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Abstract— The aim of this paper is to demonstrate the validity
of using Gaussian mixture models (GMM) for representing
probabilistic distributions in a decentralised data fusion (DDF)
framework. GMMs are a powerful and compact stochastic repre-
sentation allowing efficient communication of feature properties
in large scale decentralised sensor networks. It will be shown that
GMMs provide a basis for analytical solutions to the update and
prediction operations for general Bayesian filtering. Furthermore,
a variant on the Covariance Intersect algorithm for Gaussian
mixtures will be presented ensuring a conservative update for
the fusion of correlated information between two nodes in the
network. In addition, purely visual sensory data will be used to
show that decentralised data fusion and tracking of non-Gaussian
states observed by multiple autonomous vehicles is feasible.

I. INTRODUCTION

This paper aims to develop non-Gaussian algorithms for

decentralised, multiple vehicle, map building. The motivation

is that of multiple autonomous flight and ground vehicles

cooperatively building a map of the terrain over which they are

flying, each using one or more terrain sensors. Ultimately, the

algorithms should scale such that any number of vehicles, with

any number of payloads, in any configuration can be used.

Decentralised architectures offer a number of advantages

over conventional hierarchical [1] and distributed [2], multiple

fusion sensor architectures for map building tasks. Since they

do not require a central resource, they are able to communicate

information throughout the network in an efficient, modular,

and scalable manner. There are three basic constraints to a

general decentralised system: 1. There is no single central

fusion centre and no node should be central to the operation of

the network. 2. There is no common communications facility -

communication must be kept on a strictly node-to-node basis.

3. Each node has knowledge only of its immediate neighbours

- there is no global knowledge of the network topology.

The work presented here is part of the Autonomous Nav-

igation and Sensing Experimental Research 2 (ANSER 2)

project and is aimed at the development of multiple flight and

ground vehicle demonstrations of general decentralised data

fusion. Each vehicle will be equipped with GPS and inertial

sensors and will carry a vision system payload for terrain

feature tracking. Each payload processor will implement a

fully decentralised data fusion algorithm. There will be no

separate fusion centre on any platform and no fusion centre

elsewhere on the ground.

In order to develop and test these decentralised algorithms

successfully, simulations were performed on real data ob-

tained from colour aerial images. The initial development

has centred on decentralised picture compilation (or map

building) using bearing-only vision sensor observations of

unstructured, natural terrain features on the ground. Note

that this does not involve pose estimation of the vehicles.

Each platform maintains a bank of decentralised, non-Gaussian

Bayesian filters for the features it observes, and transmits the

information to all other platforms. The net result is that each

platform maintains a complete map of all features observed

by all nodes in the network. Multiple observations of the

same feature, possibly by different platforms, results in an

increasingly accurate estimate of the feature location for all

nodes.

Most robust approaches to decentralised data fusion have

involved tracking position features provided by range devices

such as radar or laser [3], or by tracking known visual

features which have been previously placed in the observed

environment [4]. In this paper purely visual sensory data for

natural object localisation is used. A bearing-only observation

model may be used for this problem but a general probabilistic

framework is needed for accurate state estimation [5], [6].

The algorithms developed here are based on the general

Bayesian filter using Gaussian mixture models as the proba-

bilistic representation. Particle representations are a common

solution for nonlinear and non-Gaussian filtering but become

computationally expensive in higher dimensions due to the

required number of particles for accurate estimation. The

problem is exacerbated if the observed feature properties

are to be communicated throughout a network forcing the

requirement of a compact representation. Moreover, a de-

centralised sensor network imposes the need for removal of

common information between nodes in the network if data

fusion is to be mathematically consistent. However, a particle

representation does not provide this consistency without some

modification to the representation.

Development of the algorithms in this paper show that

Gaussian mixture models satisfy all the constraints for a

general Decentralised Data Fusion (DDF) architecture while

also providing analytical solutions to the operations for general

Bayesian filtering. Decentralised data fusion using GMMs is

demonstrated in this paper with position states of unstructured,



natural features extracted from purely visual sensory data

obtained from separate simulated moving platforms.

II. RELATED WORK

Applications that benefit from multi-sensor data fusion in-

clude environmental sensing, surveillance, mobile autonomous

teams, and the Internet [7], [3]. In each of these problems,

individual nodes of the network make local measurements

or observations of the common environment and attempt to

combine the measurements to produce a global estimate of

the observed state.

Nettleton et al. showed that scalable decentralised state

estimation with Gaussian noise can be achieved in outdoor

environments using autonomous air vehicles observing artifi-

cial features [4]. Through the information (canonical) form

of a Gaussian, it was shown that local and communicated

information can be fused at any time and any order using

additive information matrices. However, these additive algo-

rithms are only valid for Gaussian representations and do not

extend to general probabilistic distributions. Paskin et al. also

demonstrated a DDF architecture using motes although only

Gaussian noise was considered and a tree topology over the

network was enforced [7].

Recently, Ihler et al. demonstrated that non-parametric

distributions could be used for sensor-calibration in a network

with an approximate communication algorithm called non-

parametric belief propagation [8]. Although this algorithm

converges to the true state in a number of cases, it can

also result in overconfident estimates due to the fusion of

common information. Rosencrantz et al. also showed that

decentralised state estimation can be performed with non-

Gaussian representations [3]. Range and bearing observations

were performed using a laser with Bayesian estimation on

the states achieved through the use of the particle filter. It

was also demonstrated that consistent information fusion for

dynamic indoor environments could only be achieved if the

belief over state histories was maintained. They showed that

in some cases the latest beliefs of the individual nodes could

lead to false global beliefs if the histories were not included

in the communication.

The work presented here also concentrates on non-Gaussian

estimation but it extends previous decentralised research to

include bearing only, visual observations of natural features

rather than range-bearing observations. Gaussian mixture mod-

els are used as the probabilistic representation which was first

considered in tracking problems by Alspach and Sorenson

[9], [10]. Alspach also extended these ideas to multi-target

identification [11].

Since static features were used throughout this paper with-

out maintaining belief histories, the problems faced by Rosen-

crantz et al. [3] were rarely observed.

In addition, the correlations between common information

of individual nodes will be accounted for through an extension

of the Covariance Intersect method [12] for GMMs. Unlike the

work by Rosencrantz et al. [3] and Ihler et al. [8] the gen-

eralised CI presented here ensures that common information

cannot cause over-confidence of the underlying state.

Section III describes the general Bayesian filtering problem

cast in a DDF framework. The main issue that arises is

the mathematical consistency in which fusion is performed.

GMMs are introduced in Sec. IV as a representation which

satisfy all the requirements of a general DDF framework.

The visual features and the position observation model of

these features are described in Sec. V. Finally, DDF results

of simulated air vehicles using real visual data are presented

in Sec. VI. Conclusions and further work are discussed in Sec.

VII.

III. DISTRIBUTED BAYESIAN ESTIMATION

The algorithmic structure in distributed estimation is the

same for every node in the network and is outlined in Fig. 1.

The essential process is:

Prior
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Predict
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Fig. 1. Flow chart of the operations performed in distributed estimation.

1) Observations are made by a sensor.

2) A likelihood model over the state is generated using this

observation.

3) Data association with existing local tracks.

4) A standard cycle of a local observation update (multi-

plication of prior and likelihood) and prediction (convo-

lution of prior with process model).

5) Information is sent and received between neighbouring

nodes in the network and recorded in the channel filter.

6) Data association between local tracks and incoming

information from other nodes.

7) Assimilation using the generalised Covariance Intersect

algorithm.

8) Repeat process.

The following sections describe the general Bayesian filter

for steps 4 and 7 from which specific GMM algorithms can

be derived.



A. Local Update: Bayes Theorem

Bayes theorem provides an incremental and recursive, prob-

abilistic method for combining observations Z
k of a state

xk, at time tk, with a prior belief of the state P (x̂k|Z
k−1).

This prior is a prediction from the posterior over the pre-

vious state P (xk−1|Z
k−1) calculated using the Chapman-

Kolmogorov equation. Observations are obtained from some

sensor (modeled as a conditional probability distribution or

likelihood) L(z = zk|xk), and the resultant combination is a

revised posterior distribution on the state:

P (xk|Z
k) =

L(z = zk|xk)P (x̂k|Z
k−1)

P (zk|Z
k−1)

(1)

where Z
k = {zk,Zk−1} is the set of observations from all

nodes in the DDF network.

B. Local Prediction: Chapman-Kolmogorov Equation

The local prediction step in a DDF network is given by

the Chapman-Kolmogorov equation (also known as the Total

Probability Theorem):

P (x̂k|Z
k−1) =

∫

P (xk|xk−1)P (xk−1|Z
k−1,x0)dxk−1 (2)

where the transition probability density P (xk|xk−1) is known

as the motion model, and P (xk−1|Z
k−1,x0) is the updated

estimate from the previous time step.

C. Fusion

It can be shown that fusion of the raw correlated information

between nodes i and j is [13], [14]

P (x|Zi ∪ Zj) =
1

c

P (x|Zi)P (x|Zj)

P (x|Zi ∩ Zj)
(3)

where Zi(j) are all the observations available to node i (j),
P (x|Zi ∪ Zj) is the posterior probability over the unknown

state given information from both nodes, P (x|Zi(j)) are

the posteriors based only on locally available information,

P (x|Zi ∩ Zj) is the information the two nodes have in

common, and c is a normalising constant.

Thus the problem of constructing the union Zi∪Zj , reduces

to finding the common information Zi ∩ Zj and is the key to

the decentralised communication problem.

D. Identification of the Common Information

The incorporation of redundant information in DDF systems

may lead to bias, over-confidence and divergence in estimates.

Therefore this information must be removed before two nodes

can freely communicate with each other.

Gaussian representations allow an analytical solution to

the division which is performed by a channel filter for tree-

connected networks [15]. However, for general probabilistic

representations the authors have not found an analytically or

numerically tractable solution to this division. Thus, even if the

common information can be calculated, it cannot be removed

for fusion.

In the work by Ihler et al. and Rosencrantz et al. the com-

munication protocols do not account for common information

[8], [3]. In Ihler’s work, loopy belief propagation can result

in overconfident estimates. The particle implementation by

Rosencrantz et al. attempts to fuse distributions that have

support on different regions of the state which in itself is

mathematically inconsistent without producing a functional

distribution over the individual representations. In addition,

although only the most informative messages are fused there is

no guarantee that the common information has been removed.

A non-optimal solution for Gaussian representations is the

Covariance Intersect filter which conservatively combines the

information in two incoming channels assuming that the

correlation is unknown [12].

Removal of common information should be achieved in a

mathematically consistent manner and therefore constrains the

types of probability density representations that can be used in

the DDF framework. It will be shown that the CI algorithm can

be extended for the use with GMMs and for the simulations

shown in this paper, provides conservative fusion updates.

IV. GAUSSIAN MIXTURE MODEL NONLINEAR FILTER

Other than the particle representation, multimodal stochastic

models have been largely ignored in the filtering and tracking

community. However, it has been well known for some time

that Gaussian mixture models (Gaussian sum approximations)

provide a basis for analytical solutions to the general Bayesian

filtering problem [9]. This section illustrates the Gaussian

mixture model as a general representation and its advantages

in the DDF framework.

A Gaussian mixture model is defined for a random variable

X as

P (x) =

N
∑

i=1

πiN (x|µi, Σi) (4)

where x are the observations of X, πi are positive weights

with the property
∑N

i=1 πi = 1, N (x|µi, Σi) is a Gaussian

probability density (also known as a Gaussian mixture com-

ponent) with mean µi and full covariance Σi, and N is the

number of mixture components.

A. Measurement Update - Bayes Theorem

Distributions that are estimated by weighted sums of Gaus-

sians (Gaussian kernel densities, and GMMs) allow the update

step involving Bayes theorem to be solved analytically which

is in general not possible.

Substitution of GMMs into Eq. 1 gives

P (xk|zk) = A

M
∑

i=1

πziNzi

N
∑

j=1

πxjNxj (5)

where A = 1/P (zk|zk−1) is a normalising constant, the Nz’s

represent the likelihood distribution P (zk|xk), and the Nx’s

represent the prediction P (x̂k|zk−1). Similarly for πz and πx.

Expanding Eq. 5 results in M × N terms, each which

involve a multiplication of two weighted Gaussians. Thus,

the posterior distribution is represented by M × N weighted

Gaussians.



B. Prediction - The Chapman-Kolmogorov Equation

As with Bayes theorem, GMMs allow an analytical solution

to the Chapman-Kolmogorov equation. Substituting GMMs

into Eq. 2 results in a convolution between M × N weighted

Gaussians with each term resulting in a Gaussian of the form

[16]

πN
(

µ1 + µ2,Σ
2
1 + Σ

2
2

)

(6)

where the subscripts denote the variables for the two Gaussians

and π is a constant weighting term.

C. Fusion - Generalised CI for GMMs

1) Covariance Intersect Filter: The Covariance Intersection

(CI) algorithm provides a solution to the problem of combining

two Gaussian random vectors in the case where the corre-

lation between these vectors is unknown [12]. Consider two

estimates µa and µb with covariances Σa and Σb respectively.

The CI algorithm computes an updated covariance matrix as a

convex combination of the two initial covariance matrices in

the form

Σ
−1
c = ωΣ

−1
a + (1 − ω)Σ−1

b (7)

Σ
−1
c µc = ωΣ

−1
a µa + (1 − ω)Σ−1

b µb (8)

where 0 ≤ ω ≤ 1 with ω computed so as to minimise a chosen

measure for the size of the covariance matrix.

This computes the relative alignment between information

matrices and produces a conservative local update based on

the worst-case correlation between incoming messages. Thus

using this conservative update, the fusion removes the need

for the division in Eq. 3 which is often analytically intractable

for general probability distributions even if the common in-

formation is known.

A number of drawbacks of the CI algorithm must be noted.

One is its computational cost in optimising the free parameter

ω. This can be partially improved (while sacrificing optimality)

by optimising over a small discrete set of values for ω. The

large error covariance bounds for the algorithm may also

result in poor accuracy [17], eg. when the two estimates have

the same error covariance [18]. Despite these problems, the

algorithm can be extended for GMMs with positive results

illustrated in the next section.

2) GMM CI: A simple extension to the CI algorithm, not

previously used in any filtering applications, involves a CI

between each of the Gaussian components in the two mixtures

that are to be fused. This results in M×N Gaussians where M
and N are the number of components in the original mixtures.

Additionally, this fusion process allows cycles in the network

topology while ensuring mathematical consistency.

A bearing-only tracking simulation was used to numerically

verify the GMM CI algorithm. In this example, the feature

exhibited a random walk within the x-y plane and was tracked

by two stationary sensors. An Integrated Ornstein-Uhlenbeck

process model [19] was used in addition to a bearing-only

likelihood model with an uncertainty of 5◦. Predictions oc-

curred every 0.5 s and an observation was performed every 2

s. Communication occurred every 4 s.

The two nodes were arranged in three different com-

munication topologies: 1. no communication, 2. centralised

communication, 3. and decentralised communication. Since

the true distribution over the tracked states was unknown,

the centralised topology provided the optimal solution with

maximum information content for each node. The information

content can be measured using the inverse of the Renyi entropy

[20], [21]

H =
1

1 − α
log

∑

i

p(xi)
α (9)

with α = 2.

Fig 2 illustrates the Renyi entropy for each of the nodes

configured for the three topologies. It can be seen that the
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Fig. 2. The Renyi entropy for the two nodes in three communication
configurations: no communication, centralised, and decentralised.

information content of the nodes performing DDF is always

less (larger Renyi entropy) than the centralised solution. This

indicates that even after fusion using the GMM CI algorithm

that the decentralised solutions remain conservative. In addi-

tion, the decentralised solution is always better than the worst

single node solution.

Note that this is only a numerical verification for one

particular type of scenario and therefore does not validate the

GMM CI algorithm for general applications. However, it is

evidence that this algorithm can be used in a decentralised

context and for this simulation provides a conservative update

for correlated information.

D. Re-Parameterisation

Re-parameterisation arises in filtering problems through a

variety of ways. Particle filters require resampling focussing

the particles in areas that have most probability density while

the multiplicative increase in parameters of mixture repre-

sentations (GMMs and Parzen density estimates [22]) after

each Bayesian operation must be reduced. Modifications to

the naive Particle filter provide elegant resampling techniques

[23], [24] but as it has been mentioned they do not lend

themselves to decentralised fusion algorithms that are math-

ematically consistent. Parzen density estimates also provide

a general probabilistic representation. However, the number

of kernels required to estimate multimodal distributions with



different shaped modes can be very large especially in higher

dimensions. Thus the accuracy and compactness in estimating

the true distribution may be compromised.

Alternatively, it has been shown that fusion can be achieved

in a consistent manner with GMMs. Sorenson et al. showed

that merging of individual Gaussians in a mixture could be

achieved while remaining within information theoretic bounds

that define the similarity between the true and approximate

distributions [9]. In addition, a number of existing techniques

from the statistical learning field also provide methods for

density estimation for this type of representation. Thus, for

GMMs to be viable in the robotics and data fusion domain,

these re-parameterisation techniques must be computationally

fast and result in an accurate estimate of the true/original

distribution.

A common and powerful method is the expectation-

maximisation (EM) algorithm which provides a general ap-

proach to the problem of maximum likelihood (ML) parameter

estimation in statistical models with variables that are not

observed [25]. An example of such hidden variables are the

underlying mixture components in a GMM. However, EM is

sensitive to parameter initialisation and can converge to a local

maximum rather than the true value for the maximum like-

lihood. In addition, the computational complexity of the EM

algorithm for GMMs is O(i×ND2) where i is the number of

iterations performed, N is the number of samples, and D is the

dimensionality of the state. Thus, the convergence can be very

slow if the initial parameters are particularly bad compared to

the true values. However, it has been previously shown [26]

that the X-means algorithm [27], [28] (a fast implementation of

k-means [29]) results in a reasonable parameter initialisation

for the EM algorithm. Thus, ensuring only a few iterations are

needed before convergence to the ML is achieved.

E. Data Association

Data association in distributed systems is a complex prob-

lem. The reason for this is that hard association decisions

made locally, in an optimal manner with respect to local

observations, may not be optimal at the global level when

all sensor information is made available. Further, an incorrect

association decision is almost impossible to undo once data

has been fused into a track.

The concept of divergence or distance between two densities

underlies measures for the differences between two distribu-

tions. The Kullback-Leibler distance and the mutual informa-

tion are common distances used in data association. However,

exact solutions to them are often intractable both analytically

and numerically for general probability distributions due to

the required division for calculating the distance. Numerical

instabilities arise when samples from the denominator have

very small values but can be alleviated by Laplace smoothing

[30].

An alternative distance is the Bhattacharya coefficient which

provides a measure that is numerically tractable:

DB(P1(x)||P2(x)) =

∫

√

P1(x)P2(x) dx (10)

and is equal to one when the two distributions are the same

and zero when there is an infinite distance between them.

V. NATURAL VISUAL FEATURE SELECTION

The generality of the data fusion techniques presented in

this paper ensure that there is flexibility in the feature se-

lection scheme that can be used. The natural feature selection

approach adopted in this work is aimed at being simple enough

that it validates the DDF algorithms that have been developed

in this paper for unstructured environments. The intention is

not to demonstrate the actual performance of the extraction

itself since this approach can be modified in a number of ways

to improve robustness.

The information content of noisy sensory data is assumed

to be inversely proportional to the probability of occurrence

[31]. Thus less frequent states of a random variable provide

greater information than more likely ones i.e. they are more

unique for that particular set of data. Note that this assumption

is purely heuristic in the context of feature extraction but for

the following simulations proved to be adequate.

The information content within image regions is com-

puted through visual cue histograms involving colour, hue

and texture. Feature selection is subsequently performed by

explicitly extracting the least frequent (maximally informative)

image pixels. The feature selection is very attractive as the

information content in natural imagery can be computed in

near real time.

Any feature extraction scheme identifies specific regions in

an image that exceed a general information threshold. Each

such feature is comprised of several pixels in general, and each

pixel can be described by the raw color intensities, multi-scale

texture and other visual cues (e.g. intensity gradient, brightness

gradient, texture gradient).

In a practical implementation, each extracted feature (a dark

red contiguous area in the left image of Fig. 3) is sub-divided

into image patches of a fixed size (e.g. 11 × 11). The right

image of Fig. 3 shows the particular patches representing the

centroids of the extracted features.
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Fig. 3. Left: Information content in hue and texture space. A two dimensional
colour histogram of the raw red and green intensities in the image was
generated. Subsequently, the information content of each pixel was computed
using the formula log( 1

p
), where p is the probability of occurrence. Image

regions colour coded red in this figure are maximally informative. Right: The
feature patches that are subsequently extracted from the centroid of contiguous
highly informative areas.

Texture and colour information were used in the feature

extraction process [32] by convolving 11×11 pixel patches in



the RGB colour space with a bank of Gabor wavelets [33] at

2 scales and 2 orientations. This results in an 847 description

vector in the observation space.

A. Kinematic States of the Visual Features

To produce a map for navigational purposes, the position

of the visual features must be described. Using a single visual

sensor requires the range of a static feature to be inferred

from two images taken from different positions. In this paper

a three dimensional bearing only likelihood model was used

for position estimation [19].

To ensure that the likelihood model fits into the framework

described throughout this paper, a GMM was learnt offline

to approximate the true distribution. This was achieved by

sampling from the true likelihood model over a range of 350m

with a bearing uncertainty of 1◦. To ensure accuracy of the

resultant model, the cutoff at 350m was smoothed using a

Gaussian falloff. The GMM was then learnt using the EM

algorithm with 20 Gaussian components and initial means

spaced equally over the range. This model was then used

without modification in the online implementation.

Illustration of the accuracy in which a GMM can represent a

3D bearing only likelihood can be achieved through sampling

from both the original likelihood model and comparing it to

samples from the model learnt through EM (Fig. 4). The
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Fig. 4. Comparison of samples from the true bearing-only likelihood model
(left), with a range cutoff at 350m and a bearing uncertainty of 1◦, and a GMM
approximation (right) learnt offline using EM. The GMM model consisted of
20 Gaussian components.

Bhattacharya distance between these two sets of samples is

0.95 illustrating that the GMM is a good approximation to the

true model.

VI. RESULTS

To demonstrate the feasibility of including natural visual

features in standard filtering methods and in the DDF archi-

tecture described earlier, a set of simulated experiments were

performed on real visual data obtained from a geo-referenced

aerial photograph of the Australian Centre for Field Robotics’

test site in Marulan, Australia (Fig. 5). The intention for future

work is to demonstrate this on actual autonomous air vehicles

and thus sequences of image frames were extracted from the

aerial image simulating two simultaneous flights. The altitude

of the flights was 200m above ground level, however this

information was not included in the filtering algorithms. Thus

Fig. 5. Geo-referenced aerial image of the Australian Centre for Field
Robotics’ test site in Marulan, Australia. The two lines are the simulated
flight trajectories for two air vehicles. This figure and subsequent figures are
best viewed in colour.

localisation of features was purely achieved through a bearing-

only model.

The velocity of each vehicle was approximately 100

km.hr−1. The frame rate of the cameras was 20 Hz with a field

of view of 60◦. The resolution of each image was 640 × 480
for an area of 300 m× 250 m. Thus one pixel covered an area

of approximately 5 m2.

A. Single Vehicle Results

A typical image from one of the simulated vehicles is shown

in Fig. 6. Overlayed on the left most image are samples

taken from the likelihood distribution of the observation for

one of the patches shown in Fig. 3. The samples from the

likelihood model of the observation from the next image for

the same patch is also shown. On the right, side views of

the same observations from ground level are shown. Note that

the samples from the two observations cross at ground level

indicated by a height of zero here.

Using the Bhattacharya distance, data association is per-

formed between these two observations, and after the match

is confirmed an update is performed with the result shown in

Fig. 7. It can be seen that the uncertainty in the range has now

Fig. 7. Top and side view of the samples from the probability distribution over
the feature patch after an update was performed between two observations.

significantly reduced. Further observations of this patch will

also result in a data association match and after updating, the

estimate in range will have converged further.

It was found that the threshold for defining a match during

data association was very low and is actually the case for all



Fig. 6. Left: Samples from a bearing-only likelihood observation of a feature patch extracted from a shed. Inner left: Second observation of the feature after
the vehicle has moved. Right and inner right: Side view of the same observations. Note the conical shape of the distribution.

information measures. The reason for this was that there is

actually little similarity between the large likelihood and the

updated distribution. A geometrical data association method

which defines the amount of overlap and not just the similarity

may help to resolve this issue.

Fig. 8 illustrates the extracted features from a larger area

represented as yellow squares for vehicle 1 and cyan circles

for vehicle 2. The updated distributions for individual feature

Fig. 8. Part of the area traversed by both nodes with features represented
as yellow squares for node 1 and cyan circles for node 2. Samples from
the distributions representing features that were observed more than once are
displayed in red. Some features are not initiated as tracks due to the small
number of times they are observed. Note that the persistent features are from
objects that are quite distinct such as the sheds and bush.

tracks of the two vehicles are represented as red samples.

Features that have been observed less frequently are not

initiated as individual tracks, resulting in a relatively sparse

set of features used for filtering.

The updated distributions actually have very accurate bear-

ing uncertainty and converge quickly to the size of the 11×11
patch. For the size of the actual objects of interest, these

uncertainties are too small and future improvements to the

visual feature representation [32] will hopefully account for

this problem.

In addition, there are some spurious features that are initi-

ated as tracks. This is due to poor data association and should

be improved with more sophisticated probabilistic visual state

models that can be incorporated in a Bayesian filtering frame-

work [32]. Pattern matching from frame to frame should also

help local data association problems.

B. DDF Results

The demonstration of fusion of information from two nodes

that have observed different features are shown in the fol-

lowing figures. Fig. 9 illustrates the features that have been

initiated as tracks for each of the vehicles (red samples for

vehicle 1 and blue samples for vehicle 2) before any com-

munication was performed. Notice that each of the vehicles

have observed features in different areas. The right hand side

pictures illustrate the features tracked by the individual nodes

after they have communicated. It can be seen that they both

have the exact same posterior representation of the area once

communication has been performed. Thus, even if one of the

vehicles fail or communication breaks down, they both have a

map of the global area without relying on a centralised fusion

processor.

These results demonstrate that DDF can be performed

using general probabilistic models and visual states of natural

features rather than pure range observations. Due to space

constraints, analysis and accuracy of this generalised DDF

architecture will be performed in a separate technical article.

VII. CONCLUSION

A scalable, robust, and non-Gaussian decentralised data

fusion architecture has been presented. In contrast to previous

research, only visual sensory data of natural, unstructured

features was used. Gaussian mixture models allowed the

position states of the visual features to be incorporated in

a general Bayesian estimation framework. Unlike particle

representations, GMMs allow the common information to

be accounted for using a generalised Covariance Intersect

method. Numerical results for these simulations indicate that

the fusion between nodes is mathematically consistent but

further detailed analysis must be performed.

Further research will concentrate on improvements to com-

putational speed of the re-parameterisation. Possible avenues

to consider would be variational Bayesian EM techniques

[34] or the use of heuristics to improve the initialisation of

EM. Comparisons with component reduction algorithms such

as those described by Sorenson et al. [9] also need to be

performed.

There is still much to incorporate in the visual feature rep-

resentation such as performing Bayesian filtering on the actual

visual states such as colour and texture [32]. Combined with



Fig. 9. Left: Samples from the posterior distributions over observed features of node 1 before communication (plotted in red). Inner left: Samples from the
posterior distributions over observed features of node 2 (plotted in blue). Right and inner right: Samples from fused, i.e. after communication, posteriors from
both nodes.

frame to frame pattern matching techniques, major advances

in data association is expected.

Although there is much investigation still to be performed

in this area, it has been demonstrated that rich visual features

can be used in general decentralised data fusion and it is hoped

that further research is encouraged in developing natural visual

feature representations for Bayesian estimation.
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