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Abstract— This paper presents a general methodology for
learning articulated motions that, despite having non-linear
correlations, are cyclical and have a defined pattern of behaviour.
Using conventional algorithms to extract features from images,
a Bayesian classifier is applied to cluster and classify features
of the moving object. Clusters are then associated in different
frames and structure learning algorithms for Bayesian networks
are used to recover the structure of the motion. This framework
is applied to the human gait analysis and tracking but appli-
cations include any coordinated movement such as multi-robots
behaviour analysis.

I. INTRODUCTION

A key challenge in robotics is learning a representation of
an unstructured world given a set of sequential measurements.
The environment can be dynamic, with multiple moving
objects and subject to changes in illumination. As the robot
moves, an object is seen from different perspectives and parts
may be occluded by other objects. In addition, sensor measure-
ments may be erroneous, so requiring a representation able to
handle uncertainty. A possible approach to these problems is
to employ a state estimator such as a Kalman filter (KF) or
Extended Kalman Filter (EKF). These estimators describe the
process of state transition and observation, and generate an
estimate that minimises estimated mean square error. However,
most applications of KFs consider only point targets or objects
represented by a group of points with the same dynamic
model. In this paper, we are interested in tracking the motion
of complex structures, with correlations between parts of the
same structure which may, nevertheless, execute separate but
correlated motion. The techniques developed are applicable
to problems such as tracking human motion or coordinated
motions of sets of robots.

The human tracking problem and gait analysis have been
widely studied in the past twenty years. Gait is an important
feature of humans and can be used to identify individuals [1],
[2], the sex of the person [3], or even to recognise groups of
friends [4]. The computer vision community has addressed this
problem by computing trajectories of body joints and creating
temporal models of them [5], [6], [7]. It can be formulated in a
probabilistic manner with two different approaches, one based
on point features and another based on intensity. Feature-based
approaches have the advantage of being able to employ many
different algorithms for feature extraction and are generally

more amenable to real-time implementation. However, they
have additional problems in associating features from different
image frames. The most similar approach to our is the one
of Song et al [7]. In this work, a probabilistic framework is
used to identify joints in the human body. Triangulated graphs
are used to represent the structure of the body which can
be learnt with an Expectation Maximisation (EM) algorithm.
Labelling and classification of features is achieved through
maximising the likelihood of the data given the decomposition
represented by the triangulated graphs. In our approach, rather
than labelling each feature using an existent structural model,
we first cluster features using the EM algorithm and then
learn the structural model by finding correlations between
clusters. Features are extracted from a stream of frames with
the Kanade-Lucas-Tomasi (KLT) algorithm [8] and contain
positions and velocities. Then, EM is used to cluster these
features under the assumption that positions and velocities are
independent given the class. In other words, a Naive Bayes
classifier [9], represented as a Bayesian network, is learnt with
the class variable being hidden. Once parameters are learnt,
the classifier can be applied in features of different frames,
making the association task straightforward.

With features labelled in all frames, it is then possible to
learn dependencies among clusters, so building a Bayesian
network model of the motion. In complex structures, depen-
dencies can be non-linear, i.e. variables may be function of
a non-linear combination of its descendants. Unfortunately,
learning a Bayesian network with continuous nodes and non-
linear relations between variables, even assuming these to be
Gaussian distributed, is a cumbersome task where Monte Carlo
algorithms must generally be applied [10]. An alternative to
tackle this problem is presented here by representing non-
linear dependencies as a set of net structures, with linear
Gaussians distributions. For each frame, a network structure
is learnt along with its correlations with the previous frame.
As motions are usually periodic, the learning process can
stop when the structures have the same dependencies as those
previously learnt.

This paper is organised as follows: in Section II we present
formal definitions and a brief review of Bayesian networks.
Section III shows how to cluster features in an unsupervised
fashion using the EM algorithm. Section IV presents the



structure and parameters learning algorithms along with some
experimental results. We conclude in Section V and present
some ideas for future work.

II. PRELIMINARIES

This section briefly reviews Bayesian networks and intro-
duces necessary notation. Capital letters (X, Y, Z) are used to
denote names of random variables, lowercase letters (x, y, z)
to denote specific values taken by those variables, boldface
capital letters (X,Y,Z) to denote sets of random variables
and boldface lowercase variables (x,y, z) to denote values
taken by those sets. A joint probability over a set X =
{X1, X2, ..., Xn} is denote by P (X).

A Bayesian network is defined as a tuple B = 〈G, Θ〉 where
G is a directed acyclic graph whose vertices represent random
variables and Θ are the parameters that define the distributions.
The main assumption encoded by a BN is that each variable
Xi is conditionally independent of its non-parents given its
parents. The joint probability is defined by:

P (X) =
∏

i

P (Xi|Pa(Xi)), (1)

where Pa(Xi) represent the parents of the variable Xi.
In this paper, Bayesian networks are used for two different

tasks: 1) unsupervised classification of features and 2) learning
and representation of the structure of the motion. Except for
the class variable of the classifier, all other variables are
assumed to have a normal (Gaussian) distribution with param-
eters µ and σ2, with the distribution denoted by N

(

X ; µ, σ2
)

.
Then, assuming linear relation between Gaussians and an
order X1, . . . , Xn of variables, it is possible to define linear
conditional Gaussian distributions as:

P (Xi|X1, . . . , Xi−1) = N



Xi; βi,0 +

i−1
∑

j=1

βi,jXj , σ
2
i



 ,

(2)
where βi,0 and βi,j describe the linear combination of the
variable Xi given its parents X1, . . . , Xi−1. When βi,j 6= 0,
there is an edge from Xj to Xi forming a graph. This defi-
nition thus brings linear Gaussian distributions into Bayesian
networks. If βi,j = 0 for every i and j, the variable Xi is
a root node with a univariate Gaussian distribution. The joint
probability distribution with all variables being Gaussian is
then N (X; µ, Σ), defined as:

P (X) =
1

(2π)
n/2 |Σ|1/2

exp

(

−
1

2
(x− µ)T Σ−1 (x− µ)

)

,

(3)
where µ is a vector of size n and Σ is a symmetric positive-
definite matrix of size n× n.

Making inferences in a Bayesian network is the task of
computing posterior probabilities given some observed values.
That is, given a set of query variables Xq and a set of
evidence Xe = xe, we compute P (Xq |Xe = xe) which, with
continuous distributions, is proportional to the marginalisation

of the joint probability over variables Xz , where Xz =
X \ (Xq ∪Xe):

P (Xq |Xe) ∝

∫

∏

i

P (Xi|Pa(Xi)) dXz . (4)

Algorithms for inference in these models are discussed in
[11], [12], [13]. These algorithms describe Gaussian distribu-
tions using canonical characteristics and perform message-
propagation in a juction tree [14] to calculate marginal dis-
tributions. A limitation exists when there are deterministic
relations between variables since the covariance matrix Σ is
not invertible, and the canonical form needs to invert the
covariance matrix to calculate one of its terms. To overcome
this problem, it is possible to use conditional forms [15] which
are also more numerically stable than canonical forms when
the net has both discrete and continuous variables. A deeper
discussion of inference with linear Gaussian distributions is
beyond the scope of this paper.

In a frequentist approach, the parameters of linear Gaussian
models can be learnt using maximum-likelihood techniques.
See [16], [17] for details.

III. UNSUPERVISED FEATURE CLASSIFICATION

We start our discussion about learning motion structures by
analysing the problem of feature association. Given a set of
features extracted by an optical-flow based algorithm (KLT),
the first step towards structure reconstruction is to associate
features from different frames. In a complex environment with
changes in luminosity, occlusions, rotations and translations
of objects, features can appear and disappear from frame to
frame. If there is no predefined dynamic model describing
the behaviour of such features, the problem of predicting
the position of a particular occluded feature becomes very
complex. In the same way, association of those features fails
due to lack of observability. In this work, instead of trying
to track individual features fixed in an object, features are
clustered using probabilistic methods and only the created
clusters are tracked. We advocate that this method is more
robust in dealing with occlusions and inaccurate information
from the feature extraction algorithm than methods that try
associate features individually.

To classify and cluster features we use the well-known
Naive Bayes classifier. The Naive Bayes classifier [9] assumes
that the attributes are conditionally independent given the
class. This assumption is quite reasonable in our problem
whose attributes are positions and velocities for the features
extracted. Note that at this point, there is no association
between features in consecutive frames so that velocities and
positions are independent. In the Naive Bayes model, the
probability of a specific label c, given the observed attributes,
is given by:

P (c|x, y, ẋ, ẏ) = P (x|c) P (y|c)P (ẋ|c) P (ẏ|c) P (c) . (5)

A feature will belong to the label that maximises its
posterior probability. Figure 1 shows the Bayesian network
representing the Naive Bayes classifier used to cluster features.
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Fig. 1. The Naive Bayes classifier to cluster features.

An alternative way to classify features is through a dynamic
Naive Bayes classifier. In this case it is assumed that the
class describes a stochastic process {C (t) , t ∈ T} where t

is a time slice - or a frame - in the stream. If assumed
that this process is stationary, the dynamic classifier can be
represented as a dynamic Bayesian network with transitions
given by P (C (t) |C (t− 1)).

In the unsupervised approach, a Naive Bayes classifier
can be learnt using maximum-likelihood techniques such as
the EM algorithm [18], [19]. The main idea of the EM
algorithm is to apply the Jensen’s inequality [20] to simplify
the computation of the log-likelihood. At each interaction, the
EM computes the expected value of the hidden variables given
the current data and parameters (E-Step). Then, it finds new
values for the parameters that maximise the likelihood (M-
Step). The only parameter that has to be defined a priori is
the number of categories that the class variable can have. This
value is equal or larger than the number of clusters identified
with EM - it is larger if EM finds no feature for a particular
cluster. 10 categories are used in our experiments.

EM is known to suffer from the overfitting problem 1 and
convergence is guaranteed only to a local maximum. We
overcome this problem by initialising it properly. As positions
and velocities in the image have a known order of magnitude
— positions vary only from 1 to 320 and 1 to 240 for x

and y and velocities from -20 pixels per frame to 20 pixels
per frame — a random initialisation followed by a couple of
iterations of K-nearest neighbours (KNN) [21] are enough to
guarantee acceptable convergence properties for EM. In the
tests performed the overfitting problem never occurred and in
the vast majority of cases, clusters were correctly identified.

Using EM, the classifier can be trained with the features
extracted by the KLT algorithm whose attributes are positions
and velocities for all features detected, regardless of which
frame they come from. To do so, it is necessary to remove
possible translations from the position variables. For example,
suppose that the motion recorded in a video is of a person
walking from the left to the right side of the screen, with the
camera remaining fixed during the whole video acquisition.
Figure 2 shows five frames of this example grabbed with a

1The overfitting problem occurs when one of the classes gets associated
with few data samples. This makes the covariance matrix of that particular
class to decrease its magnitude and the likelihood to increase in the same
proportion up to a point where numerical problems stop the algorithm the
proceed.

Fig. 2. An example of a sequence of frames from a person walking from
the right to the left side of the scene.

camera of 320 x 240 pixel resolution. As the person walks,
the x position of the detected features changes accompanying
the body motion. In order to make the Gaussian assumption
reasonable, the translation is removed by subtracting the mean
of the x positions of all features detected in a particular frame
from the x position of each feature in that frame. For each
feature i detected in the frame t its corrected xi(t) position is
given by:

xi(t) = xi(t)− µx(t),

where µx (t) is the mean of the x position of all features
detected in frame t.

The data set for the Naive Bayes classifier is thus a set D =
{d1,1,d1,2, . . . ,d1,N1

, . . . ,dT,1,dT,2, . . . ,dT,NT
}, where T

is the number of frames in the stream and Ni is the number of
features detected in the frame i with each sample di,j ∈ R

4

and di,j = {x, y, ẋ, ẏ}T .
With all parameters determined, features are clustered by

making inferences on the Bayes net of Figure 1. Resulting
clustered features are classified with a unique label. Figure 3
shows the result of this process on the sequence of Figure 2.
Note that features with velocities close to nil are represented
with light gray unfilled squares. They move to the foot in
contact with the ground since velocities in this region are zero.
Another interesting cluster is the one represented by dark gray
unfilled squares. Features of this cluster are associated with the
movement of the head and remain accompanying it during the
whole sequence.

By making inferences with evidence from features detected
across frames, it is possible to associate clusters in the whole
stream. The samples in the data set are then modified to
incorporate one more dimension representing their labels.
Thus, di,j ∈ R

5 and di,j = {x, y, ẋ, ẏ, c}T where c is the
label or cluster that the feature belongs.

IV. LEARNING THE MOTION STRUCTURE

With a group of samples for each cluster, in each frame
(time slice) the motion structure can be learnt using structure
learning algorithms for Bayesian networks. However, complex
motions may have non-linear dependencies, and a linear Gaus-
sian network may not be directly applicable. Our strategy to
tackle this problem is to approximate non-linear relations to



Fig. 3. Features clustered using the learnt Naive Bayes. Features represented with the same symbol belong to the same cluster.

linear relations, learning a different structure for each time
slice, until structures start repeating. Our assumption is that,
even in complex motions like a human body walking, there
exists a pattern that is repeated over some (unknown) time
interval. The idea is to try to learn this pattern and then
construct a Bayesian network to describe it. As conditional
probabilities and dependencies change with time, a dynamic
Bayesian network, as it is normally defined, would not be
appropriate to represent the model. Nonetheless, it is possible
to consider the whole motion pattern learnt with a Bayesian
network as the structure repeated in a dynamic Bayesian
network (DBN). Thus, with a slight change in the definition
of DBNs, the problem can be described in the form of DBN
structure learning.

Given the data set with labelled samples, the algorithm
works as follows. Suppose that in the frame t there are n

clusters, C1
t , . . . Cn

t , identified with at least m features per
cluster, using the procedure described in Section III. In the next
frame t+1, the same n clusters are identified, C1

t+1, . . . , C
n
t+1,

with m samples per cluster2. The first step of the algorithm
is to learn the structure represented by the clusters in the
first frame. Structure learning in a Bayes net involves a
search over the set of all possible directed acyclic graphs,
scored by a determined scoring function. As the number of
possible graphs grows super-exponentially with the number of
variables, a heuristic strategy must be used. In this work, the
scoring function used is the well known Bayesian Information
Criterion (BIC) [22] which is equivalent to the Minimum
Description Length (MDL) approach [23]. Essentially the BIC
has one term that is exactly the log-likelihood, measuring how
well the model predicts the data, and one term to penalise the

2In the case that more than m features were identified, some of them can be
excluded by selecting the m features that have higher probability of belonging
to that particular cluster.

complexity of the model:

BIC (G) =
∑

n

log P
(

Dn|θ̂,G
)

−
np

2
log N, (6)

where np is the total number of parameters of the Bayes net
and N is the number of samples. A greedy search is used
to find the graph that maximises the scoring function. The
search starts with a fully connected graph and operations of
adding, removing and reverting edges are performed until a
local maximum is obtained.

Having learnt the structure for frame t, the same procedure
is repeated for frame t + 1, and another structure is learnt.
With two consecutive structures, correlations between clusters
in different frames are discovered. This can be done using the
same greedy search heuristic, under the constraint that clusters
in frame t + 1 cannot be parents of clusters in frame t. This
ensures a Markov assumption where variables are independent
of the past given the present. Figure 4 shows an example
of a learnt structure for two consecutive frames. Note that
in contrast to a Dynamic Bayesian Network where the net
has the same structure for every time step t with t 6= t0, the
network structure of Figure 4 differs in the two consecutive
frames. The algorithm continues learning structures and inter-
frame dependencies until the new learnt structures start being
similar to those previously learnt, indicating that the cycle
has finished. Similar in this case is understood in terms of
relative entropy or Kullback-Leibler (KL) divergence [20].
Thus, the learning process stops when a defined threshold of
KL divergence is achieved. A sketch of the algorithm is shown
in Algorithm 1.

Results from the complete algorithm are presented in Figure
5 for the first five frames of a motion pattern. The motion pat-
tern has 19 inter-connected structures representing the whole
cycle of a typical human gait. Edges represented with solid
lines indicate conditional dependencies between clusters in the
same frame, while edges represented with dash lines show the



Algorithm 1 A pseudo-code for Motion Structure Algorithm.
Inputs: A set of labelled features D;

KL threshold, k.
Output: Learnt BN encoding the motion pattern, B.
While stop > k do

Bt ←greedy search(D, t)
Bt+1 ←greedy search(D, t + 1)
Bt+1

t ←greedy search(D, t,t + 1) //inter dep.
B ← B +

〈

Bt, Bt+1, B
t+1
t

〉

t← t + 1
stop← KL(Bt; Bt0)

End
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Fig. 4. Structure learnt from samples of 10 clusters into 2 consecutive frames.

inter-frame correlation. From this figure it is possible to note
that clusters associated with the trunk, such as C4, C5 and
C6, are normally the parents of other clusters in inter-frame
correlations. They represent the centre of the body where the
movement of other parts are based on and therefore, tend to
have more correlations. Besides, the trunk has a movement
closer to linear than other parts such as the limbs. Thus,
it is expected that they have similar inter-frame correlations
between themselves.

V. CONCLUSIONS AND FUTURE WORK

The algorithm described in this paper provides a general
methodology to learn complex motion structures that have
specific patterns. With a set of features extracted from a
video, clusters are identified and tracked. These represent
characteristics of the object being tracked whose dependencies
can be analysed and learnt. Once a sequence of structures and
their correlations are obtained, the built network can be used
to predict positions and velocities or the general behaviour
of the model. Experiments were undertaken using a video
of a walking human, however the techniques presented here
can be used for more general proposes such as recovering

the behaviour of a group of robots whose actions have some
coordination. The learning algorithm can be implemented
online and can incorporate techniques to select samples -
similar to that presented in Section III.

One of the drawbacks of the proposed algorithm is that it
is necessary to store the whole BN encoding the pattern. If
the cycle of the motion is long, then the network will grow,
possibly becoming intractable for exact inference algorithms.
Alternatives to tackle this problem are non-linear regression
methods that, by learning non-linear correlations, can incor-
porate sequences of motions in one structure.
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