The Smart Skies Project Enabling Technologies for UAS Operations in Nonsegregated Airspace Mr. Reece Clothier #### Introduction - * 3 year, AUD\$10M joint research project - * Australian Research Centre for Aerospace Automation - * Queensland University of Technology - * CSIRO ICT Centre - * Boeing Research & Technology (United States) - * Boeing Research & Technology (Australia) - Insitu Pacific Ltd - * Supported by a Queensland State Government NIRAP Grant ### Objectives - * Develop and demonstrate automated separation management technologies that facilitate greater utilisation of the national airspace system by both manned and unmanned aircraft - * Utilise the information and experiences gained to support the further development of standards, regulations and safe operating practices for civil and commercial UAS in Australia and overseas ### Research Areas - Mobile Aircraft Tracking System (MATS) a mobile, networked, multi-sensor surveillance system supporting UAS operations in nonsegregated airspace - 2. Vision-based Sense and Act (SAA) system an automated system capable of replicating the See-and-Avoid function of a human pilot - 3. Static Obstacle Avoidance (SOA) system an automated avoidance system for low-altitude aircraft operations - 4. Future automated airspace management system capable of managing complex and dynamic airspace # Flight Test Capability - * As well as fundamental research & development, an extensive flight test campaign was conducted - * Aim was to develop and prove research concepts through a series of phased flight experiments ## Flight Test Capability - * Automated Cessna 172R - * Onboard flight & sensor data capture - * Custom flight management system & display, with input to onboard autopilot - * Iridium and NextGTM communications facilitating automated telemetry, command and control from anywhere in the world Copyright 2011 - ARCAA 6 ### **Unmanned Systems** #### * ARCAA Flamingo UAS - MicroPilot 2128 Autopilot - * ~20kg MTOW - * 4m wingspan - * ~ 1 hour endurance Over 70 hours of automated operations ### **Unmanned Systems** #### * ARCAA Heli UAS - Custom autopilot, FMS & ground station - * 12.3kg MTOW - * 1.8m rotor - * 45 mins endurance - Scanning laser & stereo vision sensors - * Iridium and NextGTM communications facilitating automated telemetry, command & control from anywhere in the world ### Mobile Aircraft Tracking System - * Research, develop & demonstrate a field-deployable surveillance system - * Designed to support UAS operations in non-segregated airspace - * Commercial off-the-shelf primary radar & tracking system - * Automatic Dependent Surveillance- Broadcast (ADS-B) - * Filtering, display & communication systems - * Radar detection and tracking performance characterisation testing for a C172 and small fixed wing UAS targets - * Tracking between 5-15NM depending on radar site - * Experimental UAS operational scenarios with "intruder" C172 aircraft - Demonstrated use of radar for additional situational awareness - Valuable lessons learnt on how UAS operators can effectively use the data ### Sense-and-Act - * To research, develop & flight test an automated Sense-and-Act (SAA) system for detecting & avoiding mid-air collisions - * Full closed-loop control of the ARCAA C172 - * Controlled experiments involving head-on and over-taking scenarios with a C182 - * Range of FoV, image processing & control law configurations explored Copyright 2011 - ARCAA Range to intruder: 10357 meters (closest approach 00170 meters) Approx. Time to closest approach: 103.57 seconds Searching for target ... Frame: 05800 (15Hz) - * Believed to be the first in the world to demonstrate fully automated realtime onboard collision avoidance using a vision-based SAA system - * Real aircraft, real hardware, real conditions - * 80+ data sets collected - * Demonstrated detection ranges in excess of 10km to time to closest point of approach - * Key challenges: - * Prevention & compensation of vibration - Finding the optimal configuration to minimise the MDR & FAR across a range of atmospheric, cloud and lighting conditions - * Outcomes & Future Direction: - * Current concept is a feasible & cost-effective SAA solution for UAS or collision avoidance aid for conventionally piloted aircraft - Exploration of multi-spectral sensors ### Static Obstacle Avoidance * To research, develop & flight test an autonomous Static-Obstacle-Avoidance (SOA) system suitable for close range (<30m) Rotorcraft UAS operations at low-altitudes * Research explored the use of a 2D scanning laser and stereo- camera sensors * Detection of trees & autonomous operations around infrastructure CSIRO / ARCAA Autonomous Helicopter - Demonstrated automated, beyond visual range operation in "unknown" obstacle environment - Over 60 flights were completed exploring a range of single and multi sensor configurations - * Laser produced most reliable avoidance capability - * 84% success rate vs 42% - * Detected trees out to 23m, microwave tower out to 18m - * Sensing range was less than stereo vision sensor - * The wide (270 deg) horizontal field of view of the laser allowed it to continue sensing obstacles even when flying alongside them - * Future Direction - Further development of LIDAR sensor for use in complex obstacle and infrastructure inspection tasks ### Global Automated Separation Management System * Global automated separation management service from anywhere in the world * Automated conflict detection and resolution - * 4D separation resolution - * Multiple communications links - * Complex mix of airspace users, intent & behaviour - * Separation commands fed directly into aircraft FMS Copyright 2011 - ARCAA #### **Experiment View** C172 Flight Display #### UAS on C172 Scenarios Complex scenarios: C172 Primary Flight Display showing some of the 49 other aircraft **UAS on UAS Scenarios** Scenarios using radar data - * Demonstrated for real aircraft, real communications links, in complex scenarios involving up to 50 real and simulated aircraft - * Real communications performance, real aircraft dynamics, real sensors - * Truly global system providing a completely automated separation service from Palmdale CA to Queensland Australia - * Trials included non-cooperative aircraft detected using the MATS and SAA systems - * Mixed mode separation (i.e., global/central separation or local/aircraft-based separation) - * Key challenges: - * Ensuring the quality of the separation service under variable communications performance (latencies & drop outs) - Managing processor - * Outcomes & Future Direction: - Believed to be the first in the world to autonomously command & control UAS using a civil mobile cellular network (from the other side of the world) - Extension to terminal area operations - System trialed with USAF AWACS Copyright 2011 - ARCAA ### Summary * Smart Skies has researched, developed and demonstrated real technologies, that can potentially open the skies to autonomous aircraft and improve the safety and efficiency of conventionally piloted aviation operations #### * Outcomes - World firsts in sense-and-act and global automated control of civil UAS - * MATS to be trialled in support of Insitu Pacific ScanEagleTM operations - * Ongoing research program in the development of the SAA - * Award winning research project (Engineers Australia, QLD Division) # Summary Copyright 2011 - ARCAA ### More Information - * Australian Research Centre for Aerospace Automation (ARCAA) - * 22-24 Boronia Rd, Eagle Farm, QLD 4009 - * +61 (0)7 3138 1772 - * www.arcaa.aero ... the research, development & flight testing of technologies supporting the more efficient utilisation of airspace for manned & unmanned aircraft.