931
β0 +β1ti +β2t2

i η0 1921
β0 +β1ti +β2t2

i η0 +η1ti 1922
β0 +β1 log.ti/ η0 1911
β0 +β1 log.ti/ η0 +η1ti 1912
β0 +β1 log.ti/+β2 log.ti/

2 η0 1909
β0 +β1 log.ti/+β2 log.ti/

2 η0 +η1ti 1911
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To help to ensure that the regression estimates of the parameters are not highly correlated,
the log-time covariate was centred:

fp.ti, li/=β0 +β1{log.ti/− log.t/}+β2{log.ti/− log.t/}2: .5/

The maximum likelihood estimates for the parameters with standard errors (based on an esti-
mate of the Hessian) given in parentheses were β̂0 =−1:002 .0:062/, β̂1 =−0:341 .0:057/, β̂2 =
0:108 .0:048/, η̂100 =−1:694 .0:157/ and η̂200 =−2:434 .0:127/. Much of the information in the
data is contained in these parameter estimates, and we use these as summary statistics of the
actual data in the ABC algorithm. An estimate of the Hessian matrix at the maximum likelihood
estimate generated the correlation matrix

ĉorr.β̂0, β̂1, β̂2, η̂0, η̂1/≈

⎛
⎜⎜⎜⎝

1:0 −0:12 −0:60 0:10 0:16
−0:12 1:0 0:30 0:06 0:06
−0:60 0:30 1:0 0:05 −0:06

0:10 0:06 0:05 1:0 0:02
0:16 0:06 −0:06 0:02 1:0

⎞
⎟⎟⎟⎠:

4. Approximate Bayesian computation

In the usual approach to ABC a target distribution is defined similarly to the posterior dis-
tribution but uses the simulated data as an auxiliary variable. The most general form of the
approximate posterior distribution is given by

π.θ, x|y/∝g.y|x, θ/f.x|θ/π.θ/,

(Luciani et al., 2009) where f.x|θ/ is the probability model evaluated at the simulated data, π.θ/

is the prior distribution of the parameter and g.y|x, θ/ is some function that assesses the simi-
larity between the observed and the simulated data, giving higher weight as they become closer.
One special case is to put g.y|x, θ/ = g.y|x/, resulting in a hierarchical structure, y → x → θ
(Reeves and Pettitt, 2005). Some potentially useful choices for g.y|x/ involve a Gaussian or
Epanechnikov kernel weighting function. In many applicationsg.y|x/ is taken to be proportional
to the indicator function (a uniform weighting function), which is 1 if the distance between
observed and simulated data (usually based on summary statistics), ρ, is within a certain pre-
defined target threshold "T . If this choice is adopted the target distribution simplifies:

π{θ, x|ρ.y, x/� "T }∝f.x|θ/π.θ/1ρ.y,x/�"T : .6/

The marginal posterior distribution of the parameters can be approximated by simulating B
data sets, x1, . . . , xB based on values from the prior and computing

π{θ|ρ.y, x/� "T }≈ 1
B

B∑
i=1

1ρ.y,xi/�"T : .7/

In the SMC setting it has been advocated that B = 1 is a reasonable choice (McKinley et al.,
2009) and we adopt such a preference.

4.1. Approximate Bayesian computation algorithms
Several ABC methods have been proposed in the literature. These include acceptance sampling
(popularized by Beaumont et al. (2002)) and Markov chain Monte Carlo (MCMC) sampling
(Marjoram et al., 2003). See Marjoram and Tavaré (2006) for a review. However, we consider
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SMC approaches, pioneered by Sisson et al. (2007), which have proven to be more efficient than
previous methods. In particular, we use the SMC ABC replenishment algorithm of Drovandi
and Pettitt (2010), where N weighted samples (particles) are traversed through a sequence of
target distributions that have a sequence of non-increasing ABC tolerances.

In this algorithm we have a starting tolerance "1 and a target tolerance "T . The intermediate
tolerances are adaptively determined by dropping a proportion α of the particles with the worst
tolerance values at each iteration. The population is replenished by resampling from the ‘alive’
particles and moved according to an MCMC kernel. We repeat the MCMC step numerous
times to ensure that each resampled particle is moved with a theoretical probability of 1 − c.
The stopping rule for the algorithm is when the MCMC acceptance rate becomes unacceptably
low, and this determines "T . See Drovandi and Pettitt (2010) for more details.

4.2. Approximate Bayesian computation with indirect inference
In ABC with indirect inference (see Heggland and Frigessi (2004) as a reference on indirect
inference), an auxiliary model is developed with a different set of parameters θa (as opposed to
the parameters of the model of interest, θ). It is paramount that the likelihood of this model is
tractable and the model provides a good description of the data. Let θ̂a denote the parameter
estimates that are in some sense optimal when applying the auxiliary model to the true data
(e.g. those based on maximum likelihood or posterior modes). These estimates become the sum-
mary statistics of the data. It is also important that optimal θa are quickly computable for any
simulated data set from the model of interest.

As before, data x are simulated from the original model by using parameter values of this
model. The auxiliary model is fitted to the simulated data, producing parameter estimates θx

a .
We then compare the summary statistics θx

a and θ̂a. This can be done, for example, via the
Mahalanobis distance

ρ.y, x/=ρ.θ̂a, θx
a/=√{.θ̂a −θx

a/TS−1.θ̂a −θx
a/},

where S is the covariance matrix of the sampling distribution of the parameter estimates (like-
lihood-based inference) or parameters (Bayesian inference). Hence the objective of such an
algorithm is a search on the parameter space of the model of interest that leads to parameters
of the auxiliary model near the auxiliary parameters that are favourable for the actual data.

4.3. Model deficiency in approximate Bayesian computation
Following the approach of Ratmann et al. (2009), any deficiencies in the model can be found in
ABC by looking at the distribution of the difference between each summary statistic of the sim-
ulated and the observed data. This basically describes which summary statistics are contributing
the most to the overall discrepancy. In this application the summary statistics are the auxiliary
model parameter estimates. These auxiliary parameters can be retained for each particle. Then
the distribution of the error between these simulated auxiliary parameters and the auxiliary
parameters estimated from the actual data can be determined.

In the ideal situation, the optimal auxiliary parameters tuned to the observed data provide
close to sufficient statistics. In this case, the preferred outcome is that the model of interest can
generate data sets that reproduce the optimal auxiliary parameters with a modal error of 0. Such
an outcome would suggest that these statistics are reproduced unbiasedly as the target tolerance
tends towards 0. A discrepancy with a non-zero mode may indicate a model deficiency, or a
lack of goodness of fit. It is to be hoped, however, that the discrepancy distribution has a mode
close to 0.
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5. Results

5.1. Results for the tractable model
Here we consider an artificial example consisting of only 10 initial juveniles. In this way the
populations are small so likelihood-based inference is tractable. We set the maximum allowable
immunity value at 2 to ensure a finite state process. The transition probability matrix can be
computed by using the matrix exponential formulation and the likelihood evaluated by margin-
alizing over the juvenile and immunity variables. We assume that all parameters are fixed apart
from ν, which is given a U.0, 1/ prior. We estimate the normalizing constant of the posterior by
using the trapezoidal rule to obtain a good approximation to the true posterior.

5.1.1. Data and auxiliary model
The data are simulated on the basis of optimal parameter estimates in Riley et al. (2003), i.e.
ν =0:00084, μI =0:31, μL =0:0011, β =1:1, γ =0:04 and μM =0:0015. The autopsy times were
evenly spaced between 50 and 545 days with a time increment of 5 days, creating 100 observa-
tions. All hosts are infected with 10 juveniles.

The auxiliary model is a beta–binomial model with logit.pi/=β0 +β1.ti − t̄/ and log.θi/=η.
The data together with the mean fit are shown in Fig. 2.

5.1.2. Results
The distributions from the likelihood-based and likelihood-free inference are shown in Fig. 3.
The median (and 95% credible interval in parentheses) for the true and ABC posteriors were
estimated as 0.00088 (0.00039, 0.0016) and 0.00082 (0.00035, 0.0016) respectively. It is evident
here that the ABC inference compares favourably, demonstrating the utility of the method.

5.2. Results for the observed data
5.2.1. Models and priors
We considered two variants of the stochastic model above. Initially we chose to keep γ and μM
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Fig. 2. Simulated data with 10 juveniles to create a tractable likelihood: also shown is the mean of a
beta–binomial fit to the data
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Fig. 3. Posterior distribution for ν when considering the simulated data set that allows likelihood-based
inference: shown are the true posterior ( ) and that obtained via the indirect inference ABC approach
(– – –)

constant at their previously estimated values (referred to as model 1). For the second model, γ
was allowed to vary for reasons that will become apparent later (model 2 hereafter). We also
tried to estimate μM from the data but found an estimate close to the fixed value. Uniform and
independent priors were placed on all the parameters. We proposed three sets of prior distribu-
tions for each model. In models 1 and 2 the prior distributions for ν and μL were all U.0, 1/. The
three prior distributions for β and μI were U.0, 2/, U.0, 5/ and U.0, 10/ (i.e. β and μI had the
same prior). Finally, the prior distributions for γ were U.0, 1/, U.0, 2:5/ and U.0, 5/ (for model
2). This results in six inference cases (two models and three prior configurations).

5.2.2. Algorithm implementation and details
In all cases we used N = 1000 particles. The MCMC move step was based on a multivariate
normal random walk with the elements of the covariance matrix changing adaptively on the
basis of sample moments from the particles satisfying the next target distribution. However, the
variances were scaled by using a single factor, 0 < b < 1, and b was selected so that the eigen-
values of the covariance matrix remained positive. The value of b changed adaptively with the
targets as well (we observed values of b roughly in (0.6,1)) and this helped to improve accep-
tance rates. Additionally, we found that the MCMC move step was more efficient by applying
a log-transformation to ν, νÅ =− log.ν/. This transformation was appropriate here since the
approximate marginal posteriors for ν were skewed for larger tolerances. The MCMC rejection
rate tuning parameter c was set at c =0:01 (in general, we observed higher rejection rates than
this) and we set α=0:5.

The first tolerance "1 for model 1 was chosen to be 113. This resulted in initial acceptance
sampling rates of roughly 50%, 35% and 30% for the three prior configurations. For model 2,
an initial tolerance of "1 =50, "1 =45 and "1 =45 resulted in initial acceptance rates of around
50%, 65% and 80% respectively for the three prior configurations. It is quite clear that allowing
γ to vary initially generated better fitting simulated data. We note that posterior inference based
on the tolerance "T is not sensitive to the choice of "1 but experience suggests that it is useful
to eliminate at least some of the parameter space early. The final tolerance was set to "T = 4:9
and "T = 3:4 for models 1 and 2 respectively. This tolerance was determined as the MCMC
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acceptance rate fell to about 2–3%. A smaller final discrepancy for model 2 would appear to
give an indication of a preference for this model over model 1; however, we provide more details
of the model comparison later in this section.

5.2.3. Posterior inferences
We now turn to the posterior inferences of the parameters of model 1: ν and μL are precisely
estimated whereas β and μI are poorly determined (providing motivation for testing sensitivity
to the prior). The posterior summaries for each prior configuration can be found in Table 2.
Fortunately, inferences for ν were insensitive to the prior. There was a slight shift to the right for
the posterior of μL as the upper limit of β and μI is increased (with a mode shifting slightly to
the left, indicating an increasingly skewed distribution), but it still remains relatively unaffected

Table 2. Posterior summaries for models 1 and 2†

Model Prior Parameter Mode Mean Standard (2.5%,50%,97.5%)
deviation quantiles

1 1 ν‡ 0.13 0.13 0.03 (0.07,0.13,0.20)
1 1 μI 1.08 1.03 0.47 (0.15,1.02,1.88)
1 1 μL‡ 0.55 0.85 0.60 (0.04,0.73,2.35)
1 1 β 1.34 1.20 0.44 (0.34,1.22,1.96)
1 1 μI=β 0.83 0.85 0.27 (0.33,0.85,1.43)
1 2 ν‡ 0.13 0.14 0.03 (0.07,0.14,0.21)
1 2 μI 3.08 2.76 1.12 (0.58,2.78,4.76)
1 2 μL‡ 0.43 0.88 0.62 (0.05,0.81,2.47)
1 2 β 3.25 2.96 1.10 (0.73,3.04,4.83)
1 2 μI=β 0.92 0.95 0.26 (0.44,0.94,1.49)
1 3 ν‡ 0.14 0.14 0.03 (0.07,0.14,0.21)
1 3 μI 6.38 5.70 2.22 (1.43,5.79,9.58)
1 3 μL‡ 0.50 0.89 0.65 (0.06,0.74,2.50)
1 3 β 5.91 6.01 2.22 (1.56,6.05,9.69)
1 3 μI=β 1.02 0.98 0.27 (0.36,0.99,1.53)
2 1 ν‡ 0.99 1.09 0.41 (0.44,1.04,2.04)
2 1 μI 0.54 0.73 0.46 (0.04,0.67,1.74)
2 1 μL‡ 1.50 3.76 2.85 (0.19,3.13,10.5)
2 1 β 1.85 1.60 0.30 (0.89,1.65,1.99)
2 1 γ 0.32 0.34 0.11 (0.15,0.34,0.57)
2 1 ν=γ‡ 3.05 3.21 0.66 (2.08,3.14,4.61)
2 1 μI=β 0.43 0.46 0.28 (0.02,0.43,1.02)
2 2 ν‡ 2.30 2.79 1.05 (1.13,2.63,5.17)
2 2 μI 0.91 1.78 1.15 (0.14,1.63,4.44)
2 2 μL‡ 5.38 9.92 7.25 (0.42,8.42,28.9)
2 2 β 4.64 4.09 0.69 (2.43,4.24,4.96)
2 2 γ 0.80 0.89 0.28 (0.37,0.87,1.47)
2 2 ν=γ‡ 2.85 3.15 0.64 (2.06,3.09,4.58)
2 2 μI=β 0.23 0.44 0.28 (0.03,0.40,1.01)
2 3 ν‡ 4.74 5.53 2.20 (2.24,5.27,10.5)
2 3 μI 2.51 3.42 2.25 (0.15,3.14,8.83)
2 3 μL‡ 8.87 19.4 14.6 (0.69,16.4,56.3)
2 3 β 9.16 8.10 1.46 (4.15,8.42,9.91)
2 3 γ 1.43 1.79 0.62 (0.75,1.74,3.09)
2 3 ν=γ‡ 3.01 3.11 0.64 (2.00,3.06,4.53)
2 3 μI=β 0.40 0.42 0.27 (0.02,0.41,1.00)

†Shown are the posterior mode, mean, standard deviation and the (2.5%,50%,97.5%)
quantiles.
‡Estimates for these parameters have been multiplied by 100.
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by the prior. Even though β and μI cannot be identified individually, the ratio β=μI is less sen-
sitive to the prior distribution. (Note that the prior distribution of the ratio of two independent
uniform variates on .0, a/ and .0, b/ is flat on .0, a=b/ and decays thereafter). The scatter plots
of these two parameters for the three prior distributions are shown in Fig. 4 (the posteriors have
been scaled to the unit square and β is shifted upwards to distinguish between the three priors).
It can be seen from Fig. 4 that μI and β are positively correlated and the scaled joint densities
are insensitive to the prior. This suggests that the ratio of these parameters can be estimated
more precisely than the individual parameters. The posterior distributions from using a prior
of U.0, 2/ for β are shown in Fig. 5 as an example.

Simulations from the model at the posterior modes for this model are insensitive to the prior.
These simulations indicate that the immunity variable in the large majority of cases only ever
assumes the values of 0 or 1 throughout the simulation. This is largely due to the very small
estimated rate of acquisition of immunity. Furthermore, we found that the immunity realizes the
value 1 only rarely during the simulation and remains at 1 for a relatively short period of time.
Therefore there is no immune response for the large majority of the simulations, which thus
provide little information for the parameters β and μI (both of which are interpreted as rates per
unit of immunity). This explains the relatively uninformative posterior distributions for these
parameters. These two parameters are coupled in the stochastic model in that an increase in μI
reduces the immunity and the effect of this on the larvae can be compensated by a corresponding
increase in β. The dependence of these parameters on the priors for μI and β reflects the invari-
ance of the model to the simultaneous scaling of these parameters.

During the short time intervals where the immunity is at a level of 1, the immunity has a
devastating effect on the juveniles, and it is the time of onset of this immunity which produces
highly variable mature parasite counts (see Riley et al. (2003) for more details).

In model 2, γ (the maturation rate) is allowed to vary. From Table 2, γ is estimated to be signifi-
cantly larger than 0.04. This increase in γ is offset by an increase in ν (acquisition of immunity),
μL (natural larvae death) and β (death of larvae due to immunity), which means that a loss of
larvae event is not always a maturation event (it is evident from the sample correlation matrix
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Fig. 4. Joint posterior scatter plots of μI and β for the three prior distributions: each posterior has been
scaled to the unit square and β has been shifted upwards to distinguish between the three priors (the bottom
plot is based on prior 1)
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of the posterior that γ is unsurprisingly positively correlated with each of these parameters,
in particular ν). Unfortunately, owing to correlated parameters and imprecisely determined
μI and β, the posteriors are very sensitive to the three prior configurations chosen here, as is
apparent in Table 2. Therefore it is not possible in the analysis that is performed here to obtain
informative inferences on all the parameters of this model. It is, however, possible to obtain
reliable posterior distributions of ratios of these parameters. For example, we found that ν=γ
was relatively unaffected by the priors, and again μI=β was relatively insensitive to these priors.
The posterior distributions for this model by using the first prior configuration are shown in
Fig. 6 as an example.

5.2.4. Model sensitivities
With an increased rate of acquisition of immunity it is now more plausible to obtain an immunity
count greater than 1 but the immunity counts are still very low and 0 most of the time. Owing to
increased rates of ν, μL and β in model 2, the juvenile parasite population dies off much faster
than in model 1. However, to ensure that mature parasites develop during this time the matura-
tion rate is significantly larger. Similarly, the rates that are associated with prior configuration
3 are larger than the rates that are associated with prior configuration 1 and thus the maximum
mature parasite count is reached more quickly in the former instance.

To analyse this phenomenon in more detail we recorded the results of means from 10000 sim-
ulations from model 2 at the posterior modes using prior configurations 1 and 3. The trajectories
of the juvenile larvae population and the immunity are quite different when these two posterior
modes are considered. The mature parasite count trajectories are quite different before 10 days
have elapsed but are similar thereafter. Therefore, the mature parasite counts that are generated
by both parameter sets are consistent during the observed necropsy times (at least 24 days).
Therefore the parameters would be expected to be better identified and less sensitive to their
prior distributions if some data were collected at earlier necropsy times. Furthermore, it would be
useful if additional information were available on the number of juveniles (although this appears
to be difficult in practice). Finally, expert biological knowledge on plausible (or implausible)
values of the parameters would assist in the identification process. We assess the effect on infer-
ences for the parameters if mature parasite counts were available at earlier necropsy times in
Section 5.3.

5.2.5. Model choice and goodness of fit
Regardless of the prior configuration, simulations of mature parasite counts (at least in the time
span of the observed data) from each model were similar. In Fig. 7, 95% predictions intervals
(by using parameter estimates from posterior modes) were obtained for model 1 (Fig. 7(a)) and
model 2 (Fig. 7(b)) shown up to 300 days (predictions were similar thereafter). It can be seen
from Fig. 7 that both models provide a reasonable fit to the data. The model 1 parameters
predict a maximum peak mature parasite proportion at around day 70 and cannot explain a few
high mature parasite counts that occur around days 20–30 (providing motivation for allowing
the maturation rate to be tuned to the data). Model 2 suggests that the maximum mature par-
asite count is reached at or before 24 days but the prediction intervals do not encompass some
of the low mature parasite counts observed that are between roughly 100 and 400 days. Such
observations could be explained by an underrecording of the true mature parasite counts.

Finally, we consider the final tolerances that are reached by each model and the individual
discrepancies of the auxiliary model that are contributing to these tolerances. The final toler-
ance for model 1 was 4.9, and 3.4 for model 2. Since model 1 is a special case of model 2, we
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Fig. 7. 95% prediction intervals for (a) model 1 and (b) model 2 based on prior configuration 3

would expect model 2 to be able to achieve a lower tolerance. Therefore it may appear difficult
to compare models by using such a criterion since there is no explicit penalty for the extra
parameter of model 2. However, the stopping rule that we used for the SMC ABC algorithm
was that the MCMC acceptance rate fell to around 2–3%. Therefore there is an implicit penalty
for model 2 since we can expect a lower MCMC acceptance rate as there is an extra parameter
in the model space. On the basis of this argument, we suggest that model 2 be preferred over
model 1.

Each particle in the SMC approximation contains values of the stochastic model parameters
and the indirect model parameter values that are estimated from the simulated data (gener-
ated by the stochastic model parameters). We can obtain information on which of the auxiliary
parameters of each of the models is contributing to the overall tolerance by considering the
distributions of the differences between each of the particle’s auxiliary parameter values and
the optimal indirect parameter estimates that were obtained in Section 3.2.2. It is apparent that
neither model can reproduce the estimate of the parameter β2 (although model 2 does slightly
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better). The raw data in Fig. 1 show a tendency for the mean to increase slightly near the end
of the observation period, and this is possibly due to a paucity of observations at late nec-
ropsy times. At this stage of the process the stochastic model can only predict a non-increasing
count of mature parasites so this represents a slight inconsistency between the raw data and the
stochastic model. All other discrepancies at least include 0 in their distributions. Model 2 can
more precisely obtain the parameters β0 and η200 of the indirect model; therefore model 2 can
account for the right amount of variability when the initial larvae count is approximately 200.
Furthermore, the discrepancy of η200 for model 2 is centred on zero. However, the discrepancy
of β1 for model 1 is approximately centred about zero and hence this model reproduces this
summary statistic more consistently than model 2.

5.3. Information from early time points
The results of Section 5.2.4 suggest that data collected at earlier times than 24 days would provide
more information about the parameters whose posteriors were relatively uninformative.

5.3.1. Data and auxiliary model
In this section we use simulated data to assess the effect on inferences if mature parasite counts
were available at such earlier time points. In total, 100 independent observations were simulated
by using the parameter estimates of Riley et al. (2003), ν = 0:00084, μI = 0:31, μL = 0:0011,
β = 1:1, γ = 0:04 and μM = 0:0015, all with an initial larvae burden of 200. Five observations
were recorded at each necropsy time of 1, 2, 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 140, 160,
180, 200, 300, 400 and 500 days, so that 30 observations were collected before day 24 which
were not available in the original experimental data. We fitted a beta–binomial distribution to
these simulated data where the functions fp.ti, li/ and fθ.ti, li/ in model (3) were both quadratic
in log-time, producing six parameter estimates (β̂0, β̂1 and β̂2 for fp.ti, li/ and η̂0, η̂1 and η̂2 for
fθ.ti, li/). The mean fit of this model together with the data is shown in Fig. 8.
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Fig. 8. Simulated data with a mean fitted by using a beta–binomial distribution (see the text for more details)
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5.3.2. Results
We applied the SMC ABC replenishment algorithm to investigate the reproducibility of the first
five parameters while holding μM fixed. The results below were based on the algorithm tuning
parameters of N =1000, α=0:5, c =0:01, "1 =40 and "T =2. We again considered three prior
configurations. The individual prior distributions for ν, μL and γ were the same over the three
prior configurations. These were uniform on (0,0.5), (0,0.5) and (0,1). μI and β had the same
individual priors but they changed over the three prior configurations. These were uniform over
(0,2), (0,5) and (0,10) for the three prior configurations.

The posterior summaries for the three prior configurations are shown in Table 3. Unfor-
tunately, again μI and β are not identified precisely owing to the low immunity issue that was
discussed in Section 5.2.3. However, inferences about ν and γ are insensitive to the priors, at least
compared with those from the original data set. This indicates that the addition of data at earlier
necropsy times is beneficial and provides additional information for these two parameters. Fur-
thermore, the true values of these parameters are recovered relatively accurately, demonstrating
the utility of the estimation methodology. The posterior for μL increased in width and shifted
slightly to the right as the upper limits on the priors for μI and β increased. However, inferences
for this parameter are far less sensitive to the priors in comparison with the original data set
(when five parameters were considered). This shows that the data at early necropsy times sup-
port more precise inference for this parameter, but additional accuracy would almost certainly
be obtained if larvae counts were also available.

The stochastic process model in this case could capture the main characteristics of the data
described by the beta–binomial distribution owing to modal discrepancies that are close to 0 as
can be seen in Fig. 9.

Table 3. Posterior summaries for the simulated data example†

Prior Parameter Mode Mean Standard (2.5%,50%,97.5%)
deviation quantiles

1 ν‡ 0.06 0.07 0.02 (0.03,0.06,0.11)
1 μL‡ 0.67 1.08 0.71 (0.05,0.97,2.70)
1 β 1.63 1.41 0.36 (0.66,1.44,1.97)
1 γ‡ 3.74 3.78 0.43 (3.03,3.76,4.67)
1 μI=β 0.23 0.26 0.17 (0.02,0.24,0.66)
2 ν‡ 0.06 0.07 0.02 (0.03,0.06,0.11)
2 μI 0.74 1.12 0.74 (0.09,0.96,3.00)
2 μL† 1.05 1.29 0.83 (0.08,1.20,3.15)
2 β 3.28 3.35 0.98 (1.25,3.41,4.84)§
2 γ† 3.69 3.81 0.44 (3.00,3.78,4.80)
2 μI=β 0.27 0.33 0.18 (0.03,0.31,0.72)
3 μI 1.84 2.27 1.29 (0.24,2.14,5.00)
3 μL‡ 1.32 1.37 0.86 (0.09,1.30,3.26)
3 β 8.43 6.76 2.05 (2.24,6.87,9.77)§
3 γ‡ 3.78 3.76 0.42 (2.96,3.74,4.63)
3 μI=β 0.31 0.34 0.17 (0.04,0.34,0.69)

†Shown are the posterior mode, mean, standard deviation and the (2.5%,
50%,97.5%) quantiles.
‡Estimates for these parameters have been multiplied by 100.
§The credible interval does not contain the true value of the corresponding
parameter.
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6. Discussion

In this paper we presented an approach for obtaining summary statistics for use in ABC algo-
rithms based on indirect inference. A simpler yet flexible model is proposed that has a tractable
likelihood function, and it is the estimates of the parameters of this indirect model from fitting
to the observed data that become the summary statistics. The motivation for such an innovation
was to analyse the full parasite data set by using the Riley et al. (2003) stochastic model, rather
than the subset of the data that were included in Drovandi and Pettitt (2010), as the goodness-
of-fit approach that was used in Drovandi and Pettitt (2010) could only accommodate data with
a fixed number of initial larvae and thus a substantial amount of the data had to be discarded.
The approach that we have presented here is suitable for any application without independent
and/or identically distributed data where an indirect model can be proposed whose likelihood
function is available and where suitable parameter estimates can be obtained straightforwardly.

This procedure was computationally intensive as it involved model simulation and a likeli-
hood maximization for each new parameter proposal. We used the Nelder–Mead method for
maximization owing to its simplicity and the convenient property that the algorithm is deriv-
ative free. For the beta–binomial model that was used here the log-likelihood derivatives are
analytically available and so it is possible for a Newton-type maximization approach to be
applied. An alternative to maximum likelihood estimation for this model could be based on the
method of moments. This technique would be computationally much quicker than maximizing
the likelihood, but it is not immediately clear how parameter estimates that are generated in this
way would compare with those obtained by maximum likelihood.

We simulated data at exactly the same necropsy times as the observed data set. The speed
of the simulation step would be enhanced by simulating fewer observations, since there is no
requirement for the observed and simulated data sets to be of the same dimension. This would
be particularly useful at higher tolerances in the ABC algorithm but the size of the simulated
data set should be increased as lower tolerances are reached; otherwise additional uncertainty
is introduced. Furthermore, an experimental design that produces optimal necropsy times for
a given sized data set may have positive effects, such as fewer observations being required to
produce precise auxiliary model parameter estimates.

There appear to be some similarities between ABC and Bayesian calibration of computer
models. The likelihood function of the computer model is typically intractable. However, as in
Henderson et al. (2009), the intractable part of the model is not the observed data likelihood but
rather the observed data being dependent on the simulated data. The evaluation of the likelihood
can be avoided in an MCMC setting by drawing independent proposals from this likelihood, in
the same way as MCMC ABC. But technically no ABC step (i.e. comparing summary statistics)
is required as the observed data likelihood given the simulated data is tractable and is present
in the Metropolis–Hastings ratio. Furthermore, often simulation from the computer model is
also time consuming and an emulator is required as an approximation to the computer model
by using a Gaussian process (Kennedy and O’Hagan, 2001).

Acknowledgements

The authors thank Edwin Michael and David Denham for access to the data. The authors
also thank Chris Glasbey for bringing the work of Riley et al. (2003) to their attention in the
context of ABC and Steven Riley for his helpful communications on his work. The authors
are also grateful to the high performance computing and research support team of Queensland
University of Technology for their assistance on supercomputing issues. The comments of an



Approximate Bayesian Computation 21

Associate Editor and two referees led to improvements in this paper, especially the presentation.
The research of all three authors was supported by the Australian Research Council.

References

Beaumont, M. A., Zhang, W. and Balding, D. J. (2002) Approximate Bayesian computation in population genetics.
Genetics, 162, 2025–2035.

Denham, D., Ponnudurai, T., Nelson, G., Guy, F. and Rogers, R. (1972) Studies with Brugia pahangi: I, parasi-
tological observations on primary infections of cats (Felis catus). Int. J. Parasitol., 2, 239–247.

Drovandi, C. C. and Pettitt, A. N. (2010) Estimation of parameters for macroparasite population evolution using
approximate Bayesian computation. Biometrics, to be published, doi: 10.1111/j.1541-0420.2010.01410.x.

Garcia, L. S. (2007) Diagnostic Medical Parasitology. Washington DC: American Society for Microbiology.
Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.
Grimmett, G. and Stirzaker, D. (2001) Probability and Random Processes, 3rd edn. New York: Oxford University

Press.
Heggland, K. and Frigessi, A. (2004) Estimating functions in indirect inference. J. R. Statist. Soc. B, 66, 447–462.
Henderson, D. A., Boys, R., Krishnan, K. J., Lawless, C. and Wilkinson, D. J. (2009) Bayesian emulation and

calibration of a stochastic computer model of mitochondrial dna deletions in substantia nigra neurons. J. Am.
Statist. Ass., 104, 76–87.

Kennedy, M. C. and O’Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist.
Soc. B, 63, 425–464.

Krishnarajah, I., Cook, A., Marion, G. and Gibson, G. (2005) Novel moment closure approximations in stochastic
epidemics. Bull. Math. Biol., 67, 855–873.

Langhammer, J., Birk, H. W. and Zahner, H. (2003) Renal disease in lymphatic filariasis: evidence for tubular
and glomerular disorders at various stages of the infection. Trop. Med. Int. Hlth, 2, 875–884.

Luciani, F., Sisson, S. A., Jiang, H., Francis, A. R. and Tanaka, M. M. (2009) The epidemiological fitness cost of
drug resistance in Mycobacterium tuberculosis. Proc. Natn. Acad. Sci. USA, 106, 14711–14715.

Marjoram, P., Molitor, J., Plagonal, V. and Tavaré, S. (2003) Markov chain Monte Carlo without likelihoods.
Proc. Natn. Acad. Sci. USA, 100, 15324–15328.

Marjoram, P. and Tavaré, S. (2006) Modern computational approaches for analysing molecular genetic variation
data. Nature Rev. Genet., 7, 759–770.

McKinley, T., Cook, A. R. and Deardon, R. (2009) Inference in epidemic models without likelihoods. Int. J.
Biostatist., 5, article 24.

Michael, E., Grenfell, B., Isham, V., Denham, D. and Bundy, D. (1998) Modelling variability in lymphatic filariasis:
macro filarial dynamics in the Brugia pahangi cat model. Proc. R. Soc. Lond. B, 265, 155–165.

Nelder, J. and Mead, R. (1965) A simplex method for function minimization. Comput. J., 7, 308.
Ratmann, O., Andrieu, C., Wiuf, C. and Richardson, S. (2009) Model criticism based on likelihood-free inference

with an application to protein network evolution. Proc. Natn. Acad. Sci. USA, 106, 10576–10581.
Reeves, R. W. and Pettitt, A. N. (2005) A theoretical framework for approximate Bayesian computation. In Proc.

20th Int. Wrkshp Statistical Modelling, Sydney (eds A. R. Francis, K. M. Matawie, A. Oshlack and G. K.
Smyth), pp. 393–396. Sydney: University of Western Sydney.

Riley, S., Donnelly, C. L. and Ferguson, N. M. (2003) Robust parameter estimation techniques for stochastic
within-host macroparasite models. J. Theoret. Biol., 225, 419–430.

Sisson, S., Fan, Y. and Tanaka, M. (2007) Sequential Monte Carlo without likelihoods. Proc. Natn. Acad. Sci.
USA, 104, 1760–1765.

Suswillo, R., Denham, D. and McGreevy, P. (1982) The number and distribution of Brugia pahangi in cats at
different times after primary infection. Acta Trop., 39, 151–156.

Tanaka, M., Francis, A., Luciani, F. and Sisson, S. (2006) Estimating tuberculosis transmission parameters from
genotype data using approximate Bayesian computation. Genetics, 173, 1511–1520.

Weiss, G. and von Haeseler, A. (1998) Inference of population history using a likelihood approach. Genetics, 149,
1539–1546.


