

This is the author version published as:

This is the accepted version of this article. To be published as :
This is the author’s version published as:

Catalogue from Homo Faber 2007

QUT Digital Repository:
http://eprints.qut.edu.au/

Duddy, Keith R., Henderson, Michael S., Metke‐Jiminez, Alejandro, &
Steel, Jim (2010) Design of a modelgenerated repository as a
service for USDL. In: Proceedings of the 1st International Workshop
on the Internet of Services, 8‐10 November 2010, IUFM University
Cergy‐Pontoise, Paris.

Copyright 2010 ACM

Design of a Model-Generated Repository
as a Service for USDL ∗

Keith Duddy
Queensland University of

Technology
2 George St

Brisbane
QLD 4000
Australia

keith.duddy@qut.edu.au

Michael Henderson
Queensland University of

Technology
2 George St

Brisbane
QLD 4000
Australia

michael.henderson@qut.edu.au

Alejandro Metke-Jimenez
Queensland University of

Technology
2 George St

Brisbane
QLD 4000
Australia

a.metke@qut.edu.au

Jim Steel
Queensland University of

Technology
2 George St

Brisbane
QLD 4000
Australia

james.steel@qut.edu.au

ABSTRACT
SAP and its research partners have been developing a lan-
guage for describing details of Services from various view-
points called the Unified Service Description Language (USDL)
[12]. At the time of writing, version 3.0 describes technical
implementation aspects of services, as well as stakeholders,
pricing, lifecycle, and availability. Work is also underway to
address other business and legal aspects of services. This
language is designed to be used in service portfolio manage-
ment, with a repository of service descriptions being avail-
able to various stakeholders in an organisation to allow for
service prioritisation, development, deployment and lifecycle
management.

The structure of the USDL metadata is specified using
an object-oriented metamodel that conforms to UML, MOF
and EMF Ecore. As such it is amenable to code gener-
ation for implementations of repositories that store service
description instances. Although Web services toolkits can be
used to make these programming language objects available
as a set of Web services, the practicalities of writing dis-
tributed clients against over one hundred class definitions,
containing several hundred attributes, will make for very
large WSDL interfaces and highly inefficient “chatty” imple-

∗The work reported in this paper has been funded in part by
the Smart Services Co-operative Research Centre through
the Australian Federal Government’s CRC Programme (De-
partment of Innovation, Industry, Science and Research).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

mentations.
This paper gives the high-level design for a completely

model-generated repository for any version of USDL (or any
other data-only metamodel), which uses the Eclipse Mod-
elling Framework’s Java code generation, along with several
open source plugins to create a robust, transactional repos-
itory running in a Java application with a relational datas-
tore. However, the repository exposes a generated WSDL in-
terface at a coarse granularity, suitable for distributed client
code and user-interface creation. It uses heuristics to drive
code generation to bridge between the Web service and EMF
granularities.

Keywords
Services, Web Services, USDL, Service Description, Model
Driven Engineering

1. INTRODUCTION
The Unified Service Description Language (USDL) is a

specification in progress which attempts to capture meta-
data in a standard form about services, in their broadest
possible sense. USDL covers the space of business, techni-
cal, stakeholder, legal and lifecycle aspects of services, as
well as sets of relationships among the services described. It
began as an SAP project that specified a number of XML
schemata for the capture of some of the business aspects of
services, over and above the usual technical interface infor-
mation usually stored in middleware repository technologies
such as UDDI [9] or the IBM WebSphere Service Registry
and Repository. USDL has since seen contributions from
partner organisations of SAP, including the authors of this
paper, and has evolved into an object-oriented metamodel.
At the time of writing, SAP is setting up an industry consor-
tium known as Internet of Services1 to foster the develop-

1Web site: http://internet-of-services.com

ment and uptake of the USDL specification, among others,
at arm’s length from the company. The Internet of Services
organisation has the goal of soliciting wide services indus-
try input and support, and fostering eventual international
standardisation with an appropriate standards body.

Considering the rapid evolution of the USDL specification,
the authors consider that the only viable approach to the
creation of trial repositories for testing intermediate versions
of USDL is to use model-driven approaches, as hand mod-
ification of implementations is expensive and error prone.
However, existing tools for code generation from UML [2]
or EMF [3] ecore models apply a naive approach which gen-
erates a programming language class for every metamodel
class, resulting in a very fine grained API to manipulate
the service descriptions. This is a viable approach when
coding a non-distributed application with appropriate user
interfaces. However, these types of APIs are unsuited to
distributed programming, and in the kinds of organisations
that manage large portfolios of services, the requirement for
distributed access to such repositories via custom clients us-
ing Web services is a given.

The USDL specification in version 3.0 has been published
via the Internet of Services web site. The site will become
the home of the industry consortium being established. It
contains six model packages, and preempts the publication
of two yet to be completed packages: “legal” and “service
level”. Figure 1 shows the proposed structure for a complete
USDL specification.

!"#$%"$#&'(&)$%*+,$-&."/�$&1"+(+$/&)$%*+,$&2$-,%+3#+'"&4."56.5$&.%$&+"+#+.#$/&."/&-633'%#$/&78&)9:&;$-$.%,0< %$-$.%,0=-.3>,'?<&)9:&9@ ABCD

! "#$%&'()$*&#

9- &'6#E+"$/ &+" �$ &,$"#%.E &/',6?$"# &'(�+- &-$%+$- !"#$%& '()*+,)-.& /0(10,(2& 3-4(15<& -$%*+,$-& .%$
7$,'?+"5�$&7.,F7'"$&('%&$E$,#%'"+,&,'??$%,$>&G-3$,+.EE8�$&#%$"/&#'&3%'*+-+'"&!HI7.-$/&-$%*+,$-
'6#-+/$& ,'?3."8& J(+%$K.EE-L& K+#0& #0$& 0$E3& '(& +"#$%?$/+.%+$-& +-& '"& #0$& +",%$.-$<& .-& +#& .EE'K-
'%5."+M.#+'"-& #'& #.F$& "$K& '33'%#6"+#+$-& %$E.#+*$E8& N6+,FE8>& !"& #0+-& ,'"#$O#& -$%*+,$-& .%$& -$$"& .-
#%./.7E$&$"#+#+$-& #0.#&,'"-#+#6#$&.&K$EE&/$(+"$/<&$",.3-6E.#$/<& %$6-.7E$&."/&76-+"$--I.E+5"$/&-$#&'(
,.3.7+E+#+$->& H0$& #$%?&76-+"$--& -$%*+,$& +-& 6-$/& ('%&-6,0& -$%*+,$-<& +"&'%/$%& #'&/+-#+"56+-0& #0$?&(%'?
'#0$%& #83$-<& $>5><& #0'-$& #0.#& .%$& 3%'*+/$/& +"& .& -$%*+,$I'%+$"#$/& !H& +"(%.-#%6,#6%$& K+#0+"& ."
'%5."+M.#+'">

H0$&1"+(+$/&)$%*+,$&2$-,%+3#+'"&4."56.5$&P1)24Q&/$(+"$-&.&K.8&#'&/$-,%+7$&-$%*+,$-&(%'?&.&76-+"$--
."/& '3$%.#+'".E& 3'+"#& '(& *+$K& ."/& .E+5"& #0+-& K+#0& #0$& #$,0"+,.E& 3$%-3$,#+*$>& R0+E$& #0$& E.##$%& +-
,.3#6%$/& N6+#$& K$EE& 78& $O+-#+"5& -$%*+,$& /$-,%+3#+'"& E."56.5$-<& 1)24& $O3E+,+#E8& $".7E$-& #'& $O3%$--
76-+"$--&,0.%.,#$%+-#+,-&-$#&78&."&'%5."+M.#+'"&('%�$&36%3'-$&'(&3%'*+/+"5&?$."-&('%&,'"-6?$%-&#'
+"*'F$&."/&6-$&76-+"$--&-$%*+,$-&."/&('%&+"#$%?$/+.%+$-&#'&P%$Q6-$&."/&%$36%3'-$&-$%*+,$->&9&/$#.+E$/
$O3E.".#+'"&'(�$&-,'3$&."/&'7S$,#+*$-&'(&1)24&+-&5+*$"&+" !"#$%&'()*+,)-.&/0(10,(2&3-4(15>

1)24 &'" &. &K0'E$ &+- &?./$ &63 &'(&. &-$# &'(&?'/6E$-< &$.,0 &.//%$--+"5 &/+(($%$"# &.-3$,#- &'(�$ &'*$%.EE
-$%*+,$& /$-,%+3#+'">& T'/6E.%+M.#+'"& K.-& +"#%'/6,$/& #'& +?3%'*$& %$./.7+E+#8& '(& #0$& ?'/$E<& K0+,0
/%.-#+,.EE8&5%$K& +"&-+M$& ,'?3.%$/&#'& +#-&3%$/$,$--'%>&H0$&?'/6E$-&0.*$&/$3$"/$",+$-&.?'"5&$.,0
'#0$% &P-0'K"&+" &U+56%$&CQ< &.- �$8&?.8&%$6-$&,'",$3#- &(%'?&'#0$% &?'/6E$-> &V6%%$"#E8< �$%$&.%$ &W
?'/6E$-&+"�$&-$#�.#&,'"-#+#6#$-&1)24&*$%-+'"&A>X>

foundation

core

participants

pricing

legal

interaction

functional

service level

U+56%$&C&:.,F.5$-&,'?3%+-+"5�$&1)24&?'/$E&."/�$+%&/$3$"/$",+$-&P%$3%$-$"#$/&.-&.%%'K-Q

Figure 1: USDL Module Structure

1.1 Structure of this Paper
The goals and structure of USDL, and the motivation for

a Web services based repository for storing service descrip-
tions is given in this Introduction section. The paper then
provides a set of primary use cases for a USDL repository,
with three high level user roles defined in section 2.

Section 3 is the main part of the paper which provides a
detailed rationale for a coarse-grained Web services based
repository. It then provides a high-level architecture for the
construction of such a repository. It introduces a number
of model-driven technologies that are used to automatically
generate parts of the repository, and outlines the additional

model transformation and code generation techniques re-
quired to provide the functionality needed.

Finally, section 4 provides a brief overview of additional
USDL model management, and repository synchronisation
work being conducted in the same project.

2. PRIMARY USE CASES
Figure 2 shows five use cases, related to three user roles

for a USDL Repository. These are given a brief overview in
the following subsections.

2.1 Roles
The following roles (Actors in UML parlance) are envis-

aged for a USDL repository deployed in an organisation with
shared services. Additional roles will be needed to describe
the interactions with a repository deployed in a networked
organisation or marketplace.

Service Owner A role played by those with responsibil-
ity for the deployment and operation of a service, and
hence with its primary description in the repository.

Service Portfolio Manager A role played by strategic man-
agement of services planning, provisioning coordina-
tion and lifecycle. Usually played by Enterprise Archi-
tects or those serving CIOs.

Service User Any person requiring the use of a service or
services in the creation of applications or processes.

USDL Repository

Add Service
Description

Update
Service

Description

Query
Repository

Service Owner

Service Portfolio
Manager

Service User

Login

Advance
Service

Lifecycle

Figure 2: USDL Repository Use Cases

2.2 Login
This use case implies that access to the repository is con-

trolled, and authentication of users is required for access to
it. Each user may be assigned a role, and initially we use
the three Actors in the use cases as the set of available roles.

2.3 Add Service Description
This use case is available to actors playing the Service

Owner and the Service Portfolio Manager roles. Its name is
self-explanatory.

2.4 Update Service Description
This use case is available to actors playing the Service

Owner and the Service Portfolio Manager roles. Updating a
service description may include changing various attributes
describing the service, or adding more implementation detail
as a service progresses from planning to detailed design to
implementation and deployment.

2.5 Advance Service Lifecycle
Attributes of a USDL service description allow for various

lifecycle stages to be explicitly represented, and these can be
progressed only by those in the Service Portfolio Manager
role.

2.6 Query Repository
This use case is accessible to all actors, but the set of

services exposed through the interface will be different for
each role. Service Portfolio Managers will be able to query
all service descriptions, while Service Owners will be able
to see all of the services they own, in any lifecycle state.
Whereas Service Users will be able to see only services that
are deployed for use, and not yet deprecated.

3. BUILDING REPOSITORIES USING A
MODEL DRIVEN APPROACH

In order to provide the most agile approach available for
the implementation of USDL repositories, a model of USDL
service descriptions has been created in the Eclipse Mod-
elling Framework (EMF). EMF comes with various capabil-
ities for generating code to support repositories for instances
of the USDL model. Specifically, it supports the generation
of Java code that provides object implementations for in-
memory representations of model instances, as well as the
ability the serialise these instances as XML in plain-text
files. It also generates default tree-based editors for model
instances.

However, the repository that we need to generate is a
three-tiered distributed application with a persistent storage
layer, an in-memory object model, and a distribution layer.
See Figure 3 for a digramatic representation of a complete
Repository as a Service, as well as the technologies that
generate various components from the Ecore model.

EMF provides us with the machinery to generate the in-
memory Java objects for the middle tier. The other tiers
require additional technologies for generation of their imple-
mentations.

3.1 Generation of Persistent Storage
Additional Java/Eclipse plugins allow us to use model-

driven generation to achieve the storage layer:

RDBMS

JVM

Web Service

EMF
Java
Object

XML

Legend

Teneo
 &

H
ib

ernate

Code Generated
by Tool

Web
Services

Application

Interface

JE
T

Repository
as a Service

WSDL

EMF Java Object

Generation

Tefkat

EM
F

Se
ria

lis
at

io
n

Ecore Model

Figure 3: USDL Repository Architecture

Hibernate Allows Java classes to be persisted to relational
databases by making annotations.

Teneo [11] Uses the EMF framework to auto-generate the
Hibernate annotations for generated classes to map the
object model to relational tables.

With an appropriate build environment, and some annota-
tions in place, the EMF model of USDL can be used to fully
generate in-memory and persistent storage, in both XML
and relational forms, for instances of USDL service descrip-
tions, using EMF and Teneo in combination.

3.2 Generation of an API
The USDL model contains too many classes and references

to use the EMF generated Java Object APIs as a basis for
interacting with the repository by invoking getters, setters,
and reference navigation on each class. A coarser-grained in-
terface is necessary to deploy the API as a service available
to distributed programmers. The argument against very fine
grained CRUD APIs for distributed applications is well un-
derstood in the software development community [7], and
strategies for coping with this problem are exemplified by
design patterns such as Sun’s EJB pattern “Composite En-
tity” [5].

Our approach to designing a Web services API for the
USDL model at a coarser granularity than the Ecore model
involves a grouping of classes and their attributes and ref-
erences into larger units that can each be represented by a
WSDL interface type. In addition, some parts of the model
are about relationships between the data entities (for exam-
ple Service Dependency graphs), and these will be grouped
and managed by the creation of additional WSDL interfaces.

We wish to generate this larger granularity API auto-
matically using declarative model to model transformations.
However, the semantics of a domain-specific model, such as
USDL, means that some domain-specialist-specified direc-
tion of the transformations will yield better results in some
cases. In addition, our implementation approach will be
suitable for generating Web service APIs to any data-centric
metamodel.

The approach to grouping classes in the input model for
the purposes of generating WSDL interfaces is as follows:

1. All abstract and attribute-less base classes in the model
are ignored for interface generation, as these are never
instantiated. Although, of course, the attributes and
associations defined by them are treated as a part of
any of their concrete derived classes.

2. The“primary root”class of the model in question must
be nominated by the domain expert. In the case of
the USDL model in its current form, this is the “Ser-
vice” class, which has attributes of atomic data types
and references to other classes, generally in the form
of compositions of classes (using composite, or black-
diamond, references) that compose additional classes
in a tree structure. For example, a service has zero or
more PricePlans, which have one or more PriceCom-
ponents, which have one or more Price Levels, and so
on. The generated WSDL will then contain a primary
interface for this root class, and an operation to al-
low the creation of all of its attributes and composed
classes (and their attributes and composed classes, re-
cursively) in a single invocation. The input parameter

type for this operation is generated by EMF XML seri-
alisation, built in to the platform. The output param-
eter is a unique identifier for the root object created
by a successful invocation, and several common faults
may be raised.

Similarly, a delete operation is created, which takes
the unique identifier as its input parameter. At the
moment, the update operation is a double of the create
operation with an additional identifier parameter, but
future plans include the option of generating a thin
WSDL wrapper for the fine-grained EMF generated
classes to allow single attributes to be updated without
the transmission of all the other values which remain
unchanged.

3. We cannot, however, represent all properties of a ser-
vice as trees of objects containing attributes, aggre-
gated by other objects, as this implies that each prop-
erty of the service is unique to that service description,
and its lifecycle is bound to the lifecycle of the ser-
vice description. An example is the representation of
the stakeholders of the service: represented by the ab-
stract “Agent” class and its subtypes “NaturalPerson”
and “Organization”. We would not wish to represent
a service provider, or owner as a separate object for
each service description, as we need to be able to up-
date the attributes of these objects in one place only.
This means we can change, for example, an address or
phone number, once, and have each service description
that refers to the object share this change.

Therefore, we must also identify the other“root”classes
of the model, representing shared metadata, so that
we can allow the generated API to create and update
instances of these classes independently. Any com-
plex metadata model is effectively a forest with non-
composition relationships between nodes in the trees.
Our current approach to WSDL generation creates a
separate interface for each root class that has an ag-
gregation tree of more than two concrete classes, and
a general factory interface for the creation of simple
shared objects. The interface generation proceeds as
described above for the primary root object.

4. The non-composition references in the model are given
their own WSDL interfaces on a package by package
basis. An operation is created per reference simply
taking two parameters representing the unique identi-
fiers of the source and target (or set of targets in the
case of multi-valued references). The operations are lo-
cated in the interface for the package of the target end
of the reference in the case of cross-package references,
as this provides a better logical grouping; references to
price-related classes added in the price interface, refer-
ences to legal-related classes in the legal interface, and
so on.

5. There are a number of cases in the USDL model where
non-composite references to classes are used (correctly
or incorrectly) to representing concepts that are not
really shared or truely re-usable when instantiated as
objects. A good example is the “TechnicalCondition”
class, which is used in the model to provide expressions
constraining technical interfaces. It is unlikely that the
use of an expression will be stored in the repository

only once and shared in all uses; it is more likely that
each expression will be written for the specific inter-
face, even if it is identical to one already stored in the
repository. Therefore, for these kinds of cases, the user
of the repository generator may mark these references
as “effectively composite”, and treat them in the same
way as composition references for the purposes of op-
eration and parameter generation, as described in (2)
above. In this case, the factory operations for the class
will not be generated, and the object’s lifecycles will
correspond to those of their de-facto parent objects.

3.3 Code Generation for the Distribution Layer
The code generation for the WSDL and its implementa-

tion is achieved through several tools. We re-use existing
plugins where possible, and use model to model or model to
text transformation engines where we need new approaches.

The WSDL API generation heuristics are implemented
through a model transformation, expressed in the Tefkat [8]
model transformation language for EMF, on which the au-
thors have worked previously. Tefkat is available through an
open source project2. The transformation would be respon-
sible only for the relatively simple task of creating appro-
priately named interfaces and operations in a WSDL Ecore
metamodel 3 which transmit and receive these types. This
deals with the ability to add, modify and delete parts of
the description of a service in USDL. The WSDL Ecore
model has an eclipse resource implementation that allows
the WSDL text files to be output automatically. However,
code generation for languages with EMF models and re-
source implementations may also be achieved using model
to model transformations. One such example is OCL, for
which such an implementation exists.

We also use EMF itself to generate and export XML schemas
that correspond to the structure of a set of classes and their
attributes and relationships. EMF generated code will also
be used to de-serialise the XML arguments received by Web
service invocations, and re-serialise any returned results. We
have developed an Eclipse plugin that facilitates this process
with the provision of wizards to obtain relevant configura-
tion parameters from users.

Finally we use JET to generate the java code that matches
up the object values corresponding to the XML parameters
received at the Web service with the appropriate EMF op-
erations to create, update and delete the fine grained EMF
objects and set their attribute values and references. The
JET code and templates interrogate the extensive traceabil-
ity models that are kept by Tefkat as a record of the corre-
spondences between the input USDL model and the gener-
ated WSDL model.

3.4 Query
The next problem which requires a solution is the abil-

ity to query a set of services in the USDL repository to
match appropriate service descriptions based on some crite-
ria. Presently we use the Hibernate Query Language (HQL)
to make queries using encapsulated strings as a parameters
to WSDL operations. This is only a temporary solution,
as it requires the user to be aware of the Java classes that
have been generated by EMF and annotated for Hibernate
by Teneo.

2http://tefkat.sourceforge.net
3available at http://www.eclipse.org/webtools/ws/

It is not within the scope of this project to invent a new
object query language. Therefore this task comes down
to choosing an appropriate existing mechanism for finding
matching services. Some possible query languages include:

XPATH [4] An expression language for nominating an XML
element in a document structure, which could be em-
bedded in a simple expression language to make pred-
icates which specify matches to service descriptions.

OCL [13] The Object Constraint Language is targeted at
the UML Class language, but as EMF is a subset of
this language, could be used to write queries matching
USDL service descriptions. There are existing OCL
implementations for EMF.

SPARQL [10] An SQL-like query language for RDF which
might be able to be applied to EMF.

4. RELATED AND FUTURE WORK
To our knowledge there is no comparable work which

automatically derives medium-grained distributed program-
ming interfaces from fine-grained object models. Current
approaches allow for automated serialisation of a single pro-
gramming language object, or for the parsing and processing
of XML documents that are designed for transmission over
a network. This results in either a lot of manual “glue code”
being written, or in an inefficient use of “chatty” distributed
invocation protocols.

The remainder of this section discusses complementary
work being undertaken or planned in our project.

4.1 Model Synchronisation
Our initial case studies for service description repositories

in the banking and government sectors revealed a long his-
tory of attempts to maintain service catalogues and reposi-
tories by enterprise architects and middleware development
groups. To date, all of the initiatives in our partner or-
ganisations have failed, and one overwhelming reason was
identified for this: after the initial population of a reposi-
tory or catalogue, the data was allowed to go stale. Users of
the catalogue found that over time the results they retrieved
from it were becoming more and more out of date, and they
stopped using the catalogue. Eventually the catalogue be-
came disused as users returned to their old mechanisms of
requesting information from colleagues by phone or email.

Based on this experience, the authors are currently in-
vestigating the use of model synchronisation components,
known as Live Model Pointers [6]. These components will
act as additional clients to the generated Repository, but
ones which have been configured to source the data to pop-
ulate the service descriptions from other master data sources
which are maintained as a part of the normal operating pro-
cedures of the organisation. For example:

LDAP and CRM The information in USDL about people
and organisations is routinely kept up to date in local
and remote LDAP repositories in the case of units and
people inside the organisation, and in Customer Rela-
tionship Management software for external people and
organisations.

WSDL and UML Repositories Up to date information
about the design and concrete interface specifications

for a service are always up to date in implementation-
based repositories used in development teams, and syn-
chronisation with these upon release triggers will en-
sure that USDL descriptions are always up to date.
Whereas making a requirement that development teams
update the USDL repository in addition to their design
and code repositories is likely to fail.

RDBMS, XML files, etc Many different databases can
be queried to retrieve master data.

Live Model Pointers would contain the following elements:

• A nominated set of attributes in the USDL model that
form the “foreign key” of the equivalent concept in the
remote repository

• A URI or other invocation endpoint on which to con-
nect to the remote repository

• A Mapping from elements in the returned result to the
attributes in the USDL model

• A number of policy settings: caching, timeouts, etc

Once again, by implementing a few generic adapters, the
information above would be captured by a configuration
model, and the synchronisation code would be generated.

4.2 Model Evolution and Domain Subsetting
Methodology

When we applied the Generic USDL 2.0 (GUSDL) to the
financial domain, during a case study at a bank, an ap-
propriate subset of the whole USDL model was created to
meet the needs of the client, which we call Financial USDL
(FUSDL). In Figure 4 this is shown by the top-most arrow.
Then additional model elements for the domain were added
to the model (shown in Figure 4 in blue), and the imple-
mentation was altered to support this new Domain-specific
USDL (DUSDL) model variant. This required substantial
human effort, as the code for the database, and for the user
interface were updated by hand.

In general, we envisage that a similar process will be re-
quired almost every time a USDL repository will be deployed
in a specific domain, X, (shown as XUSDL in the figure). An
additional step in the development process is required for
the next DUSDL to be created for another domain, namely
that the useful generic concepts added in to the financial
domain version of USDL need to be re-integrated into the
Generic USDL model (shown as the diagonal arrow produc-
ing GUSDL 2.1 in the figure). Then the process can begin
again. We will follow this approach again, manually, for an-
other specific domain, and then attempt to generalise the
approach using model transformation techniques.

There are tools available in the EMF open source com-
munity, such as EMF Compare [1] that allow for automated
model differencing and merging. It is envisaged that these
tools may be built upon to allow for a graphical interface
that supports the methodology. The extended tool will have
two functions, of which the first is currently implemented in
a prototype.

1. In the creation of a new Domain USDL, unneeded
classes in the USDL model are annotated, and then
the tool eliminates them in a manner that maintains
model integrity by patching the inheritance hierarchy,

GUSDL
2.0

FUSDL
1.0

GUSDL
2.1

XUSDL
1.0

GUSDL
2.2

Generic USDL Domain USDL

...
Figure 4: USDL Methodology - High Level View

and removing references in other classes to the removed
classes. We envisage creating a graphical model editor
version of this tool for ease of use.

2. When that DUSDL is augmented with new domain
concept classes, the tool will be able to show the added
elements, and allow the GUSDL model custodians to
select the ones which should be merged back into the
GUSDL.

5. CONCLUSION
When creating repositories for service descriptions that

are specified by an object-oriented metamodel, we have found
that generating a Java implementation from the model of
the metadata is possible. Furthermore, much of the tooling
required to construct the objects and their corresponding
relational storage tables is available off the shelf. However,
the environments into which we will deploy these repositories
require distributed access via Web services, and this means
that a different granularity of access is needed to facilitate
efficient distributed invocations. To this end, we have de-
signed a method for the creation of coarse-grained WSDL
interfaces from fine-grained Ecore object models, and using
a combination of code generation tools and model trans-
formation specifications, we can automatically generate the
code to bind the Web service to the Java repository.

6. REFERENCES
[1] M. Alanen and I. Porres. Presentation of EMF

Compare utility. In Eclipse Modelling Symposium at
ESE 2006, 2006.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. Unified
Modeling Language User Guide, The (2nd Edition)
(Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[3] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse
Modeling Framework. Addison-Wesley, 2003.

[4] J. Clark and S. DeRose. XML path language (XPath)
version 1.0 w3c recommendation. Technical report,
World Wide Web Consortium, 1999.

[5] Core J2EE Patterns - Composite Entity.
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/CompositeEntity.html, 2001-2002.

[6] K. Duddy. Live model pointers - a requirement for
future model repositories. In KISS Workshop at
ASWEC 2009. Industrialized Software, 2009.

[7] D. Helton. Coarse-grained components as an
alternative to component frameworks. In Proceedings
of the Workshop on Object-Oriented Technology, page
188, London, UK, 1999. Springer-Verlag.

[8] M. Lawley and J. Steel. Practical declarative model
transformation with tefkat. In Satellite Events at the
MoDELS 2005 Conference, volume LNCS Vol. 3844,
2005.

[9] E. Newcomer. Understanding Web Services - XML,
WSDL, SOAP, and UDDI. Independent Technology
Guides, 2002.

[10] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. Technical report, W3C, 2006.

[11] Teneo. http://wiki.eclipse.org/Teneo, 2010.

[12] USDL Information Sheet.
http://internet-of-services.com/uploads/media/USDL-

Information-Sheet.pdf,
2009.

[13] J. Warmer and A. Kleppe. The object constraint
language: getting your models ready for MDA.
Addison-Wesley, 2003.

