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Bayesian filtering over compressed appearance states

B. Douillard, B. Upcroft, T. Kaupp, F. Ramos, H. Durrant-Whyte

Abstract— This paper presents a framework for performing
real-time recursive estimation of landmarks’ visual appearance.
Imaging data in its original high dimensional space is prob-
abilistically mapped to a compressed low dimensional space
through the definition of likelihood functions. The likelihoods
are subsequently fused with prior information using a Bayesian
update. This process produces a probabilistic estimate of the low
dimensional representation of the landmark visual appearance.
The overall filtering provides information complementary to
the conventional position estimates which is used to enhance
data association.

In addition to robotics observations, the filter integrates hu-
man observations in the appearance estimates. The appearance
tracks as computed by the filter allow landmark classification.
The set of labels involved in the classification task is thought of
as an observation space where human observations are made
by selecting a label.

The low dimensional appearance estimates returned by the
filter allow for low cost communication in low bandwidth
sensor networks. Deployment of the filter in such a network
is demonstrated in an outdoor mapping application involving
a human operator, a ground and an air vehicle.

I. I NTRODUCTION

Target tracking is conventionally thought of as the problem
of estimating the location and velocity of one or more
stationary/moving targets given a motion model and a set
of sensor measurements. Due to imperfect models and
sensor noise, multiple objects may become impossible to
distinguish. A number of schemes exist in the literature
to address these problems [5] [16] [19]. Each of these
methods can be improved with richer information than just
location and velocity. We show that augmenting position with
probabilistic appearance estimates enhances data association.

The development of the proposed filtering framework has
been motivated by the problem of performing data associa-
tion with bearing only observations. As illustrated in Fig.1,
the large uncertainty in bearing only information provided
by a monocular camera does not allow for robust tracking
(bearing only tracking is here implemented as in [26]).
Fig. 1(b) shows two overlapping bearing-only observations
generated by two different landmarks. Data association be-
tween these observations based only on position information
will fail resulting in a single track (Fig. 1(c)). However,
discrimination can still be achieved using richer information
combining position and appearance states. The proposed
filtering scheme provides a mechanism to estimate such
appearance states.

II. RELATED WORK AND CONTRIBUTIONS

Within the robotics community, data association using
visual descriptors in addition to position information has
been addressed in [3] [6] [10] [11] [14] [15] . However, none

of these techniques probabilistically update the perceived
appearance of a feature as more observations are obtained.
This work presents an attempt to process visual cues in a
filtering framework similar to classical position estimation.
One solution to this problem was recently proposed in [18]
but no experimental results were reported. This paper pro-
vides the derivation of a different approach and demonstrates
the algorithm with an outdoor robotics system.

Recursive filtering over visual properties has been demon-
strated in a number of ways. The contribution of this work
lies in the following aspects. (1) Estimates of landmarks’
visual appearance are low dimensional which allows their
efficient communication in low bandwidth networks. The
deployment of the filter in a sensor network comprised of
a human operator, an air and a ground vehicle is presented
in Sec.VI. (2) A closed-form solution of a general likelihood
function is proposed. The derivation of the likelihood model
avoids the Gaussian assumption made in [13] [28]. This
model is general since it is not restricted to the representation
of one object as in [20] but can represent the observation
of any object in the Bayesian update. (3) The filter is
able to process multi-modal inputs. A unique aspect of this
framework is to allow both robotics and human observations
to be fused to estimate a landmark’s visual appearance.
(4) The space in which the estimate is defined is continuous
which avoids an arbitrary discretisation of the state space
as required in [21] [25] [27]. (5) An analytical formula-
tion appropriate for real-time application is presented. This
analytical framework does not involve any of the sampling
processes developed in [7] [8] [9]. Note that depending on the
type of appearance features used, the dimensionality of the
observation space may prevent any sampling methods from
being computationally tractable. (6) The concept of evidence
[1] is interpreted as a dissimilarity measure and used to
perform measurement-to-track association. (7) With respect
to the companion papers [12] [17] [18] [26], the contribution
of this publication is to set the theoretical foundations of
the filtering framework and quantify its behavior through a
mapping system run in an outdoor environment.

III. M ODEL OF THEV ISUAL ENVIRONMENT

This section presents the probabilistic model of the vi-
sual environment from which human and robotic visual
likelihoods can be derived. The model is learnt off-line
from training data. This involves two steps: 1) deterministic
nonlinear dimensionality reduction of visual features, and
2) the learning of a probabilistic model over both the
original high and resultant low dimensional spaces. Note that
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Fig. 1. (a) A ground vehicle equipped with a monocular colour camera circled the two landmarks in the image: a tree and a red car.(b) A bearing only
observation of the tree and of the red car are represented as two conical sets of ellipses. The ground vehicle is represented by a red rectangle and its
trajectory indicated by the red curve. (c) Data associationbased only on positionincorrectly causes the two observations to be fused into a single estimate
shown here as a single set of compact ellipses.

the proposed model is independent of any specific feature
extraction algorithm.

A. Nonlinear Dimensionality Reduction

Most raw visual features exist in a very high dimensional
space and are not readily amenable to interpretation and
communication. For example, in our experiments the features
used are small patches from colour images. Each of these
image patches is represented by a 3D RGB histogram with
93 bins resulting in a dimensionality of 729. To maintain
the tractability of the estimation problem and allow cheap
communication, visual features are compressed using a di-
mensionality reduction technique.

Dimensionality reduction is traditionally performed using
methods such as Principal Component Analysis (PCA) or
its numerous variants. Although they provide theoretically
optimal representations from a data-compression standpoint,
they are unable to provide neighborhood preserving represen-
tations that are crucial to data association. This limitation has
motivated the development of various nonlinear embedding
methodologies [2] [22] [23] [24]. These non-linear dimen-
sionality reduction techniques presume that the data lies on
or in the vicinity of a low-dimensional manifold and attempt
to map the high dimensional data into this low dimensional
manifold. The Isomap algorithm [24] is adopted in this work
because it provides an estimate of the manifold’s intrinsic
dimensionality.

B. The Probabilistic Model

Integration into a Bayesian filtering framework requires
the definition of the likelihoodp(z|x), describing the mea-
surement uncertainty of a statex, given observationsz.
Here, we regard visual observationsz, in the original high-
dimensional space as measurements of compressed appear-
ance statesx belonging to the low-dimensional space gen-
erated by Isomap. The Isomap algorithm and indeed most
nonlinear dimensionality reduction algorithms are inherently
deterministic. To model the probabilistic quantityp(z|x),
the joint distributionp(z,x) is learnt from a sample set
{(zi, xi)}, wherexi has been computed by Isomap.

Learning a joint probabilistic model over two spaces
with different dimensionality has previously been shown by

Ramoset al. [17]. They proposed a model to probabilisti-
cally cluster data in the high and low dimensional spaces
simultaneously. The low dimensional part of this statisti-
cal representation conveniently represents highly nonlinear
manifolds such as the ones generated by Isomap. It has the
capability to model the local covariance structure of the data
in different areas of the manifold. The graphical model of
this probabilistic representation is displayed in Fig. 2(a). It
is parameterized as follows (random variables are written in
bold):

p(z,x) =
∑
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∑

s

p(z|x, s)p(x|s)p(s) (1)

p(z|x, s) =
e{−

1

2
[z−Λsx−µs]

T Ψ−1

s
[z−Λsx−µs]}

(2π)
D

2 |Ψs|
1

2

p(x|s) =
e{−

1

2
[x−νs]

T Σ−1

s
[x−νs]}

(2π)
d

2 |Σs|
1

2

where the termsΨs, µs,Λs,Σs, νs, p(s) are the parameters
to be learnt.D and d indicate the dimensionality of the
high and low dimensional space respectively.Λsνs +µs and
Ψs + ΛsΣ

T
s
ΛT

s
are the means and covariances respectively

of the mixture describing the high dimensional space.νs

andΣs are their counterparts in the low dimensional space.
TheΛs are known as loading matrices locally modelling the
mapping betweenz and x as a linear transformation. The
overall model is a mixture of linear regressions. The variable
s is a hidden variable indexing one of the linear regression
in the mixture,s ∈ {1, . . . , N} whereN is the number of
components of the mixture.N is defineda priori.
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Fig. 2. Graphical models used to represent the visual environment. Circles
indicate continuous variables and squares indicate discrete variables. Shaded
nodes are observed variables while unshaded variables are hidden. (a) The
joint distributionp(z,x, s). (b) Addition of human observationso. (c) DBN
representing the filtering overx.



C. Parameter Learning

The learning scheme is based on a combination of
Maximum Likelihood (ML) and Expectation Maximization
(EM)[4]. The joint modelp(z,x, s) is learnt using a typical
set of observations{zi} and their corresponding compressed
representations{xi} given by Isomap. Some observations
from particular objects are labeled manually. In the ex-
periments, labeled subsets of{zi} included observations
of “trees”, “red cars”, “sheds” and “white objects”. The
parameters of the components describing labeled data in
the high and low dimensional spaces are learnt using ML.
Clusters of unlabeled data points are captured automatically
by applying the EM algorithm.

D. Likelihoods given robotics and human observations
From this model, the likelihoodp(z|x, s) of the statesx

given a robotic observationz, can be derived (derivations
are not detailed in this paper due to space constraints).
It is as a result general and represents any observationz.
Whenz is fixed to a particular observed valuez, the terms
p(z|x, s) become likelihood functions defined by the closed-
form solution:
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Human observation is represented by the variableo in
Fig. 2(b). It is performed by selecting one of the labels
associated through learning to the components of the model.
Formally, an observation submitted by a operator generates
a likelihood function p(o|s). It is encoded as a discrete
probability table and its online evaluation is a simple table
lookup. In the experiments, the table entries were manually
specified. Instances of this type of likelihood are further
described in [12]. Intuitively, a human observation results
in the selection of one of the model’s components which
narrows down the area in which the appearance estimate is
likely to be.

Given the above likelihoodsp(z|x, s) andp(o|s), observa-
tions of the visual environmento andz can be incorporated
into a Bayesian filtering framework which is described in the
following section.

IV. RECURSIVEFILTERING OVER V ISUAL STATES

This section presents the formulation of two types of up-
dates: (1) updates given robotic observations and (2) updates
given human observations. These operations are represented
in the Dynamic Bayesian Network (DBN) displayed Fig.
2(c). A novel way to perform track-to-measurement asso-
ciation is proposed in the second part of the section.

A. Bayesian Update with Robotics Observations

With the assumption of a static visual environment (i.e.
the transitions encoded by the horizontal edges in Fig. 2(c)
are identity), it can be shown that the general recursion is
given byp(x|Zt) ∝

∑N

s=1

∏t

i=0
l(zi|x, s)p(x|s)p(s), where

Zt = {zt, . . . , z1}.

This update has a parallel structure suggesting that re-
cursive estimation of the visual states can be implemented
as a bank ofN filters. In the following equation one line
corresponds to one of the filters performing in parallel:

p(x|Zt) ∝ l(zt|x, s = 1) . . . p(x|s = 1)p(s = 1) +

...

+l(zt|x, s = N) . . . p(x|s = N)p(s = N) (3)

Each filter is initialized with the learnt priorp(x|s)p(s),
which is of Gaussian form. When an observationzt is
performed, thesth filter in the bank is multiplied by the
term l(zt|x, s) which is also of Gaussian form (Eq. 2). Thus
each filter in the bank only involves Gaussian terms and as
a result reduces to a linear Kalman filter.

The probabilistic representation of an observationzt con-
sists of the set of termsl(zt|x, s), s = 1 . . . N (Eq. 2). As a
result a high dimensional observationzt substituted into the
likelihood modell(zt|x, s) is passed onto the filter in com-
pressed format without dimensionality reduction required.

The absence of explicit on-line data compression through
the use of the functionsl(zt|x, s), and the update reducing
to N Kalman filters, results in a filtering scheme which is
computationally efficient and therefore can be adopted for
real-time applications.

The update of the weight of each filter in the bank does
not add significant computations. It is given byp(s|Zt) ∝
p(zt|s)p(s|Zt−1), where the termp(zt|s) can be computed
in closed-form.

The distribution over the weights of the bankp(s|Zt) is
used to classify a track. The classs of a track is given
by arg maxs p(s|Zt). s is associated to a label through the
learning defined in Sec. III-C.

B. Bayesian Update with Human Observations

Under the same assumption of a static visual en-
vironment it can be shown thatp(x|ot, . . . , o0) ∝∑N

s=1

∏t

i=0
l(oi|s)p(x|s)p(s).

The parallel structure mentioned in the previous section
also underlies this update. As a result, robotic and human
observations can be fused using the same filter bank. For
example, the fusion oft − 1 robotics observations and one
human observation obtained at timet lead to the following
sequence of updates:

p(x|ot,Zt−1)

∝ p(ot|s = 1)l(zt−1|xt−1, s = 1) . . . p(x0|s = 1)p(s = 1) +

...

+p(ot|s = N)l(zt−1|xt−1, s = N) . . . p(x0|s = N)p(s = N)

This equation defines a multi-modal filter updating the visual
appearance of a landmark. It also shows that, given the
learnt model of the visual environment, fusion of robotic
and human observations can be achieved in a very similar
manner as fusion of conventional position observations.

C. Measurement-to-track Association

The aim of estimating appearance states of a landmark
is to improve data association accuracy. We now present



a discrimination measure which measurement-to-track as-
sociation can be based on. It is derived from the visual
environment model and allows the ranking of association
hypotheses in the appearance state space. This measure
is referred to as the evidence of an observationzt, with
respect to a track and computed asp(zt|Hi), where Hi

is the hypothesis “observationzt was generated by track
i” [1]. Derivations specific to the model of the visual
environment lead top(zt|Hi) =

∑
s p(zt|s,Hi)p(s|Hi),

where p(s|Hi) is given by the weights of tracki, and
p(z|s,Hi) =

∫
p(z|x, s,Hi)p(x|s,Hi)dx which can be

computed in closed-form.

V. I MPLEMENTATION

The proposed filter was deployed in a mapping system
which updates, in real-time, position and appearance esti-
mates of observed landmarks. This section first describes the
filtering underlying the mapping process and then describes
the implementation of the data association mechanism.

A. Feature representation

A simple template matching algorithm is used to per-
form feature extraction from monocular colour images. The
extracted featuresz, are 3D RGB histogram with93 bins
resulting in a dimensionality of 729. Two probability density
functions (PDFs) represent each extracted feature: one over
position states and one over appearance states. The two state
spaces are assumed statistically independent.

The high dimensional feature vectorz is substituted in
the formulation of the likelihood function defined (Eq. 2)
and fused to prior appearance estimates using the techniques
described in previous sections. The dimensionality of the
appearance state space is set to 3 since the Isomap algorithm
indicates that a reduction to 3 dimensions retains sufficient
information.

The image patch used to compute each feature provides
a bearing only observation of a landmark position. This
information is represented as a Gaussian Mixture Model
(GMM) and used to calculate a location estimate in Cartesian
space. Details of position estimation can be found in [26].

B. Data association

Data association requires validation gating to be performed
in the first instance. Formulating a gate that is computable
in real-time is still an open problem for non-Gaussian filters
[1]. In this system gating prior to measurement-to-track
association is performed by ensuring that the evidence in
each state space is above a pre-defined threshold.

The data association module can then associate a new
observation to the track with maximum evidence. The value
of the evidence takes into account position and visual ob-
servationszp and zv and is defined asp(zp, zv|Hi). Since
the two state spaces are assumed statistically independent
p(zp, zv|Hi) = p(zp|Hi)p(zv|Hi). This implies that the
evidence can be computed as the product of the evidence
in the position spacep(zp|Hi) and in the appearance space
p(zv|Hi). The termp(zp|Hi) is obtained by summing the

weights of the unnormalised GMM resulting from the po-
sition update of tracki with observationzp [1]. The term
p(zv|Hi) is computed as described in Sec. IV-C.

In [27], the probabilistic Bhattacharyya distance is used
for data association. This distance evaluates the similarity
between an incoming likelihood and existing tracks. Its dis-
advantage is that the distances scale differently in the position
and appearance space. As a result, distances computed in the
two spaces must be arbitrarily weighted so that they can be
combined in a decision rule for data association. The use
of evidences does not lead to this problem. The evidences
p(zp|Hi) and p(zv|Hi) are conditional probabilities which
naturally scale between zero and one and can be readily
compared without resorting to a pre-defined scaling.

VI. EXPERIMENTS

A. Position and Visual Estimation Combined

As explained in the introduction data association fails
based on position information only with all observations
fused into a single track (Fig. 1(c)). However, when the
appearance states of the tree and the car are simultaneously
estimated, two different tracks are maintained (Fig. 3(a)).
The labels displayed in Fig. 3(a) correspond to the maximum
weightmaxs p(s|Zt,Hi) of the respective tracks. They show
that the filter associated to each track correctly estimatesthe
landmarks’ class and thus maintains two separate tracks each
including position and appearance states.

The visual environment model learnt for this experiment
is displayed in Figure 3(b). The training set as projected by
Isomap and the low dimensional components defined by their
meanνs and covariance matrixΣs (Eq. 1) are displayed. The
model was learnt as proposed in Sec. III-B. For the major
part, the training set was labeled. Unlabeled data was added
to allow the model to express indecision and stay consistent
in the eventuality of an observation belonging to none of the
labeled categories.

The model’s low dimensional components and five suc-
cessive estimates of the tree’s and the car’s appearance are
displayed in Fig. 3(c). Each estimate is represented as a mean
and a covariance (the first two moments of the posterior). The
two sets of estimates are close of the components labeled
“red car” and “tree trunk” respectively. This shows that
the filter associated to each track correctly identifies the
regions in the state space corresponding to the landmarks’
appearance. The distance that separates these two regions
guarantees visual discrimination and explains why two tracks
are maintained in Fig. 3(a).

This experiment illustrates the use of appearance states as
a way to enhance data association. We now demonstrate in
the context of a mapping application how the filter tracks
the drifts in landmarks’ appearance and allows for accurate
landmark classification over time and in turn for robust data
association.

B. Outdoor mapping

On the right of Fig. 5 is shown an example of map
estimated from observations performed by a human operator,
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Fig. 3. (a) Unlike in Fig. 1, data association using positionand appearance states ensures discrimination between the two tracks. (b) Visual state space (x)
displayed with the low dimensional part of the training set and the model’s low dimensional components. The training set was made up of 12,388 points
belonging to 27 different classes, one class being unlabeled (3960 points). The model contains 27 components. Some correspondences between labels and
components are indicated. Note that the component “tree trunk” is hidden by data points. (c) The low dimensional components of the model (in magenta)
and five successive estimates of the tree’s and the car’s appearance states (in blue). The regions corresponding to the twosets of estimates are magnified
in the top insets. The successive means of each object’s estimates are joined by segments.

Fig. 4. Data is obtained from multiple sources including cameras mounted on an autonomous air vehicle and ground vehicle. Observations are also
submitted to the system by human operators. Each of the different sensor modalities are incorporated into our filtering scheme. Close-ups of the sensor
payloads including monocular colour cameras are shown in the insets.

Fig. 5. RHS: A example of estimated map. Landmarks are represented by position including uncertainty (coloured ellipses) and their labels (most probable
class). Platforms are shown as icons; UAV = air vehicle, GV = ground vehicle, HO = human operator. LHS: An aerial image of the test facility with
arrows indicating correspondences between real landmarks and the probabilistic representation.



a ground and an air vehicle (displayed in Fig. 4). The left
image is a geo-referenced aerial photograph of the testing
area. It is given here as a ground truth reference. A few
correspondences between estimated and true landmarks are
indicated by arrows.

This map was estimated during a 20 min long run.
The ground vehicle was travelling at an average speed of
15km/h, the air vehicle at an average speed of100km/h.
The human operator was walking and used a laptop to enter
observations via an online graphical user interface (GUI).
The position of the different agents was monitored with the
GUI. Their localisation was given by GPS and IMU sensors.
Landmarks’ position and appearance states were estimated
using both monocular colour images provided by the vehicles
and observations submitted by the operator. Details on the
communication protocols between the different agents are
given in [27].

Updates of position and visual states were performed at a
frequency of2Hz (2 images with multiple extracted features
per second). Feature extraction was the most computationally
intensive task requiring 60% of the processing time. The
filter was able to keep up with the frequency of the features
delivery. This shows that the analytical formulation of the
filter is appropriate for real-time applications.

Each observation was embedded in the appearance state
space displayed in Fig. 3(b) through the likelihood functions
defined in Sec. III-D. The low dimensional format of the
likelihoods reduced the communication cost since a set of 3
dimensional means and covariances had to be communicated
instead of 729 dimensional feature vectors and associated
uncertainty information.

Note that the model displayed in Fig. 3(b) was learnt using
imaging data acquired by both the air and the ground vehicle.
This results in a model of the visual environment which
is shared across the two platforms and allows the filter to
consistently fuse the likelihoods sent by both vehicles.

In this shared representation space, human observations
of landmark’s appearance were made by selecting a label
corresponding to one of the components of the learnt model.
Fig. 6 shows a subsection of the map where both human and
robotic observations have been fused. An operator corrected
a label which was wrongly assigned by the ground vehicle.
The operator entered a “tree” observation close to the “white
object” track as shown in Fig. 6(a). The data association
module associated this new observation to the existing track
which resulted in the updated track displayed in Fig. 6(b).
The top of Fig. 6(b) shows how the probability of the
estimated class changed over time (marker colour and size
are proportional to the probability mass). The first three
observations were performed by the ground vehicle. After the
human observation was made, the probability mass shifted
towards the true class. Note that the landmark was miss-
classified by the platform because this landmark was a dead
tree with a white looking trunk. This illustrates how the filter
through its ability to fuse multimodal data, provides a facility
for human robot cooperation. For more details, see [12].

Another example of label correction is shown in Fig. 7.

Fig. 7(a) and Fig. 7(b) show the ground vehicle wrongly
identifying a tree as a “white object” (bottom of the map)
and recovering as more observations are obtained.

The examples presented in Fig. 6 and Fig. 7 illustrate
the role of filtering over appearance states as a recovery
mechanism from spurious measurements. The contribution
of this recovery mechanism to the classification accuracy is
quantified in the next section.

C. Quantitative Analysis

The effectiveness of filtering over appearance states can be
quantified by considering classification accuracy over multi-
ple time steps. Standard classification relies on independent
computations at each time step, ignoring past information.
We show here that incorporation of past information through
the filtering process ultimately increases classification accu-
racy.

Classification at each time step while ignoring the
past information was obtained by computingmaxs p(z|s).
Classification with visual filtering was calculated using
maxs p(s|Zt,Hi) for the filter banki at time stept. Results
are presented in the form of Receiver Operating Characteris-
tic (ROC) curves shown in Fig. 8. Two curves with and with-
out filtering are shown (red and blue curves respectively).
The classes “tree” and “red car” were analysed. The curves
were generated using data obtained from 13 individual runs
of the ground vehicle representing 2.8 hours of logging. 350
tracks were observed multiple times with an average of 6
updates.

Better classification is indicated by a larger Area Under
the Curve (AUC). For the two classes analysed, the AUCs
of the blue curves are smaller than the AUCs of the red
curves. These results show that the inclusion of filtering over
appearance states improved classification.

Tracking drifts in landmarks’ appearance allows for accu-
rate landmark classification over time and in turn contributes
to robust data association. However it has one limitation
coming from the circular dependency which exists between
data association and landmark representation. This circular
dependency can be formulated as follows. Accurate data
association requires a discriminative landmark representation
while a discriminative representation requires data associa-
tion to allow for the fusion of relevant measurements. The
proposed filter generates a discriminative representationby
updating the appearance estimates. Data association is per-
formed using a mechanism that avoids any arbitrary scaling
between the two state spaces. These two improvements how-
ever leave us with the difficulty of defining gating thresholds
a priori (Sec. V-B) which is a heuristic way of dealing
with the circular dependency between data association and
landmark representation.

VII. C ONCLUSION

A multimodal filter designed to track drifts in landmark
appearance has been presented. It has been shown that the
ability to update a landmark appearance estimate contributes



(a) (b)

Fig. 6. Human operator refining a feature entered by a robot: (a) the GMM in green represents a landmark previously observed by a passing ground
vehicle (trajectory in red). Through the interface displayed on the right, the operator contributes to the estimation ofthe feature by submitting a Gaussian
position observation (black) and the label “tree” as a classobservation. Generation of position estimates from human inputs is detailed in [12]. (b) The
filter update results in a corrected label.

(a) (b)

Fig. 7. (a) Aerial image of the environment. The arrows highlight a few of the correspondences with the estimated map of landmarks. (b) Based on
repeated robotic observations, a recovery from misclassification of a tree initially classified as a “white object” is shown.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 D

e
te

c
ti
o

n
 R

a
te

AUC:
static (blue): 0.91
filtering (red): 0.98

random classifier

static

filtering

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 D

e
te

c
ti
o

n
 R

a
te

AUC:
static (blue): 0.93
filtering (red): 0.98

random classifier

static
filtering

(b)

Fig. 8. In red, ROC curves obtained from the distribution given by the
filter after one or more iterations (classification rule:maxs p(s|Zt,Hi)). In
blue, ROC curves obtained from the distribution computed as the normalised
likelihood of the classes (classification rule:maxs p(z|s)). The black line
representing a random classifier is also plotted for comparison. (a) Result
for “tree” versus all other classes. (b) Result for “red car”versus all other
classes.

to a robust data association scheme. To the best of the au-
thors’ knowledge the combination of position and appearance
estimation in a recursive Bayesian filter has not previously
been implemented on a real-time robotics system. Future
work will focus on relaxing the assumption of statistical

independence between the position and the appearance space.
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