

The Smart Skies Project

Enabling Technologies for UAS Operations in Nonsegregated Airspace

Mr. Reece Clothier

Introduction

- * 3 year, AUD\$10M joint research project
 - * Australian Research Centre for Aerospace Automation
 - * Queensland University of Technology
 - * CSIRO ICT Centre
 - * Boeing Research & Technology (United States)
 - * Boeing Research & Technology (Australia)
 - Insitu Pacific Ltd
- * Supported by a Queensland State Government NIRAP Grant

Objectives

- * Develop and demonstrate automated separation management technologies that facilitate greater utilisation of the national airspace system by both manned and unmanned aircraft
- * Utilise the information and experiences gained to support the further development of standards, regulations and safe operating practices for civil and commercial UAS in Australia and overseas

Research Areas

- Mobile Aircraft Tracking System (MATS) a mobile, networked, multi-sensor surveillance system supporting UAS operations in nonsegregated airspace
- 2. Vision-based Sense and Act (SAA) system an automated system capable of replicating the See-and-Avoid function of a human pilot
- 3. Static Obstacle Avoidance (SOA) system an automated avoidance system for low-altitude aircraft operations
- 4. Future automated airspace management system capable of managing complex and dynamic airspace

Flight Test Capability

- * As well as fundamental research & development, an extensive flight test campaign was conducted
- * Aim was to develop and prove research concepts through a series of phased flight experiments

Flight Test Capability

- * Automated Cessna 172R
 - * Onboard flight & sensor data capture
 - * Custom flight management system & display, with input to onboard autopilot
 - * Iridium and NextGTM communications facilitating automated telemetry, command and control from anywhere in the world

Copyright 2011 - ARCAA 6

Unmanned Systems

* ARCAA Flamingo UAS

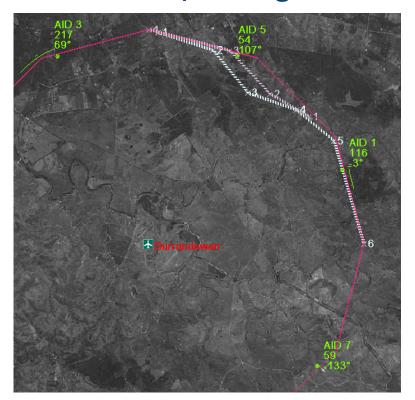
- MicroPilot 2128 Autopilot
- * ~20kg MTOW
- * 4m wingspan
- * ~ 1 hour endurance

Over 70 hours of automated operations

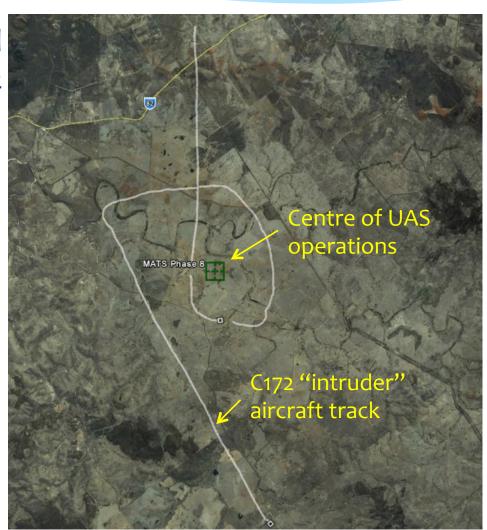
Unmanned Systems

* ARCAA Heli UAS

- Custom autopilot, FMS & ground station
- * 12.3kg MTOW
- * 1.8m rotor
- * 45 mins endurance
- Scanning laser & stereo vision sensors
- * Iridium and NextGTM communications facilitating automated telemetry, command & control from anywhere in the world



Mobile Aircraft Tracking System



- * Research, develop & demonstrate a field-deployable surveillance system
- * Designed to support UAS operations in non-segregated airspace
- * Commercial off-the-shelf primary radar & tracking system
- * Automatic Dependent Surveillance- Broadcast (ADS-B)
- * Filtering, display & communication systems

- * Radar detection and tracking performance characterisation testing for a C172 and small fixed wing UAS targets
- * Tracking between 5-15NM depending on radar site

- * Experimental UAS operational scenarios with "intruder" C172 aircraft
 - Demonstrated use of radar for additional situational awareness
 - Valuable lessons learnt on how UAS operators can effectively use the data

Sense-and-Act

- * To research, develop & flight test an automated Sense-and-Act (SAA) system for detecting & avoiding mid-air collisions
- * Full closed-loop control of the ARCAA C172
- * Controlled experiments involving head-on and over-taking scenarios with a C182
- * Range of FoV, image processing & control law configurations explored

Copyright 2011 - ARCAA

Range to intruder: 10357 meters (closest approach 00170 meters)

Approx. Time to closest approach: 103.57 seconds

Searching for target ...

Frame: 05800 (15Hz)

- * Believed to be the first in the world to demonstrate fully automated realtime onboard collision avoidance using a vision-based SAA system
 - * Real aircraft, real hardware, real conditions
 - * 80+ data sets collected
- * Demonstrated detection ranges in excess of 10km to time to closest point of approach
- * Key challenges:
 - * Prevention & compensation of vibration
 - Finding the optimal configuration to minimise the MDR & FAR across a range of atmospheric, cloud and lighting conditions
- * Outcomes & Future Direction:
 - * Current concept is a feasible & cost-effective SAA solution for UAS or collision avoidance aid for conventionally piloted aircraft
 - Exploration of multi-spectral sensors

Static Obstacle Avoidance

* To research, develop & flight test an autonomous Static-Obstacle-Avoidance (SOA) system suitable for close range (<30m) Rotorcraft UAS operations at low-altitudes

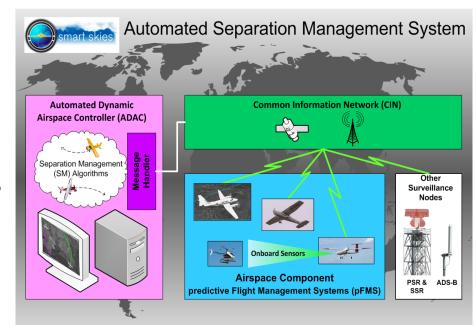
* Research explored the use of a 2D scanning laser and stereo-

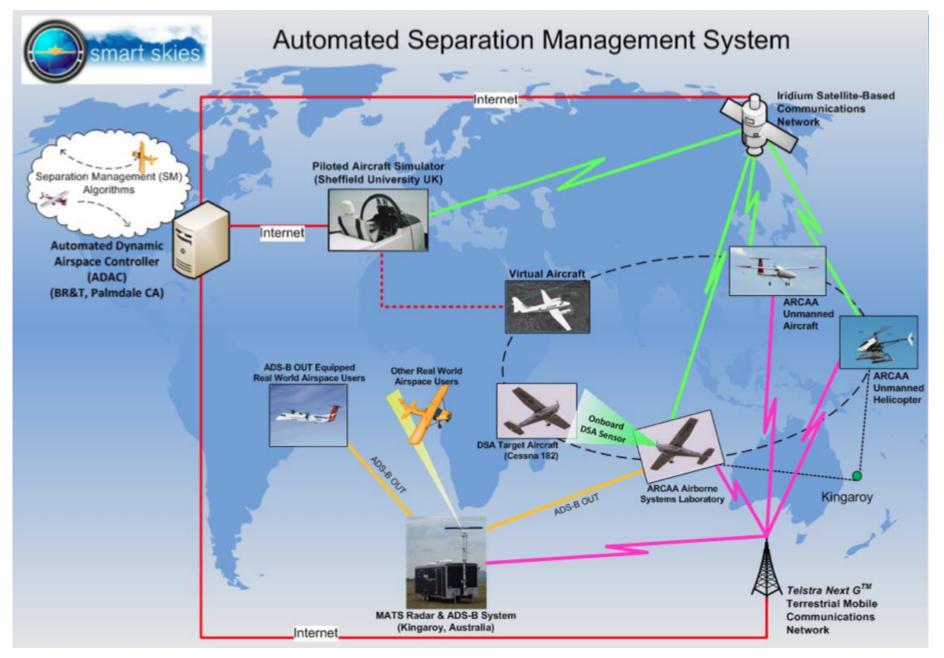
camera sensors

* Detection of trees & autonomous operations around infrastructure

CSIRO / ARCAA Autonomous Helicopter

- Demonstrated automated, beyond visual range operation in "unknown" obstacle environment
- Over 60 flights were completed exploring a range of single and multi sensor configurations
- * Laser produced most reliable avoidance capability
 - * 84% success rate vs 42%
 - * Detected trees out to 23m, microwave tower out to 18m
 - * Sensing range was less than stereo vision sensor
- * The wide (270 deg) horizontal field of view of the laser allowed it to continue sensing obstacles even when flying alongside them
- * Future Direction
 - Further development of LIDAR sensor for use in complex obstacle and infrastructure inspection tasks


Global Automated Separation Management System


* Global automated separation management service from

anywhere in the world

* Automated conflict detection and resolution

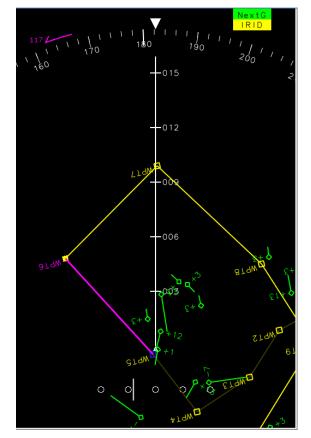
- * 4D separation resolution
- * Multiple communications links
- * Complex mix of airspace users, intent & behaviour
- * Separation commands fed directly into aircraft FMS

Copyright 2011 - ARCAA

Experiment View

C172 Flight Display

UAS on C172 Scenarios


Complex scenarios: C172 Primary Flight Display showing some of the 49 other aircraft

UAS on UAS Scenarios

Scenarios using radar data

- * Demonstrated for real aircraft, real communications links, in complex scenarios involving up to 50 real and simulated aircraft
 - * Real communications performance, real aircraft dynamics, real sensors
 - * Truly global system providing a completely automated separation service from Palmdale CA to Queensland Australia
- * Trials included non-cooperative aircraft detected using the MATS and SAA systems
 - * Mixed mode separation (i.e., global/central separation or local/aircraft-based separation)
- * Key challenges:
 - * Ensuring the quality of the separation service under variable communications performance (latencies & drop outs)
 - Managing processor
- * Outcomes & Future Direction:
 - Believed to be the first in the world to autonomously command & control UAS using a civil mobile cellular network (from the other side of the world)
 - Extension to terminal area operations
 - System trialed with USAF AWACS

Copyright 2011 - ARCAA

Summary

* Smart Skies has researched, developed and demonstrated real technologies, that can potentially open the skies to autonomous aircraft and improve the safety and efficiency of conventionally piloted aviation operations

* Outcomes

- World firsts in sense-and-act and global automated control of civil UAS
- * MATS to be trialled in support of Insitu Pacific ScanEagleTM operations
- * Ongoing research program in the development of the SAA
- * Award winning research project (Engineers Australia, QLD Division)

Summary

Copyright 2011 - ARCAA

More Information

- * Australian Research Centre for Aerospace Automation (ARCAA)
- * 22-24 Boronia Rd, Eagle Farm, QLD 4009
- * +61 (0)7 3138 1772
- * www.arcaa.aero

... the research, development & flight testing of technologies supporting the more efficient utilisation of airspace for manned & unmanned aircraft.

