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Abstract— This paper presents a robust stochastic framework
for the incorporation of visual observations into conventional
estimation, data fusion, navigation and control algorithms. The
representation combines Isomap, a non-linear dimensionality
reduction algorithm, with Expectation Maximization, a statis-
tical learning scheme. The joint probability distribution of this
representation is computed offline based on existing training
data.

The training phase of the algorithm results in a nonlinear and
non-Gaussian likelihood model of natural features conditioned
on the underlying visual states. This generative model can be
used online to instantiate likelihoods corresponding to observed
visual features in real-time. The instantiated likelihoods are
expressed as a Gaussian Mixture Model and are conveniently
integrated within existing non-linear filtering algorithms. Exam-
ple applications based on real visual data from heterogenous,
unstructured environments demonstrate the versatility of the
generative models.

Index Terms— Feature extraction, Natural feature represen-
tation, Statistical learning, Nonlinear manifolds

I. INTRODUCTION

Autonomous navigation and data fusion tasks require robust
feature extraction and representation. Traditional schemes in
autonomous navigation have focussed on the selection of
stable point features through the use of ranging devices (laser
[1], sonar [2]). While such techniques have been deployed in
unmanned air, ground and underwater vehicles, they do not
provide rich characterizations of an unstructured environment
in terms of color, texture or other sensory properties.

This paper explicitly focusses on the use of visual observa-
tions within autonomous systems to enable rich, probabilistic
characterizations of the environment for applications such as
feature selection for Simultaneous Localization and Mapping
(SLAM), terrain classification and tactical picture compila-
tion.

While the computer vision community has developed sev-
eral stochastic feature representation schemes, their applica-
tion in robotics has been limited. Lee et al [3] present a
generative visual model based on Independent Components
Analysis (ICA) which provides a linear and non-Gaussian
framework for feature representation. In the work of Karklin
et al [4], a hierarchical probabilistic framework is presented
for the detection of higher order statistical structure in natural
imagery. A key limitation of these models is that they do not
necessarily preserve the inherent similarities in the sensed
visual data. Thus multiple observations of the same visual
feature may result in different underlying visual states or

visually distinct features may possess similar states in these
representations. This minimizes their utility in classical esti-
mation and data association tasks. This limitation is addressed
here through the application of Isomap [5], a Nonlinear
Dimensionality Reduction (NLDR) algorithm that preserves
similarities in sensed data according to a user defined distance
metric.

This paper explicitly assumes that all visual data (e.g. color,
texture) is sampled from the vicinity of a low dimensional
manifold embedded in the observation space comprised of
raw pixels. In this representation, the visual state of any
observation corresponds to the intrinsic coordinates on the
manifold. The concepts of NLDR are combined with Expec-
tation Maximization [6] to compute stochastic representations
of natural features. Such a representation leads to a compact,
nonlinear and non-Gaussian description of high dimensional
visual observations such as color and texture. Critically, this
representation can be learnt offline and used to infer the
underlying states of visual observations in real-time.

Section II presents an overview of NLDR schemes and
outlines the basic theory of the Isomap method used in this
work. Section III describes the methodology to compute a
statistical representation of NLDR algorithms as a mixture
of linear models using Expectation Maximization (EM). The
statistical representation of natural features results in a proba-
bilistic likelihood model that may be integrated within existing
non-linear filtering algorithms for state estimation of visual
features [7]. The methodology is finally applied to sample
imagery acquired by autonomous ground and underwater
vehicles. It is demonstrated that this methodology provides a
compact, neighborhood preserving, statistical representation
of the underlying state of high dimensional visual observa-
tions.

II. NONLINEAR DIMENSIONALITY REDUCTION

The feature representation scheme presented here is inde-
pendent of any specific feature extraction algorithm. In this
implementation, information theoretic concepts are used to
extract features with unique properties within the sensory
space. While this feature selection scheme seems ideal for
SLAM, task driven feature extractors may be more appropri-
ate in other scenarios.

Each extracted feature is potentially set in a very high
dimensional space that is not readily amenable to simple in-
terpretation and reasoning tasks. The development of compact



and useful representations of natural features in unstructured
dynamic worlds is critical to the development of next gener-
ation autonomous systems. These algorithms have numerous
potential applications ranging from data compression, robust
data association to assist autonomous navigation and unsu-
pervised feature selection to create terrain models.

While traditional dimensionality reduction methods such
as Principal Component Analysis (PCA) and its numerous
variants provide theoretically optimal representations from
a data-compression standpoint, they are unable to provide
neighborhood preserving representations that are crucial to
data association. This limitation has motivated the develop-
ment of various nonlinear embedding methodologies such
as Kernel PCA [8], Isomap [5], Laplacian Eigenmaps [9]
and Locally Linear Embedding (LLE) [10]. Most NLDR
techniques presume that the data lies on or in the vicinity
of a low dimensional manifold and attempt to map the
high dimensional data into a single low dimensional, global
coordinate system. The Isomap algorithm is adopted in this
work to provide a low dimensional description of high di-
mensional features primarily because it estimates the intrinsic
dimensionality of the manifold in addition to the underlying
states.

A. Theoretical Aspects of the Isomap Method

The Isomap method [5] formulates NLDR as the problem
of finding a Euclidean feature space embedding of a set of
observations that attempts to explicitly preserve their intrinsic
metric structure; the metric structure is quantified as the
geodesic distances between the points along the manifold.

The Isomap method assumes that the sensor data �Z lies
on a smooth nonlinear manifold embedded in the high di-
mensional observation space. It attempts to reconstruct an
implicit mapping f : �Z → �X that transforms the data to
a low dimensional Euclidean feature (state) space �X , which
optimally preserves the distances between the observations as
measured along geodesic paths on the manifold. Significant
steps in the Isomap algorithm are summarized next.

B. Nearest Neighbor Computation

Neighboring points on the manifold are determined based
on the input space distances dz(i, j) between pairs of points
i, j ∈ �Z. Each input point is connected to adjacent points
based either on the K nearest neighbors or all points within
a fixed distance ε from the point under consideration. The
neighborhood relations are expressed as a weighted graph G
over the data points with edges of weight dz(i, j) between
neighboring points.

C. Computation of Geodesic Distances

The length of a path in G is defined as the sum of the link
weights along the path. The shortest path lengths dij

G between
two nodes i and j in the graph G are computed through the
Floyd’s algorithm [11] that generally scales as O(N3) or the
Dijkstra algorithm [12] that scales as O(N2log(N)), where
N is the number of data points.

D. Graph Embedding Through Multi-Dimensional Scaling

Classical Multi-dimensional Scaling (MDS) [13] is now
used to compute a graph embedding in k dimensional space
that respects closely the geodesic distances dij

G computed
through the dynamic programming algorithms. The coordi-
nate vectors xi ∈ �X are chosen to minimize the cost function
E = ‖τ(dG)− τ(dX)‖L2 , where dX is the matrix of output
space distances, dG is the matrix whose elements are dij

G and

the norm is the matrix L2 norm
√∑

i,j (τ(dG)− τ(dX))2ij . τ

is an operator that converts distances into inner products and
is defined as 1

2HSH , where the centering matrix Hij = δij−
(1/N) and the matrix of squared distances Sij =

(
dij

G

)2

. The
global minimum of the cost function is computed by setting
the output space coordinates xi to the top k eigenvectors of
τ(dG).

E. Practical Implementation

Any feature extraction scheme identifies specific regions in
an image that exceed a general information threshold. Each
such feature is comprised of several pixels in general, and
each pixel can be described by the raw color intensities, multi-
scale texture and other visual cues (e.g. intensity gradient,
brightness gradient, texture gradient).

In a practical implementation, each extracted feature is sub-
divided into image patches of a fixed size (e.g. 11× 11) and
the image patch is described by a single vector of properties
of all individual pixels within the patch. These vectors �Z
constitute high dimensional visual observations and form the
input to Isomap. Isomap computes a low dimensional rep-
resentation of high dimensional image patches such that the
inherent similarities (or distinctions) in the original patches
are preserved. The low dimensional representation physically
corresponds to the intrinsic coordinates (or equivalently the
visual state) of each patch on the nonlinear manifold.

III. PROBABILISTIC MODEL

A. The Generative Model

The Isomap algorithm and indeed most NLDR algorithms
are inherently deterministic algorithms that do not provide
a measure of the uncertainty of the underlying visual states
of high dimensional observations. The integration of the low
dimensional states computed by Isomap into a probabilistic,
Bayesian filtering framework requires the definition of a
generative likelihood model P (�Z| �X), where �Z and �X are
the observation and state spaces respectively. This likelihood
model encapsulates the uncertainties inherent in the inference
of a low dimensional state from noisy high dimensional ob-
servations. The incorporation of natural feature states within a
non-Gaussian and non-linear filter is expected to significantly
enhance data association as the low dimensional appearance
states and kinematic variables are complementary.

Methods from supervised learning can be used to derive
compact mappings that generalize over large portions of
the observation and state space. The input-output pairs of
Isomap can serve as training data for an invertible function



approximator in order to learn a parametric mapping between
the two spaces.

Given the results of Isomap, a probabilistic model of
the joint distribution P (�Z, �X) can be learnt through the
Expectation Maximization (EM) algorithm [6]. The joint
distribution can be used to map inputs to outputs and vice
versa by computing the expected values E[�Z| �X] and E[ �X|�Z].
The joint distribution is represented by a generalization of
a mixture of factor analyzers that is termed as a mixture
of linear models [14]. The joint distribution is graphically
displayed in Figure 1 with the assumed dependencies. The
discrete hidden variable s in the model corresponds to a spa-
tial region on the manifold over which a mixture component
is representative. This representation conveniently handles
highly nonlinear manifolds through the capability to model
the local covariance structure of the data in different areas of
the manifold.

Fig. 1. Graphical model for computation of parametric models from
NLDR algorithms. An arrow directed into a node depicts a dependency on
the originating node. The discrete hidden variable s represents a specific
neighborhood on the manifold.

The complete three step generative model can now be
summarized based on the assumed dependencies (Equations
1-3). The joint probability distribution of all the random
variables in the graphical model is expressed as

P (�z, �x, s) = P (�z | �x, s)P (�x | s)P (s) (1)

where �z ∈ �Z, �x ∈ �X and the dependencies are given by

P (�z | �x, s) =
1

(2π)D/2 |Ψs|1/2
× (2)

exp
{
− 1

2 [�z − Λs�x− µs]
T Ψ−1

s [�z − Λs�x− µs]
}

P (�x | s) =
1

(2π)d/2 |Σs|1/2
× (3)

exp
{
− 1

2 [�x− νs]
T Σ−1

s [�x− νs]
}

B. Parameter Estimation

In this model, the set of parameters θ that need to be
estimated from the observed high and low dimensional spaces
are the prior probabilities P (s), which follow a multinomial
distribution, the mean vectors �νs and �µs, the full covariance
matrix Σs, the diagonal covariance matrix Ψs and the loading
matrices Λs. The EM algorithm performs iterative parameter
estimation by maximizing the log-likelihood of the data
given the model and the set of parameters. The observable
parameters in the graphical model are denoted as {�zn, �xn}Nn=1

where N is the number of samples. EM iteratively maximizes
the log-likelihood of the observations

L =
N∑

n=1

log
M∑
i=1

P (�zn, �xn, si | θ) , (4)

where M is the number of mixture components considered
in the model. Since direct maximization over the above
expression is hard to be calculated analytically, an auxiliary
distribution q (si) over the hidden variable is introduced:

L =
N∑

n=1

log
M∑
i=1

q (si)
P (�zn, �xn, si | θ)

q (si)
(5)

Then, it is possible to obtain a lower bound for L by applying
the Jensen’s inequality [15]:

L ≥
N∑

n=1

log P (�zn, �xn | θ)− (6)

∑N
n=1

∑M
i=1 q (si) log q(si)

P (si|�zn,�xn,θ) .

Thus, maximizing L with respect to q (si) is equivalent
to minimizing the second term of Equation 6, which is
the Kullback-Leibler divergence between the free distribution
q (si) and the posterior probability P (si | �zn, �xn, θ).

The update rules for the Maximization step are presented
below ([16]):

Defining γsn = P (s | �zn, �xn) and ωsn = γsn∑
n′ γsn′

the

updates are:

�νs ←
∑

n

ωsn�xn, (7)

Σs ←
∑

n

ωsn [�xn − �νs] [�xn − �νs]
T

, (8)

Λs ←
∑

n

ωsn�zn (�xn − �νs)
T Σ−1

s , (9)

�µs ←
∑

n

ωsn [�zn − Λs�xn] , (10)

Ψs ←
∑

n

ωsn [�zn − Λs�xn − �µs] [�zn − Λs�xn − �µs]
T

, (11)



P (s)←
∑

n γsn∑
s′n′ γs′n′

. (12)

The algorithm continues execution until the difference
between the log-likelihood of two iterations is smaller than a
given threshold.

C. Comments

Once the parameter estimation is completed, the joint
distribution P (�z, �x, s) is fully characterized, and a likelihood
model P (�z = �zi|�x) (Equation 13) can be computed by
making an observation �zi in the high dimensional space.
Along the lines of the derivation in [14], it can be shown
that this likelihood can be expressed as a Gaussian Mixture
Model (GMM) that is easily integrated within a non-linear,
non-Gaussian filtering scheme [7].

P (�z = �zi|�x) =
∑

s

P (s|�z = �zi) P (�x|�zi, s) (13)

IV. CHOICE OF A SUITABLE NUMBER OF MIXTURE

COMPONENTS

The choice of a specific number of mixture components is
crucial to the off-line computation of a likelihood model for
high dimensional observations. A rigorous model selection
approach has been described in the framework of variational
inference [17].

A simpler approach is adopted in this work that adequately
addresses over-fitting concerns. The number of mixture com-
ponents is chosen so that the resulting probabilities P (s) are
always greater than a pre-defined threshold. If the computed
probabilities P (s) are all significantly greater than the thresh-
old, the model is refined. If any of the mixture components
results in probabilities smaller than the threshold, the model is
coarsened through a reduction in the number of components.

V. EXAMPLE APPLICATIONS

The generative graphical model outlined earlier can be used
off-line to compute the model parameters comprised of the
means and covariance matrices of the constituent conditional
Gaussian distributions. A rigorous approach would necessitate
an extensive training set comprised of numerous high dimen-
sional features from representative natural environments that
are sampled under realistic ambient conditions.

A. Autonomous Ground Vehicle (AGV) - Inference of Under-
lying Visual States

A sample of about 9000 high dimensional points physically
representing colors and textures of typical objects in the
environment such as sky, trees, bush and grass was randomly
selected from a sequence of images acquired from a camera
mounted on a ground vehicle at the Marulan test facility
operated by the Australian Center for Field Robotics. Texture
information was included in the high dimensional input space
by convolving 11 × 11 pixel patches with a bank of Gabor
wavelets [18] at 2 scales and 2 orientations, resulting in
an input space dimensionality of 847. Isomap was used to

compute a low dimensional embedding of the training data
and the intrinsic dimensionality of the manifold was estimated
to be 3. Thus the similarities (or distinctions) in the raw
data can be accurately preserved using only 3 dimensions
as opposed to 847.

Fig. 2. Sample image acquired by the AGV (top) and low dimensional
embedding of randomly sampled high dimensional image patches (bottom).
The learnt low dimensional covariances Σs are also overlaid on the plot.

The top two eigenvectors of the computed low dimensional
embedding are shown in Figure 2. It is readily observed that
image patches corresponding to blue skies are grouped on the
left side, those representing bush are on the extreme right,
while grass and transitional patches are grouped between
the two extremes. The EM algorithm was used to learn
the parameters of the generative model (Equations 1-3).
The learnt model was subsequently used to infer the low
dimensional states (through appropriate marginalization of the
joint probability densities) within a typical test image that was
acquired in the same environment. The results of inference
on the test image (Figure 2 top) in terms of the means of
the eigenvectors scaled to gray-scale limits (0-255) for the
top two states are shown in Figures 3-4. The different color
codes correspond to visually distinct image patches as per
their intrinsic location on the manifold.

B. Unmanned Underwater Vehicle (UUV) - Inference of Un-
derlying Visual States

The generality of the feature representation scheme is
demonstrated through application in a texture rich underwater
environment. A sample of about 17000 high dimensional
points physically representing colors and textures of typical
objects in an underwater environment such as beach sand and
corals was selected from a sequence of images [19] acquired



Fig. 3. Contour of the inferred means of the top eigenvector on each 11×11
image patch. This state is correlated to the brightness of the image patches.

Fig. 4. Contour of inferred means of the second eigenvector. This state
allows separation of the bush (range ≈ 0−50) from the grass and the tracks
in the scene.

from a camera mounted onto the UUV Oberon, operated by
the Australian Center for Field Robotics.

Isomap and EM were used to compute the probabilistic
model off-line, and the learnt model was used to infer the
low dimensional states of a typical image acquired by the
UUV. The sample image and the results of inference in terms
of the fourth eigenvector are shown in Figures 6-7.

C. Comments

Each of the plots depicting the low dimensional states must
be interpreted as a contour plot of the respective states in the
image plane. It is important to realize that every patch consists
of 847 correlated observations in the sensory space, while
only a few uncorrelated states are sufficient to capture the
similarities (or differences) between the patches after visual
state inference.

The inferred low dimensional states are reasonable in
that similar high dimensional image patches (such as those
corresponding to sky, grass, trees, bush, sand or corals) are
assigned similar low dimensional states.

The accuracy of the inferred low dimensional states is
qualitatively evaluated in Figures 5 and 8. It is observed
from the color coding in these figures that the weighted
means of the inferred low dimensional states exhibit good
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Fig. 5. Inferred low dimensional states (top) and weighted average state
estimate (bottom). The weighted average estimator assumes that the low
dimensional state of a test sample is the weighted average of the k nearest
high dimensional neighbors of the sample, with the weights being inversely
proportional to the high dimensional distances. The trained manifold is
represented in red and corresponding test samples are similarly colour coded
in each figure.

qualitative agreement with a deterministic estimator based on
k nearest neighbors. The stochastically inferred estimate is
more versatile as it quantifies inherent uncertainties in the
inferred states.

VI. CONCLUSION

The combination of non-parametric manifold learning algo-
rithms with statistical learning strategies leads to a consistent
probabilistic description of natural features in unstructured
environments. While the entire learning procedure can be
incorporated in the training phase of these models that is
performed off-line, inference can be performed in real-time
on any extracted features to compute likelihoods for the
natural features as a GMM. Example applications in terrestrial
and underwater environments demonstrate the generality and
consistency of the representation scheme. Natural features can
thus be fully integrated within existing non-Gaussian, non-
linear filtering algorithms through the likelihood model so that
nonlinear estimation tasks are significantly enhanced through
a combination of kinematic and visual states.

ACKNOWLEDGMENT

This work is supported by the ARC Center of Excel-
lence programme, funded by the Australian Research Council
(ARC) and the New South Wales (NSW) State Government.



−2000 −1500 −1000 −500 0 500 1000 1500 2000
−1500

−1000

−500

0

500

1000

1500

Eigenvector 1 − Brightness

Ei
ge

nv
ec

to
r 2

 −
 H

ue
 D

om
in

an
t

Fig. 6. Sample image acquired by underwater vehicle (top) and low
dimensional embedding of randomly sampled image patches (bottom)

Fig. 7. Inferred means of the fourth eigenvector on each image patch.
Distinctions between the sand and the corals are amplified in this state that
is correlated to the high frequency texture of the coral colonies.
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