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Abstract. The computation of compact and meaningful representations of high dimensional sensor data has recently been
addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation
of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution
algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms
that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on
incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and
significant potential of this technique in real-time applications such as autonomous systems.
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1. Introduction

Autonomous systems are typically equipped with multiple heterogenous sensors that return fundamen-
tally different physical characteristics of the environment such as color, geometry, texture or reflectivity.
The raw sensory data is set in a very high dimensional space that is not readily amenable to simple
interpretation and reasoning tasks. The development of real time perception algorithms that generate
compact and useful representations of unstructured dynamic worlds is critical to the development of next
generation autonomous systems. Such algorithms have numerous potential applications ranging from
data compression, robust data association to assist autonomous navigation, unsupervised feature selec-
tion to create terrain models and as a pre-processor to compact probability density estimation methods
to assist multi-sensor data fusion.

A typical application of the proposed algorithm in a real-time autonomous system is shown in Fig. 1.
Raw sensor data is processed to extract high dimensional features, that are subsequently compressed to
serve as observations to a data fusion client [15]. Sequential-Isomap operates in the feature compression
and sensor model update blocks of the framework in Fig. 1.

While traditional eigenvector methods such as Principal Component Analysis (PCA) and its numerous
variants provide theoretically optimal representations from a data-compression standpoint, they are
fundamentally unable to discover any usable nonlinear structure in the raw data. This limitation has
motivated the development of various nonlinear embedding methodologies such as Kernel PCA [18],
Isomap [19], Laplacian Eigenmaps [1] and Locally Linear Embedding (LLE) [17]. Most Nonlinear
Dimensionality Reduction (NLDR) techniques presume that the data lies on or in the vicinity of a low
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Fig. 1. Sensor data and representation flow chart in an autonomous system. The features extracted from raw sensor data are
used to update the existing sensor model and are simultaneously available to clients for data fusion.

dimensional manifold and attempt to map the high dimensional data into a single low dimensional, global
coordinate system.

Kernel PCA is based on the fact that PCA could be formulated entirely as dot products between data
points, and hence the concepts of kernels and Reproducing Kernel Hilbert Spaces (RKHS) are effectively
merged to develop a nonlinear version of PCA. The Isomap algorithm attempts to preserve the geodesic
distances between faraway points (or the global structure) of the manifold through the solution of a
dynamic programming problem and is quite successful at recovering highly nonlinear embeddings. The
LLE technique recovers low dimensional embeddings that satisfy a basic premise that points that are
close in the original high dimensional space remain so in the computed low dimensional embedding. The
Laplacian Eigenmaps algorithm draws on the correspondence between the graph Laplacian, the Laplace-
Beltrami operator on the manifold and connection to the diffusion equation to propose a geometrically
motivated scheme to represent high dimensional data. In general, all these algorithms lead to the
numerical solution of a large, symmetric and possibly sparse eigenvalue problem, and the eigenvectors
associated with the lowest (or the highest) few eigenvalues form the basis of the computed embedding.
All the cited spectral embedding methods have been cast in a unified framework in [2] as estimators of
the eigenfunctions of a linear operator associated with a data dependent kernel.

As cast in their original form, all the NLDR approaches are inherently batch algorithms, which require
that the entire data set be available for batch eigenvalue solution. Numerical algorithms that are used
in the context of autonomous systems must be cast in a sequential form so as to work in real time as
new observations pertaining to the state of an unstructured environment are acquired. Some typical
examples [10] of such sequential algorithms cast in state space are the Kalman filter that is commonly
used for real time tracking and the extended Kalman filter used for navigation. It would thus be extremely
useful to have a sequential NLDR algorithms that could learn low dimensional representations from high
dimensional sensory input in real time applications such as autonomous systems.

Sequential eigenvector extraction schemes have progressed significantly and most of them are based on
a fundamental premise that the eigenvalues vary only gradually, so that iterative approaches can be used
in real time. The simplest such approach has been described by Morita and Kanade [16] for the recovery
of shape and motion from image streams. It involves using inverse iterations [11] in conjunction with
guesses for the eigenvalues to rapidly converge to new eigenvector estimates. Goyal and Vetterli [12] have
developed an innovative sequential algorithm for eigenvector computations. It uses stochastic descent
which exploits the fact that a matrix can be diagonalized through a series of transformation matrices that
are essentially Given’s rotations, and the values of the rotations themselves are adapted online through a
mean shift procedure.

While the iterative and descent based schemes appear promising, they suffer from a fundamental lack
of robustness and almost always require problem specific tuning. Singular Value Decomposition (SVD)
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updating [11] on the other hand has received a lot of attention over almost two decades. The challenge
here has been in dealing with the accumulation of numerical precision related errors over large updates
that essentially destroy the orthogonality of the singular vectors. The work of Eisenstat and Gu [13] in
this context is the culmination of this research into a robust, practical implementation, enabling large
scale incremental updates and downdates. Brand [4] has recently implemented a similar incremental
imputative SVD scheme in the context of web based recommender systems and structure from motion
problems, that tackles added complexities due to measurement uncertainty and incomplete data. The
incremental SVD scheme used in [4] is similar in principle to that used in this paper; however, the
development of sequential NLDR algorithms based on incremental-SVD has not been addressed there.

The development of nonlinear dimensionality reduction methods and sequential singular value extrac-
tion schemes has occurred on essentially different tracks. There has been virtually no effort aimed at
exploiting the rich developments in linear algebra within the framework of the NLDR algorithms so as
to derive a whole class of unsupervised,sequential learning schemes. Useful out of sample extensions
that predict low dimensional coordinates of test input from training data have been developed in [17]
and [3], but these methods are not designed to adapt the pre-computed manifold to new input.

In the light of the arguments presented, a sequential NLDR scheme based on incremental SVD is
developed here. The scheme fuses recent developments in SVD updating to a modified Isomap method
to sequentially compute low rank representations of high dimensional data. The basic theory of the
modified Isomap scheme is presented in Section 2. The theory and implementation of incremental
SVD as presented in [13] is summarized in Section 4. Section 5 presents an incremental learning
algorithm based on the concepts of the modified Isomap method and incremental SVD. Finally, example
applications that demonstrate the capabilities of the incremental NLDR scheme are presented.

2. Theoretical aspects of the Isomap method

The Isomap method [19] formulates NLDR as the problem of finding a Euclidean feature space
embedding of a set of observations that attempts to explicitly preserve their intrinsic metric structure;
the metric structure is quantified as the geodesic distances between the points along the manifold.

The Isomap method starts out assuming that the data�X lies on an unknown manifold embedded in
the high dimensional observation space and attempts to reconstruct an implicit mappingf : �X → �Y
that transforms the data to a low dimensional Euclidean feature space�Y , that optimally preserves the
distances between the observations as measured along geodesic paths on the manifold. Significant steps
in the Isomap algorithm are summarized next.

2.1. Nearest neighbor computation

Neighboring points on the manifold are determined based on the input space distancesdX(i, j) between
pairs of pointsi, j ∈ �X . Each input point is connected to adjacent points based either on theK nearest
neighbors or all points within a fixed distanceε from the point under consideration. The neighborhood
relations are expressed as a weighted graphG over the data points with edges of weightdX(i, j) between
neighboring points.

2.2. Computation of geodesic distances

The length of a path inG is defined as the sum of the link weights along the path. The shortest path
lengthsdij

G between two nodesi andj in the graphG are computed through the Floyd’s algorithm [9]
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that generally scales asO(N 3) or the Dijkstra algorithm [6] that scales asO(N 2log(N)), whereN is
the number of data points.

2.3. Graph embedding through Multi-Dimensional Scaling

Classical Multi-dimensional Scaling (MDS) is now used to compute a graph embedding ink di-
mensional space that closely respects the geodesic distancesd ij

G computed through the dynamic pro-
gramming algorithms. The coordinate vectorsyi ∈ �Y are chosen to minimize the cost function
E = ‖τ(dG) − τ(dY )‖L2 , wheredY is the matrix of output space distances and the norm is the

matrix L2 norm
√∑

i,j (τ(dG) − τ(dY ))2ij , τ = 1
2HSH is an operator that converts distances into

inner products,Hij = δij − (1/N) is the centering matrix andSij = (dij
G)2 is the matrix of squared

geodesic distances . The global minimum of the cost function is computed by setting the output space
coordinatesyi to the topk eigenvectors ofτ(dG). Introducing a unit row vectorP = [111 . . . 1] with N
columns and anN ×N translation matrixQ with constant entriesQij = (ΣN

i=1Σ
N
j=1Sij) , theN ×N

matrix τ(dG) is expressed as

τ(dG) =
1
2

(
S − (ΣN

j=1Sij)
P

N
− P T (ΣN

i=1Sij)
N

+
Q

N2

)
(1)

3. The modified Landmark Isomap method

The Landmark Isomap method was designed to overcome the significant computational burden in-
volved in the Dijkstra algorithm and subsequent eigen-solution of a full symmetric matrix incurred in
global Isomap. The theoretical description of a modified Landmark Isomap scheme used here closely
adheres to the implementation provided by the original authors [20]. In this method, a small random
subsetnL of the total number of data pointsN are designated as landmarks, and the distances of all the
high dimensional points are evaluated only with respect to the landmarks. Thus, the distance matrixd ij

G is
onlyN ×nL as opposed toN ×N in global Isomap. The cost of the Dijkstra algorithm correspondingly
reduces toO(nL ×N × log(N)).

3.1. Computation of low dimensional embedding

Modified MDS is now applied to the rectangular distance matrix to compute a low dimensional
embedding of the landmarks. The low dimensional embedding is obtained by computing the eigenvectors
of the inner product matrixBT

nBn, whereBn = −HN∆Hn/2, HN = δij − (1/N), Hn = δij − (1/nL)
and∆ is a matrix of squared distances between all the samples and the landmarks. Introducing a unit
row vector withnL columns,P ∗ = [11 . . . 1] and anN ×nL translation matrixQ∗ with constant entries
Q∗

ij = (ΣN
i=1Σ

nL
j=1∆ij), theN × nL matrixBn can be expressed as

Bn =
1
2

(
∆ − (ΣnL

j=1∆ij)
P ∗

nL
− P T (ΣN

i=1∆ij)
N

+
Q∗

N × nL

)
(2)

This embedding inl dimensional space is designated as

L =
(√

(λ1)vT
1 ,
√

(λ2)vT
2 , . . . ,

√
(λl)vT

l

)T
, whereλi are the eigenvalues andv designate the eigen-

vectors.
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3.2. Out of sample extensions

If �n is the column-wise mean of∆, a non-landmark point�y can be embedded into thel dimensional
space as

�y = (1/2)L�(�n −�y) (3)

whereL� is the pseudo-inverse transpose ofL and�y is the vector of squared distances between the
candidate point and the landmarks. Thus, the remainingN − nL non-landmark points can be embedded
into thel dimensional space. Finally, a Principal Component Analysis (PCA) based transformation is
applied to the embedded coordinates to realign the data with the coordinate axes.

The embedding computed by Landmark Isomap method is consistent with that computed by classical
MDS at the landmark locations and is an estimate at the non-landmark locations. If the distance matrix
between all the points and the landmarks can be represented exactly by a Euclidean configuration in
Rl, and the landmarks are chosen such that their affine span in that configuration isl dimensional, the
estimate at the non-landmark locations is accurate up to a rotation and translation.

3.3. Comments

Equation (3) provides a useful extension of the low dimensional coordinates [3] to non-landmark
samples akin to mathematical induction. It is not designed to include new samples into the eigen-basis
by incrementally adapting the pre-computed manifold.

A primary objective of this current work is to develop an algorithm that sequentially updates the low
dimensional eigen-space and allows for a degree of adaptation of the manifold to fresh input. Such an
algorithm is vital in the context of real time applications.

The Sequential-Isomap algorithm presented in this paper addresses these issues by explicitly recon-
structing fully orthogonal singular vectors as each additional data point is input, and allows for the
pre-computed embedding to reasonably adapt to new input.

4. Updating the singular value decomposition

The classical or Landmark versions of MDS lead to a symmetric eigenvalue problem that can be solved
easily by traditional batch eigenvalue solvers. In the context of several real-time applications, notably
autonomous systems, it is desirable to have an algorithm that incrementally updates the eigenvectors in
response to sequential observations pertaining to an unknown state.

The problem of SVD updating has received a lot of attention in the linear algebra community over the
last few decades, where the search for a fast and stable SVD updating scheme proved largely elusive,
until the work of Eisenstat and Gu [13].

4.1. Preliminaries

The SVD of a matrixA ∈ Rm×n is defined as

A = UΩV T (4)

U andV are column-wise orthonormal and termed the left and right singular vectors and are identical
for a symmetric matrixA. Ω is a diagonal matrix, whose entries are termed the singular values ofA.
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4.2. Connection to special symmetric eigenvalue problems

There are important relationships between the SVD ofA and eigenvalue problems that may involve
A [11]. Introducing a diagonal matrixΓ = Ω × Ω, the SVD ofATA may be expressed as

ATA = V T ΩUTUΩV = V T ΓV (5)

due to the orthonormality ofU or equivalently

(ATA)V = ΓV (6)

Thus the right singular vectors ofA are identical to the eigenvectors ofATA and the eigenvalues of
ATA are the squared singular values ofA.

In the context of this paper, the right singular vectors of theN × nL matrixBn Eq. (2) are identical to
the eigenvectors of(Bn)TBn that are computed in the Landmark Isomap method.

4.3. SVD updating

In the context of a sequential implementation,A is repeatedly modified through the addition of rows
and columns, and the goal is to be able to compute the singular values and singular vectors of the
augmented version ofA without resorting to the full batch solution. Thus, a tacit assumption that access
to an existing SVD ofA is available is made, and the focus is on the problem of updating this initial
SVD. As the problem of adding a row toA is identical to the problem of adding a column toAT , only
the former problem is considered in this section.

The augmented matrixA′ is written as

A′ =
(

A
aT

)
(7)

whereA′ ∈ R(m+1)×n anda represents the added row. Considering first the casem � n, the left singular
vector matrix and singular values can be partitioned as

U =
(
U1 U2

)
,Ω =

(
D
0

)
(8)

whereU1 ∈ Rm×n , U2 ∈ Rm×(m−n) andD ∈ Rn×n; this merely reflects the fact that there are at most
n non-zero singular values in this case, and the left singular vectors are simply partitioned to show the
correspondence.

It can easily be verified thatA′ can be rewritten as

A′ =
(
U1 0 U2

0 1 0

)D
zT

0


V T (9)

wherez = V Ta represents the projection of the added row onto the basis spanned by the right singular

vectors. If the SVD of the broken arrowhead matrixM =
(
D
zT

)
is given as[Ww]

(
Ω
0

)
QT , where

W ∈ R(n+1)×n, w ∈ R(n+1) andQ ∈ Rn×n, the SVD of the augmented matrixA′ can be written as

A′ =
(
U

′
1 U

′
2

)(Ω
0

)
(V Q)T (10)
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U
′
1 =

(
U1 0
0 1

)
W ∈ R(m+1)×n , U

′
2 =

(
w′
(
U2

0

))
∈ R(m+1)×(m+1−n) and

w′ =
(
U1 0
0 1

)
W .

4.4. Connection to the SVD of the broken arrowhead matrix

The significance of the preceding equations in this subsection is the fact that the singular values
and singular vectors of the augmented matrixA′ can be computed from knowledge of the singular
values and singular vectors of the broken arrowhead matrixM . The computation of the SVD of the
broken arrowhead matrix itself will be detailed in the next subsection, where it is demonstrated that the
computation generally scales asO(n2) wheren is the number of singular values. Thus, for the matrix
Bn Eq. (2), the computation scales asO(n2

L), as the number of singular values equals the number of
chosen landmarks.

Once the SVD of the broken arrowhead matrix is computed, the SVD ofA ′ is computed through the
matrix products; i.e. the right singular vectors are updated asV Q, a computation that generally scales
asO(n3) and which, in the case of a low rank matrix, reduces further toO(r3). Even if the matrix is
not a low rank matrix, a significant contribution of [13] is that the computation could be performed in
O(n2(log2(ε))2), whereε is the machine precision, through novel use of the Fast Multipole Method first
proposed in [5].

5. Discussion

In principle, the incremental SVD methodology could be used in conjunction with any of the eigen-
vector based NLDR algorithms in order to render them sequential; however the storage requirements of
such sequential algorithms grow rapidly asU1, U2 andV that are full unsymmetric matrices in general
need to be stored so as to compute the updated SVD ofA ′. In case of a low rank matrix, the number
of columns of these matrices to be stored equal the rank ofA ′, and hence the memory requirements are
trivially small.

5.1. Computation of SVD of the broken arrowhead matrix

The broken arrowhead matrixM can be represented asM =
(

D
zT

)
whereD = diag(d1, d2, d3 . . . dn) andz = [z1, z2, . . . zn]. Assuming that the SVD ofM is represented
as

M = W

(
Ω
0

)
QT (11)

andΩ = diag(ω1, ω2, . . . ωn), the singular values obey the interlacing property [14]

0 < d1 < ω1 < d2 < ω2 < . . . < ωn < dn+ ‖ z ‖2 (12)

and the secular equation given by

F (ω) = 1 + Σn
i=1

(
z2
i

d2
i − ω2

)
= 0. (13)
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The left singular vectorsw satisfy Eq. (16)

Fr1 =
(
d1z1/(d2

1 − ω2
j ), . . . , dnzn/(d2

n − ω2
j ),−1

)T
(14)

Fr2 =
√

(1 + Σn
i=1(d

2
i z

2
i /(d

2
i − ω2)2) (15)

wj =
Fr1

Fr2
, j = 1 . . . n (16)

wn+1 =
(
d1/z1, . . . dn/zn,−1

)T
/
√

(1 + Σn
i=1(z

2
i /d

2
i )) (17)

while the right singular vectorsq satisfy

qj =

(
z1/(d2

1 − ω2
j ), . . . zn/(d2

n − ω2
n)
)T√

(Σn
i=1(z

2
i /(d

2
i − ω2

j )2))
. (18)

The stable computation of the roots of the secular equation through standard bisection based solvers
so as to ensure accurate singular values and orthonormal singular vectors is further elaborated on in [13].
The key idea is a slight reformulation of the secular equation and the introduction of an appropriate
stopping criterion, so that a valid solution of the singular values that satisfies the interlacing property
results from the numerical scheme.

6. The Sequential-Isomap algorithm

6.1. Overview

The incremental SVD algorithm outlined in Section 4 sequentially computes approximations to the
singular values and singular vectors within machine precision as new rowsa are appended to augment
the original matrixA. Thus, in principle, it is easy to render any NLDR algorithm sequential by applying
the incremental SVD scheme as long as the sequential NLDR scheme can be formulated in terms of
addition of rows and columns.

6.2. Offline computations

Sequential-Isomap assumes that an initial low dimensional embedding of a training set is available in
terms of the initial left singular vectorsU0, the initial singular valuesW0 and the right singular vectors
V0. In the context of the modified Landmark Isomap method, the following computations are performed
offline.

1. A weighted graph over the training samples (Section 2) is computed usingK nearest neighbors.
An N ×K distance matrixD0 comprising of Euclidean distances between each sample and theK
nearest neighbors is used in this implementation.

2. Thefixed squared geodesic distances∆ between all training samples and the landmarks are com-
puted through Dijkstra’s shortest path algorithm.
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3. An initial low dimensional embedding is computed through the SVD of the initial inner product
matrixB0

n.
4. The1×nL row vectorT2 = ΣN

i=1∆ij and scalarT4 = ΣN
i=1Σ

nL
j=1∆ij are saved for use in incremental

computations.

6.3. Online computations

A new data point contributes an additional row toB0
n and hence the incremental SVD scheme could

be used to compute the updated singular values and singular vectors. The key assumption in Sequential-
Isomap is that the new data point does not alter any of the pre-computed geodesic distances between
any existing samples and the landmarks. This assumption is essential for the formulation of a sequential
manifold learning algorithm based on mere addition of rows or columns. The additional rowa that
augmentsB0

n is approximated by the sum of four terms essentially derived from Eq. (2). Introducing
a 1 × nL row vector∆new that represents the squared shortest paths between a new sample and the
landmarks, computed on the basis of the existing weighted graph,a is estimated as

a =
1
2

(
∆new − (ΣnL

j=1∆new)P ∗ − T2 + ∆new

Nt
+

T4 + ΣnL
j=1∆new

NtnL

)
(19)

whereNt is the current number of samples including the training samples.T2 andT4 are subsequently
updated as

T2 = T2 + ∆new (20)

T4 = T4 + ΣnL
j=1∆new

Equation (19) provides an estimate of the new row that augments the inner product matrix. The
reliability of this estimate depends strongly on the accuracy of the approximated geodesic distances. The
study of the reliability ofa for smaller training sets is open to research. In practice, an alternate estimate
for a has been found effective especially for smaller training sets Eq. (21).

a =
1
2

(
∆new − (ΣnL

j=1∆new)P ∗ − T2

N
+

T4

N × nL

)
(21)

The update step Eq. (20) is eliminated if this estimator is chosen.

6.4. Significant steps in Sequential-Isomap

1. An initial low dimensional embedding of the training data is computed offline in terms of the SVD
of B0

n. The distance matrixD0, singular valuesW0 and right singular vectorsV0 are saved for
online use.

2. Every additional sample is treated as a non-landmark sample in this implementation. The Euclidean
distances of this sample from theK nearest neighbors are computed, and subsequently input to
Dijkstra’s algorithm to compute geodesic distances between the new point and the landmarks. All
existing nodes in the weighted graph are used in this computation. The key assumption here is that
the new data point does not alter any of the pre-computed shortest paths.
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3. The additional rowa that augmentsB0
n is computed from the known geodesic distances Eq. (19).

The projection of this rowz onto the space spanned by the right singular vectorsV0 is computed as
V T

0 a. The augmented matrix is referred to asBn hereafter.
4. The SVD of the broken arrowhead matrix(W0 z)T is computed through a bisection based solver

with an appropriate stopping criterion as described in Section 4.
5. The SVD of the augmented matrixBn is now computed according to Eq. (10). The matrix products

in this case do not pose a storage and computational problem as the number of columns inV 0 orU0

is effectivelynL, the number of chosen landmarks.
6. The new sample is appended to the weighted graph so that it may serve as a neighbor for data points

acquired in future.
7. Finally, a PCA like transformation is performed as in the Landmark Isomap method to realign the

embedded coordinates into a global set of axes. The dominant cost in this step is the multiplication
of Bn (Nt ×nL) with the current singular vectorsV (nL ×nL). In a practical implementation, this
step need only be performed periodically in non-critical autonomous missions. This will result in
existing low dimensional estimates marginally lagging the current sample states.

6.5. Possible extension

In this implementation, new samples are always regarded as non-landmark samples. It is also possible to
designate new samples as landmarks, and this would result in the formulation of a sequential algorithm
based on the addition of a row and a column toBn. The incremental SVD procedure developed in
Section 4 must now be applied twice to incorporate the new row and column. It is thus important to
develop robust heuristics to aid landmark selection in a real-time implementation. This remains an open
area of research at this juncture.

6.6. Limitations

The fact that the pre-computed geodesic distances are not allowed to change is crucial to the devel-
opment of an incremental algorithm. The direct consequence of this assumption is that the estimation
of the manifold cannot significantly improve the manifold between the training points. However, the
manifold may be expanded in new directions.

It is also important to realize that the best solution from Sequential-Isomap would coincide with a batch
modified Landmark-Isomap computation using identical algorithmic parameters. The convergence of
the incremental solution to the batch modified Landmark Isomap solution in terms of number of training
points and number of neighbors is studied numerically in the examples that follow. Theoretical research to
provide realistic bounds on the accuracy of the additional rowa Eq. (19) remains open. The convergence
of the modified Landmark Isomap method to the underlying manifold also remains open to theoretical
research. In practice, valuable results have been obtained on realistic data as is evident from the examples
presented in this paper.

6.7. Computational costs and memory requirements

The computational complexity and memory requirements (in double precision words) of each step in
the online execution are tabulated here using notation introduced throughout the paper. The compu-
tational costs are dominated by the shortest path computations as the number of samples added to the
weighted graph increases. The incremental SVD execution is very efficient as the execution costs are
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Table 1
Computational costs and memory requirements of Sequential-Isomap

Step Computational cost Memory requirements Description

2 O(K × Nt × log(Nt)) (Nt × K +Nt × nL) D0, ∆
3 O(n2

L) nL × 1 New rowa
4 O(n2

L) nL W0, z
5 O(n3

L) n2
L V0, Q

7 O(Ntn
2
L) Nt × nL Bn

dependent on the number of chosen landmarks, which is significantly smaller than the number of current
samples. It is to be noted that Step 1 in Sequential-Isomap is performed offline and has a computational
complexityO(KnLNlogN+n2

LN) [7]. Table 1 summarizes the computational complexity and memory
requirements of Sequential-Isomap.

7. Terminology and application overview

7.1. Terminology

The performance of Sequential-Isomap is contrasted with batch and sequential induction methods in
subsequent sections. The terminology used in these sections is summarized here.

1. Batch Isomap implies a full Isomap solution without use of landmarks (Section 2).
2. Batch Landmark Isomap implies a full Landmark Isomap solution that recomputes the weight-

ed graph, applies landmark MDS, extends the embedding to include non-landmark samples and
performs the PCA transformation.

3. Landmark Isomap Induction is similar to Sequential-Isomap except for steps 3–5. These steps are
replaced by the direct application of Eq. (3) to estimate low dimensional estimates for non-landmark
samples.

7.2. Application overview

The following sections numerically assess the validity of the low dimensional representations computed
by Sequential-Isomap. The simplest test presented in the first example (Section 8) tests the ability of the
online algorithm to replicate a known two dimensional manifold. The next example (Section 9) assesses
the ability of the sequential algorithm to replicate known dimensions in a higher dimensional human face
dataset. The subsequent examples apply the methodology to real visual data acquired from autonomous
ground and underwater vehicles, and demonstrate the accuracy and applicability of Sequential-Isomap
representations in real-time autonomous systems. The convergence characteristics of the solution are
studied thoroughly with respect to varying training set sizes, and the computational complexity of the
algorithm is contrasted with respect to the batch computations.

8. The S manifold – A 2 dimensional manifold embedded in 3 dimensions

An analytically generated three dimensional manifold that intrinsically has a two dimensional embed-
ding is depicted in Fig. 2. The goal of any unsupervised learning algorithm, batch or sequential, is to
automatically discover the global coordinates intrinsic to the two dimensional embedding without any
explicit directives on how the data is to be mapped onto the low dimensional space.
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Fig. 2. Analytically generated and randomly sampled S-shaped nonlinear manifold. Left – High dimensional data. Right –
Randomly generated high dimensional samples.
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Fig. 3. Manifold dimensionality estimated by Isomap. (left) An examination of the residual variances indicates the two
dimensional nature of the manifold. Isomap computed two dimensional embedding (right). High dimensional neighborhoods
are preserved in two dimensions.

8.1. Batch Isomap embedding

The picture on the right in Fig. 3 shows a two dimensional embedding computed by batch Isomap
that essentially unwraps the three dimensional manifold. Isomap also allows an estimation of manifold
dimensionality through a plot of the residual variance with respect to the embedding dimensions. Figure 3
clearly shows the two dimensional nature of the raw three dimensional data through the vanishing residual
variances. The sampled manifold consisted of two thousand random data points in all the cases presented.

8.2. Sequentially computed embeddings

Sequential-Isomap was used to compute low dimensional embeddings of the S-curve. The size of the
training set was varied from 200 to 400 randomly selected points. Fifty points were randomly selected
from the training set to serve as landmarks. The remainder of the data points were sequentially input to
Sequential-Isomap.

Figure 4 shows the computed embeddings for various choices of training set sizes (N ) and neigh-
borhoods (K). For small sizes of the initial training set (N = 200), Sequential-Isomap embeddings
for K = 8 are most representative of the batch solution. The solutions computed withN = 400 and
K = 10 − 12 seem optimal in terms of preservation of neighborhoods and geometric structure. The
aspect ratio (1 in 2) of the batch embedding (Fig. 3) is reasonably well preserved in all the cases cited
here.
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Fig. 4. Variation of the geometry of the computed Isomap embedding with varying training set size and number of neighbours.
The quality of the embedding improves with an increasing set size and an optimal number of neighbours.
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Fig. 5. Execution times of Sequential-Isomap and direct application of the Landmark Isomap formula (left). Sequential-Isomap
is marginally more expensive due to the added cost of incremental SVD. Execution time ratios of batch algorithms (Isomap,
Landmark Isomap) and Sequential-Isomap (right). The PCA update step was performed 5 times during the course of this
simulation. The maximum time consumed by this step was 0.9 cpu s. Sequential-Isomap is observed to be increasingly
competitive with growth in the number of samples.

8.3. Computational cost considerations

Figure 5 (left) compares the execution times of Sequential-Isomap and a direct application of Eq. (3).
The addition of incoming samples to the graph structure incurs added costs in Dijkstra’s algorithm in
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Fig. 6. Isomap computed two dimensional embedding of face database with 698 images. The top two degrees of freedom of
the dataset corresponding to the pose of the face are clearly captured in the low dimensional representation. Images on the left
and right halves of the embedding correspond to a leftward and rightward poses of the face respectively. Similarly, images on
the top and bottom halves of the embedding correspond to an upward and downward poses.

both cases. Sequential-Isomap is marginally more expensive due to the added costs in performing online
SVD. The average cpu time consumed for each additional sample in Sequential-Isomap is about 0.02
seconds on a 1.6 GHz Pentium III processor.

Figure 5 (right) compares the execution time ratios of the batch algorithms (Isomap, Landmark Isomap)
and Sequential-Isomap. Approximately 6000 additional samples can be sequentially embedded into the
manifold in the time required to perform a single batch Isomap computation with 2500 samples. The
equivalent cost involved in the computation of a single batch Landmark Isomap embedding with 50
landmarks is comparable to sequentially embedding 900 samples.

9. Visual perception in human face data

High dimensional data often has a perceptually meaningful low dimensional structure that is not
readily apparent in the original form. An example that has been extensively studied in the dimensionality
reduction literature is an unorganized collection of images of a face acquired at various poses (i.e. left-
right and up-down) and illumination conditions (http://isomap.stanford.edu). Isomap has been shown to
reliably recover these dominant dimensions corresponding to pose and illumination in the computed low
dimensional embedding.

Figure 6 shows the two dimensional embedding of 698 face images recovered by Isomap where all
the points corresponding to the right half of the embedding physically correspond to the face posing
right, while those on the left half correspond to the face posing leftwards. Similarly, the lower half of
the embedding organizes the face posing downwards, while the upper half consists of images with an
upward pose.

Figure 7 shows two dimensional embeddings computed by Sequential-Isomap for various choices of
an initial training set, number of nearest neighbors and landmarks. The dominant dimensions of the data
are clearly preserved in both the embeddings, though the aspect ratio is better preserved whenN = 250.
The quality of the solutions obtained with a small number of landmarks is especially encouraging. The
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Fig. 7. Sequential-Isomap embedding of face database. Top (N = 100, K = 16, L = 5) and bottom
(N = 250, K = 5, L = 25) whereN, K, L are the combinations of the training set size, number of nearest neighbors
and landmarks used in the computations. The embedding computed withN = 250 captures the underlying manifold geometry.

number of singular values that are updated online through incremental SVD equals the number of chosen
landmarks; a small set of landmarks ensures lower computational costs.

10. Autonomous ground vehicle (AGV) dataset – Computation of low dimensional visual states

10.1. Introduction

Characterization of natural environments from sensory data plays a vital role in the navigation of
autonomous systems. The utility of Sequential-Isomap in providing low dimensional descriptions of
high dimensional image patches for subsequent use in an autonomous navigation task is investigated
here.

10.2. Batch Landmark Isomap computations

A sample of 1690 high dimensional image patches representing colors and textures of typical groups
in the environment such as sky, trees, bush and grass was selected from a large sequence of images
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Fig. 8. Sample image acquired by the AGV (top) and low dimensional embedding of randomly sampled high dimensional
image patches. Typical colours and textures in the environment are captured in the low dimensional representation. It is easily
observed that darker shaded patches corresponding to the bush are grouped away from the lighter shaded patches corresponding
to the sky.

acquired by an AGV at the Marulan test facility operated by the Australian Centre for Field Robotics.
Texture information was included in the high dimensional input space by convolving each image with a
bank of Gabor wavelets [8] at 2 scales and 2 orientations, resulting in an input space dimensionality of
each11 × 11 image patch of 847. Batch Landmark-Isomap with 45 landmarks was used to compute a
low dimensional embedding of the training data.

Two of the top four dimensions of the computed embedding are shown in Fig. 8. It is readily observed
that image patches corresponding to blue skies, bush and grassy patches are organized into reasonably
distinct clusters. The batch embedding is used as the training set for Sequential-Isomap.

10.3. Sequential-Isomap embedding

In order to qualitatively evaluate Sequential-Isomap, the sample image (Fig. 8), top) was divided into
3380 image patches. Each of the image patches was used as sequential input to Sequential-Isomap.
Two of the top four low dimensional coordinates corresponding to each image patch are displayed in the
bottom row of Fig. 9. A batch Landmark-Isomap embedding was computed including all the points in
the training set and the sample image, and the scaled low dimensional coordinates corresponding only
to points in the sample image are shown in the top row of the same figure.
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Fig. 9. Batch Isomap computed low dimensional states (top ) displayed as grayscale contours on image patches. Objects with
similar visual states are coded identically. The corresponding states are also computed by Sequential-Isomap (bottom). It is
seen that there is good qualitative agreement between the batch and sequentially computed embeddings.

It is apparent from an examination of Fig. 9 that Sequential-Isomap with 1690 training samples
accurately adapts the pre-computed manifold to the new samples obtained from the test image. The
estimates of the top two states from the batch and incremental algorithms are very similar.

10.4. Practical implementation

An efficient implementation on an autonomous vehicle can be achieved by performing the PCA update
asynchronously with respect to the incremental SVD. The frequency of the PCA computation must be
balanced to achieve the conflicting objectives of near real time performance and maintenance of current
sample states. In non-critical exploratory missions, the PCA update could be performed at infrequent
intervals while the robot is stationary. Considering the small computational time of this step relative to
a full batch Landmark Isomap solution (about 20 cpu minutes), efficient practical implementations can
readily be devised.

11. Unmanned underwater vehicle (UUV) dataset – Computation of underlying visual states

In order to evaluate the generality of Sequential-Isomap in applications involving autonomous systems,
data from a second environment was considered. A sample of about 8573 high dimensional points
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Fig. 10. Sample image acquired by the UUV (top) and low dimensional embedding of randomly sampled high dimensional
image patches (bottom). Typical colours and textures in the underwater environment are captured in the low dimensional
representation. The eigenvectors have been interpreted to correspond to the brightness and hue of the image patches.

physically representing colors and textures of typical objects in an underwater environment such as
beach sand and corals was selected from a sequence of images [21] acquired from a camera mounted
onto the UUV Oberon, operated by the Australian Center for Field Robotics.

Texture information that is vital in the characterization of the corals, was included in the high dimen-
sional input space by convolving pixel patches with Gabor wavelets at 2 scales and 2 orientations [8] and
batch Landmark-Isomap was used to compute a low dimensional embedding of the training data. Low
dimensional embeddings are now computed through Sequential-Isomap and Landmark Isomap induction
based on the sample image (Fig. 10, top) exactly as described in Section 8 and 9.

11.1. Sequential-Isomap and Landmark-Isomap induction

The results from Sequential-Isomap and Landmark-Isomap based induction are shown in Fig. 11.
Unlike the texture impoverished environment explored by the AGV, the underwater data is rich in
textures. It is unsurprising to observe that the third state (bottom row of Fig. 11) is correlated to high
frequency textures of the coral colonies in the image.

The results from both approaches are strikingly similar due to the dense sampling of the manifold. The
key difference between them is that Sequential-Isomap computes a low dimensional basis that includes all
the samples that may be further expanded to incorporate new data onto the manifold. Landmark-Isomap
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Fig. 11. Landmark Induction (left column) and Sequential-Isomap (right column) computed low dimensional states displayed
as contours on the image plane. Top row – Low dimensional state corresponds to the brightness of the image patches. Middle
row – Best correlated to the hue of the image patches. Bottom row – High frequency texture of the image patches.

based induction provides useful out-of-sample extensions for new data using afixed basis comprised
only of the training samples.

12. Conclusion

A sequential, unsupervised learning scheme Sequential-Isomap has been presented, that fuses together
developments in incremental singular value decomposition and nonlinear dimensionality reduction. In
principle, the concepts presented here could be used in conjunction with a range of NLDR algorithms to
develop a whole new family of sequential, unsupervised learning algorithms. The particular combination
of a modified Landmark Isomap scheme and incremental SVD presented here is extremely effective due
to the resulting sparsity and thin rank of the SVD.
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The accuracy of the algorithm has been numerically assessed through synthetic and real datasets, and
in all cases, the underlying manifold geometry computed by a batch algorithm is faithfully replicated
online. The convergence characteristics of the method have been numerically studied, and it is observed
that the intrinsic embedding computed by batch Isomap is replicated as the number of training samples
is progressively increased. In the context of real-time systems, a strong case has been made for further
research directed towards applications of Sequential-Isomap.
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