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Representation

Kumar S., Ramos F., Upcroft B., Ridley M., Ong L., Sakkarieh S. and Durrant-Whyte H.
ARC Centre of Excellence for Research in Autonomous Systems
University of Sydney,
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Abstract— This paper presents a robust stochastic model
for the incorporation of natural features within data fusion
algorithms. The representation combines Isomap, a non-linear
manifold learning algorithm, with Expectation Maximization,
a statistical learning scheme. The representation is computed
offline and results in a non-linear, non-Gaussian likelihood model
relating visual observations such as color and texture to the
underlying visual states.

The likelihood model can be used online to instantiate likeli-
hoods corresponding to observed visual features in real-time. The
likelihoods are expressed as a Gaussian Mixture Model so as to
permit convenient integration within existing nonlinear filtering
algorithms. The resulting compactness of the representation is
especially suitable to decentralized sensor networks. Real visual
data consisting of natural imagery acquired from an Unmanned
Aerial Vehicle is used to demonstrate the versatility of the feature
representation.

I. INTRODUCTION

Autonomous navigation and data fusion tasks require robust
feature extraction and representation. Traditional schemes in
autonomous navigation have focussed on the selection of
stable point features through the use of ranging devices (laser
[1], sonar [2]). While such techniques have been deployed in
unmanned air, ground and underwater vehicles, they do not
provide rich characterizations of an unstructured environment
in terms of color, texture or other sensory properties.

The use of visual sensing for automatic feature extraction
and representation in decentralized sensor networks has been
limited. Nettleton [3] used visual sensing to automatically
extract and propagate point features that corresponded to
high contrast beacons in a decentralized network. Brand [4]
exploits point feature correspondence in an urban environment
to perform localization in sensor networks.

The computer vision community has developed several
stochastic feature representation schemes, although their ap-
plication in robotics has been limited. Lee et al [5] present a
generative visual model based on Independent Components
Analysis (ICA) which provides a linear and non-Gaussian
framework for feature representation. In the work of Karklin
et al [6], a hierarchical probabilistic framework is presented
for the detection of higher order statistical structure in natural
imagery. A key limitation of these linear models is that
they do not necessarily preserve the inherent similarities and

distinctions in the original visual data. This minimizes their
utility in classical estimation and data association tasks.

This research focusses on the automated extraction and rep-
resentation of natural visual features for use in decentralized
sensor networks to enable rich, probabilistic characterizations
of the environment. This work has potential applications in
feature selection for Simultaneous Localization and Mapping
(SLAM), terrain classification and tactical picture compilation.
Prior placement of beacons within the environment is not
assumed and well defined features such as corners that are
prevalent in urban scenarios are not required. The extracted
features are not restricted to be points and are meaningful re-
gions of natural imagery in general. The feature representation
scheme results in a compact Gaussian Mixture Model (GMM)
that is especially suited to decentralized sensor networks.

This work explicitly assumes that all visual data (e.g. color,
texture) is sampled from the vicinity of a low dimensional
manifold embedded in the observation space comprised of
raw pixels. The concepts of Nonlinear Dimensionality Re-
duction (NLDR) [7] are then combined with Expectation
Maximization (EM) [8] to compute stochastic representations
of natural features. Such a representation leads to a compact,
nonlinear and non-Gaussian description of high dimensional
visual observations such as color and texture. Critically, this
representation can be learnt offline and used to infer the
underlying states of visual observations in real-time.

The feature extraction scheme adopted in this work is
summarized in Section II. Section III presents an overview
of NLDR schemes and outlines the basic theory of the
Isomap method used in this work. Section IV describes the
methodology to compute a statistical representation of NLDR
algorithms as a GMM using EM. The statistical representation
of natural features results in a probabilistic likelihood model
that may be integrated within existing non-linear filtering
algorithms for state estimation of visual features [9]. The
methodology is finally applied to real natural imagery acquired
from an Unmanned Aerial Vehicle (UAV). It is demonstrated
that the model results in a compact, neighborhood preserving,
statistical representation of the underlying state of visual
features.



II. NOTE ON FEATURE EXTRACTION
A. Overview

The feature extraction algorithm used in this work is based
on concepts from information theory to extract novel features
from the sensory space. Novelty is informally defined to
correspond to features with a low probability of occurrence
and thus a high information content [10].
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Fig. 1. Novelty in a random variable vs the probability of occurrence

The notion of novelty (Figure 1) as defined here can be
used to develop an information theoretic feature selection
scheme. The objective of effective feature selection is to
identify regions in natural imagery with unique properties (e.g.
color, texture or other relevant visual cues). The frequency of
occurrence of the properties can be quantified through property
histograms and the feature selection problem is addressed by
working with the least likely features. This feature extraction
scheme is expected to be especially useful for SLAM wherein
unique landmarks are vital for robust loop closure. Terrain
classification applications involve the opposing philosophy of
extraction of the most likely visual features.

B. Illustration

The feature extraction scheme is illustrated through a sam-
ple image acquired from an Unmanned Aerial Vehicle (UAV).

1) The image is first converted to the Hue-Saturation-Value
(HSV) space, and the hue histogram of the image is
computed. The hue based information content (Figure 2
top right) at each pixel is computed as proportional to
log % .

2) The raw image is convolved with Gabor wavelets [11]
at 2 scales and 2 orientations, and the histogram of the
resultant amplitude of the response is used to compute a
texture based information content (Figure 2 bottom left)
at each pixel.

3) Features that maximize mutual information between hue
and texture are obtained by fusing the hue and texture
based information content at each pixel (Figure 2 bottom
right).

C. Feature Stability

For robust feature association, it is critical that the extracted
features persist in the environment. Numerical experiments
over real natural imagery acquired from terrestrial, underwater
and aerial vehicles have demonstrated that features that maxi-
mize mutual information between multiple visual cues such as

Fig. 2. Top row - Original image acquired by a UAV (Left) and Information
content based on a hue histogram (Right). Bottom row - Information content
in texture space computed by convolving image with Gabor wavelets (Left)
and Features that maximize mutual information between hue and texture
highlighted in red (Right)

color, texture and intensity gradients exhibit greater stability
than those based on single visual cues. Figure 3 demonstrates
the persistence of the extracted features over a small image
sequence acquired from a UAV.

Fig. 3.
cues such as color and texture appear persistent, and hence are worth tracking.
These features are color coded red in the right column that displays the mutual
information content between hue and texture at each pixel location.

Features that maximize mutual information between multiple visual



III. NONLINEAR DIMENSIONALITY REDUCTION

The feature representation scheme presented here is inde-
pendent of any specific feature extraction algorithm. In this
implementation, information theoretic concepts are used to
extract features with unique properties within the sensory
space as summarized in section II. While this feature selection
scheme is ideal for SLAM, task driven feature extractors may
be more appropriate in other scenarios.

Each extracted feature is potentially set in a very high
dimensional space that is not readily amenable to simple in-
terpretation and reasoning tasks. The development of compact
and useful representations of natural features in unstructured
dynamic worlds is critical to the development of next gener-
ation autonomous systems. These algorithms have numerous
potential applications ranging from data compression, robust
data association to assist autonomous navigation and unsuper-
vised feature selection to create terrain models.

While traditional dimensionality reduction methods such
as Principal Component Analysis (PCA) and its numerous
variants provide theoretically optimal representations from a
data-compression standpoint, they are unable to provide neigh-
borhood preserving representations that are crucial to data
association. This limitation has motivated the development of
various nonlinear embedding methodologies such as Kernel
PCA [12], Isomap [7], Laplacian Eigenmaps [13] and Lo-
cally Linear Embedding (LLE) [14]. Most NLDR techniques
presume that the data lies on or in the vicinity of a low
dimensional manifold and attempt to map the high dimensional
data into a single low dimensional, global coordinate system.
The Isomap algorithm is adopted in this work to provide
a low dimensional description of high dimensional features
primarily because it estimates the intrinsic dimensionality of
the manifold in addition to the underlying states.

A. Theoretical Aspects of the Isomap Method

The Isomap method [7] formulates NLDR as the problem
of finding a Euclidean feature space embedding of a set of
observations that attempts to explicitly preserve their intrinsic
metric structure; the metric structure is quantified as the
geodesic distances between the points along the manifold.

The Isomap method assumes that the sensor data 7 lies on a
smooth nonlinear manifold embedded in the high dimensional
observation space and _attempts to reconstruct an implicit
mapping f : 7 — X that transforms the data to a low
dimensional Euclidean feature (state) space X, that optimally
preserves the distances between the observations as measured
along geodesic paths on the manifold. Significant steps in the
Isomap algorithm are summarized next.

B. Nearest Neighbor Computation

Neighboring points on the manifold are determined based
on the input space distances d (i, j) between pairs of points
1,7 € Z. Each input point is connected to adjacent points
based either on the K nearest neighbors or all points within
a fixed distance € from the point under consideration. The
neighborhood relations are expressed as a weighted graph G

over the data points with edges of weight d,(i,7) between
neighboring points.

C. Computation of Geodesic Distances

The length of a path in G is defined as the sum of the link
weights along the path. The shortest path lengths d” between
two nodes ¢ and j in the graph G are computed through the
Floyd’s algorithm [15] that generally scales as O(N?) or the
Dijkstra algorithm [16] that scales as O(N?log(N)), where
N is the number of data points.

D. Graph Embedding Through Multi-Dimensional Scaling

Classical Multi-dimensional Scaling (MDS) [17] is now
used to compute a graph embedding in k dimensional space
that respects closely the geodesic distances d¢& computed
through the dynamic programming algorithms. The coordinate
vectors x; € X are chosen to minimize the cost function
E = ||I7(dg) — 7(dx)| 2, where dx is the matrix of out-
put space distances and the norm is the matrix L? norm
\/E” (7(dg) —7(dx));;- 7 is an operator that converts

distances into inner products and is defined as %H SH, where
the centering matrix H;; = J,; — (1/N) and the matrix of
squared distances S;; = ij. The global minimum of the cost
function is computed by setting the output space coordinates
x; to the top k eigenvectors of 7(dg).

E. Practical Implementation

Any feature extraction scheme identifies specific regions in
an image that exceed a general information threshold. Each
such feature is comprised of several pixels in general, and each
pixel can be described by the raw color intensities, multi-scale
texture and other visual cues (e.g. intensity gradient, brightness
gradient, texture gradient).

In a practical implementation, each extracted feature is sub-
divided into image patches of a fixed size (e.g. 11 x 11)
and the image patch is described by a single vector of
properties of all individual pixels within the patch. These
vectors Z constitute high dimensional visual observations and
form the input to Isomap. Isomap computes a low dimensional
representation of high dimensional image patches such that the
inherent similarities (or distinctions) in the original patches
are preserved. The low dimensional representation physically
corresponds to the intrinsic coordinates (or equivalently the
visual state) of each patch on the nonlinear manifold.

F. The S Manifold - A 2 Dimensional Manifold Embedded in
3 Dimensions

The nonlinear manifold representation computed by Isomap
is illustrated through a synthetic example. An analytically
generated two dimensional manifold [14] embedded in three
dimensions is depicted in Figure 4. The objective of Isomap is
to automatically discover the global coordinates intrinsic to the
two dimensional embedding without any explicit directives on
how the data is to be mapped onto the low dimensional space.

Figure 4 shows the original manifold and 2000 randomly
generated samples. The samples are color coded according



Fig. 4. S Manifold - Original Manifold (Left) Sampled Manifold (Middle)
Isomap Embedding (Right)
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Fig. 5. Residual variance vs. Manifold dimensionality computed by Isomap

to their spatial positions in three dimensions. The objective
of Isomap is to find a two dimensional representation of the
samples that essentially preserves the neighborhood structure
depicted by the color coding.

Figure 5 demonstrates that Isomap has accurately assessed
the intrinsic two dimensional nature of this manifold through
the vanishing residual variance in higher dimensions. It is
clear from a comparison of the color coding of points in
the sampled manifold and the two dimensional embedding
(middle and extreme right in Figure 4) that high dimensional
neighborhoods are preserved in the computed two dimensional
embedding. This property is crucial to applications in robotics
as similar visual observations of color and texture in the
original sensor space must have similar underlying visual
states.

IV. STATISTICAL MODELS
A. The Generative Model

The Isomap algorithm and indeed most NLDR algorithms
are inherently deterministic algorithms that do not provide
a measure of the uncertainty of the underlying visual states
of high dimensional observations. The integration of the low
dimensional states computed by Isomap into a probabilistic,
Bayesian filtering framework requires the definition of a
generative likelihood model P(Z|X), where Z and X are

the observation and state spaces respectively. This likelihood
model encapsulates the uncertainties inherent in the inference
of a low dimensional state from noisy high dimensional
observations. The incorporation of natural feature states within
a non-Gaussian and non-linear filter is expected to significantly
enhance data association as the low dimensional appearance
states and kinematic variables are complementary.

Methods from supervised learning can be used to derive
compact mappings that generalize over large portions of the
observation and state space. The input-output pairs of Isomap
can serve as training data for an invertible function approxi-
mator in order to learn a parametric mapping between the two
spaces.

Given the results of Isomap, a probabilistic model of the
joint distribution P(Z, X) can be learnt through the EM
algorithm [8]. The joint distribution can be used to map inputs
to outputs and vice versa by computing the expected values
E[Z|X] and E[X|Z]. The joint distribution is represented
by a generalization of a GMM that is termed as a mixture
of factor analyzers [18]. The joint distribution is graphically
displayed in Figure 6 with the assumed dependencies. The
discrete hidden variable s in the model physically represents
a specific neighborhood on the manifold over which a mixture
component is representative. This representation conveniently
handles highly nonlinear manifolds through the capability to
model the local covariance structure of the data in different
areas of the manifold.

P@Es P(Xls)
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Fig. 6. Graphical model for computation of parametric models from
NLDR algorithms. An arrow directed into a node depicts a dependency on
the originating node. The discrete hidden variable s represents a specific
neighborhood on the manifold.

The complete three step generative model can now be
summarized based on the assumed dependencies (Equations
1-3). The joint probability distribution of all the random
variables in the graphical model is expressed as

P(Z,%,5) = P(Z| Z,8)P(Z | s)P (s) ey

where 7 € Z, ¥ € X and the dependencies are given by

— —

1

= ——F5———X )
(2m) /2w, |12



exp {-% 7 AT — ] "W [F— AT — us]}
1 X
(2m) /% |5, [1/2

Vs]}

P(#|s) = 3)

IETI

B. Parameter Estimation

In this model, the set of parameters 6 that need to be
estimated from the observed high and low dimensional spaces
are the prior probabilities P(s), which follow a multinomial
distribution, the mean vectors v; and pi3, the full covariance
matrix Y, the diagonal covariance matrix W and the loading
matrices As. The EM algorithm performs iterative parameter
estimation by maximizing the log-likelihood of the data given
the model and the set of parameters. The observable parame-
ters in the graphical model are denoted as {7, a:n} _, Where
N is the number of samples. EM iteratively maximizes the
log-likelihood of the observations

N M
= log Y P (Zn, &n,si | 0), )
n=1 =1

where M is the number of mixtures considered in the model.
Since direct maximization over the above expression is hard to
be calculated analytically, an auxiliary distribution ¢ (s;) over
the hidden variable is introduced:

Zn7 xna Si | 9)

L= Zlog Zq Si) 4 (59)

Then, it is possible to obtain a lower bound for £ by applying
the Jensen’s inequality [10]:

(&)

N M Z o |0)
£>qu Si 10g nyny 9t ©
n=1i=1 ( )
N M
=D a(s)log P (Zu, @ | 6) + (7)
n=11=1
Zn 121 1Q(81)10gw
N
- ZlogP(Zn,fn |6) — ®
n=1

Zn 1 Zz 19 (s:)log P(Squéiii)fnve).

Thus, maximizing £ with respect to ¢ (s;) is equivalent
to minimizing the second term of (Equation 9) which is
the Kullback-Leibler divergence between the free distribution
q (s;) and the posterior probability P (s; | Z, Zn,0).

For each iteration EM alternates between the Expectation
step where the posterior probability of s given the observations
is computed through

P(Z,| Zn,s) P(Zy, | s) P(s)
2o P(Zn | Zn,s") P(Zy | ) P(s)
and the Maximization step, where this posterior is used to re-

estimate the parameters. The update rules for the Maximization
step are presented below:

©)

P(s | Zn, Tn) =

Defining v, = P(s | 2, %) and wg, = Lﬁ; the
updates are: v

Vg Z WsnTn, (10)

Es — Zwsn [fn - 175] [fn - Ijs]Tv (11)

Mg =D wanZn (Fn — 7)) 571, (12)

fis — Y wen [Zn — AsZn] (13)

\I/ — Zwsn n A fn - ﬁs] [Zn - Asfn - ﬁs]Ta (14)

P(s) — 2n Yo (15)

ZS'H' 'Ys’n’ ’
The algorithm continues execution until the difference be-

tween the log-likelihood of two iterations is smaller than a
given threshold.

C. Comments

Once the parameter estimation is completed, the joint distri-
bution P(Z, Z, s) is fully characterized, and a likelihood model
P(Z = %|Z) (Equation 16) can be computed by making an
observation z; in the high dimensional space. Along the lines
of the derivation in [18], it can be shown that this likelihood
can be expressed as a GMM.

P(Z=%|7) = ZP |Z2=2%)P(Z|z,s)  (16)

Such a model can be easily integrated within a non-linear,
non-Gaussian filtering scheme [9]. Further, as the NLDR
algorithms compute essentially invariant properties in the
underlying low dimensional state, a process model is not
required to describe their evolution. Thus an update based on
Bayes theorem is sufficient for integration within a nonlinear
filtering algorithm.

A crucial difference between this model and an unsuper-
vised mixture of factor analyzers is that both the high and
low dimensional spaces are observed as opposed to the low
dimensional states remaining hidden in conventional factor
analysis. The fact that dimensionality reduction is decoupled
from the learning is expected to significantly stabilize iter-
ative EM based parameter estimation approaches due to the
observability of the low dimensional states [14].



D. S-Manifold - Statistical Representation

Figures 7 and 8 show the statistical model of the S-manifold
computed with 32 factor components. The Gaussian distribu-
tions P(Z|#, s) accurately model the locally linear neighbor-
hoods of the manifold from which the data was generated. The
quality and numerical robustness of the representation results
from the observation of both & and Z [14].

Fig. 7. Mixture of 32 factor analyzers learnt from data sampled randomly
on the S-manifold. The covariances corresponding to P(Z]Z, s) are overlaid
on the plot. The mixture model captures the local covariance structure of the
data over different regions of the manifold.
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Fig. 8. The covariances of P(Z|s). The uncertainty in the low dimensional
state of a noisy high dimensional observation Z' is represented through the
statistical model.

E. Integration within a Bayesian Filtering Framework

Bayes theorem provides an incremental and recursive,
probabilistic method for combining high dimensional visual
observations Z* of a state Xj ,at time tg, with a prior belief
of the state P(xy_1). Features are extracted in real time from
incoming natural imagery and are represented as a conditional
probability distribution or likelihood P(z = zg|xx), and the
resultant combination is a revised posterior distribution on the

state:
P(z = z.|x1) P(xp_1|Z"}
Plylt) = PEZHPOPIAZ ) g
P(2k|z )
where Z* = {z,,Z"7'} is the set of high dimensional

visual observations from all nodes in the decentralized sensor
network. The representation of the visual likelihoods as a
Gaussian Mixture Model simplifies this update step into an
algebraic computation of the product of two Gaussian Mixture
Models [9].

V. EXAMPLE APPLICATIONS

The generative graphical model outlined earlier can be used
off-line to compute the model parameters comprised of the
means and covariance matrices of the constituent conditional
Gaussian distributions. A rigorous approach would necessitate
an extensive training set comprised of numerous high dimen-
sional features from representative natural environments that
are sampled under realistic ambient conditions.

A. UAV Acquired Imagery - Inference of Underlying Visual
States

A random sample of about 7500 high dimensional points
physically representing colors and textures of typical objects
in the environment such as sky, trees, bush and grass was
selected from a sequence of images acquired from a camera
mounted on a UAV at the Marulan test facility operated by the
Australian Center for Field Robotics. Texture information was
included in the high dimensional input space by convolving
11 x 11 pixel patches with a bank of Gabor wavelets [11]
at 2 scales and 2 orientations, resulting in an input space
dimensionality of 847. Isomap was used to compute a low
dimensional embedding of the training data and the intrinsic
dimensionality of the manifold was estimated to be about 5.

The top two eigenvectors of the computed low dimensional
embedding are shown in Figure 9. It is readily observed that
image patches corresponding to bush and sheds are on the
extreme left and right respectively, while grass and transitional
patches are between these two extremes. The EM algorithm
was used to learn the parameters of the generative model
(Equations 1-3).

B. Inference

The learnt model was subsequently used to infer the low
dimensional states (through appropriate marginalization of the
joint probability densities) within a typical test image that was
acquired in the same environment. Note that feature extraction
is not performed within this image. Instead, the entire image
is sub-divided into 11 x 11 patches, and the visual cues
(color, texture) within each patch form the high dimensional
observations.

The results of inference on the test image (Figure 9 top)
in terms of the means of the inferred eigenvectors scaled to
gray-scale limits (0-255) are shown in Figures 10-12.
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Visual State 2

Visual State 1

Fig. 9. Sample image acquired by the UAV (top) and low dimensional
embedding of randomly sampled high dimensional image patches (bottom).
The covariances X5 of each of the factor components are overlaid on the plot.

Fig. 10. Contour of the inferred means of the top eigenvector on each
14 x 14 image patch. This state enables a clear discrimination of the tracks
and sheds (color coded red, range ~ 200 — 250) from all other visual groups
in the image. This state is strongly correlated with the brightness of the image
patches.

C. Comments

Each of the plots depicting the low dimensional states must
be interpreted as a contour plot of the respective states in
the image plane. It is important to realize that every patch
consists of 847 correlated observations in the sensory space,
while only a few uncorrelated states are sufficient to capture
the similarities (or differences) between the patches after state
inference.

The inferred low dimensional states are reasonable in that
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Fig. 11. Contour of inferred means of the second eigenvector. This state
allows discrimination of the sheds (range ~ 0 — 50) from the grass and the
tracks in the scene. This state exhibits strong correlations with the hue of the
image patches.
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Fig. 12.  Contour of inferred means of the third eigenvector. This state

highlights intensity gradients in the image. This results from the fact that the
Gabor wavelets essentially act as edge detecting operators.

similar high dimensional image patches (such as those corre-
sponding to bush, tracks or man made landmarks) are assigned
similar low dimensional states, as is to be expected from a
parametric model of neighborhood preserving manifold learn-
ing algorithms. Each inferred low dimensional state enables
some degree of discrimination between important objects in
the scene such as the tree, bush, tracks and the sky. The
inferred low dimensional states provide an invariant descriptor
of high dimensional visual observations, a property that is
significant in the context of robust visual feature association.

D. Qualitative Comparison

The validity of the inferred visual states is qualitatively
evaluated through a comparison with a k nearest neighbor
approach. The 12 nearest neighbor of each test sample in the
training set are computed, and the top two visual states of the
test sample are evaluated as a weighted average of the states of
the nearest neighbors. The weights are chosen to be inversely
proportional to the high dimensional distances between the test
and training samples.

A close examination of Figure 13 reveals that the statistical
inference and k nearest neighbor approach place the test



samples in a similar region of the manifold. The k nearest
neighbor approach distributes the test samples compactly as
compared to the stochastic estimate.

It is to be emphasized that this comparison is qualitative, and
the nearest neighbor approach should not be viewed as ground
truth as it has some inherent limitations [19]. The stochastic
estimate is versatile as the inferred covariances quantify the
uncertainty in the visual state estimation. Thus the stochastic
visual state model renders itself to a convenient integration
into a nonlinear filtering algorithm akin to conventional sensor
models.
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Fig. 13. Inferred low dimensional states (left) and nearest neighbor state

estimate (right). The trained manifold is represented in red and corresponding
test samples are overlaid on the manifold. The axes represent the top two
visual state estimates from either approach.

VI. CONCLUSION

The combination of non-parametric manifold learning algo-
rithms with statistical learning strategies leads to a consistent
description of natural features in unstructured environments.
While the entire learning procedure can be incorporated in
the training phase of these models that is performed off-
line, inference can be performed in real-time on any extracted
features to compute likelihoods for the natural features as a
Gaussian mixture model. Natural features can thus be fully
integrated within existing non-Gaussian, non-linear filtering
algorithms through the likelihood model so that tasks of
estimation and data association are significantly enhanced
through a combination of kinematic and visual states.
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