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Bayesian filtering over compressed appearance states

B. Douillard, B. Upcroft, T. Kaupp, F. Ramos, H. Durrant-Vii@y

Abstract— This paper presents a framework for performing  of these techniques probabilistically update the perceive
real-time recursive estimation of landmarks’ visual appearance. appearance of a feature as more observations are obtained.
Imaging data in its original high dimensional space is prob- This work presents an attempt to process visual cues in a

abilistically mapped to a compressed low dimensional space ... . s . " . .
through the definition of likelihood functions. The likelihoods  1It€ring framework similar to classical position estinaati

are subsequently fused with prior information using a Bayesian One solution to this problem was recently proposed in [18]
update. This process produces a probabilistic estimate of the low but no experimental results were reported. This paper pro-

dimensional representation of the landmark visual appearance. vides the derivation of a different approach and demoresrat

The overall filtering provides information complementary to 14 algorithm with an outdoor robotics system
the conventional position estimates which is used to enhance . _ . . '
data association. Recursive filtering over visual properties has been demon-

In addition to robotics observations, the filter integrates hu-  Strated in a number of ways. The contribution of this work
man observations in the appearance estimates. The appearance lies in the following aspects. (1) Estimates of landmarks’
The set of labels involved in the classification task is thought of . © . .
as an observation space where human observations are made efficient communlca_tlon _|n low bandwidth networks_. The
by selecting a label. deployment of the f||ter_|n a sensor network compnsed of

The low dimensional appearance estimates returned by the @ human operator, an air and a ground vehicle is presented
filter allow for low cost communication in low bandwidth  in Sec.VI. (2) A closed-form solution of a general likelittbo
fser(;sor nettwc;rlgs._ Deployrtndent of the filter ml'sut(':h a netlwork function is proposed. The derivation of the likelihood miode
is demonstrated in an outdoor mapping application involving ; ; ; . .

a human operator, a ground and an air vehicle. av0|ds_the Gauss_lan fis_sumptlon _made in [13] [28.]' This
model is general since it is not restricted to the represienta
I. INTRODUCTION of one object as in [20] but can represent the observation

Target tracking is conventionally thought of as the problerRf any object in the Bayesian update. (3) The filter is
of estimating the location and velocity of one or moreable to process multi-modal inputs. A unique aspect of this
stationary/moving targets given a motion model and a sé&@mework is to allow both robotics and human observations
of sensor measurements. Due to imperfect models at@ be fused to estimate a landmark’s visual appearance.
sensor noise, mu|tip|e objects may become impossib|e (6-) The space in which the estimate is defined is continuous
distinguish. A number of schemes exist in the literatur&hich avoids an arbitrary discretisation of the state space
to address these problems [5] [16] [19]. Each of thesds required in [21] [25] [27]. (5) An analytical formula-
methods can be improved with richer information than justion appropriate for real-time application is presentebisT
location and velocity. We show that augmenting positiorhwit analytical framework does not involve any of the sampling
probabilistic appearance estimates enhances data aisucia Processes developed in [7] [8] [9]. Note that depending en th

The development of the proposed filtering framework hat/pe of appearance features used, the dimensionality of the
been motivated by the problem of performing data associ@bservation space may prevent any sampling methods from
tion with bearing only observations. As illustrated in Fig. being computationally tractable. (6) The concept of evaden
the large uncertainty in bearing only information providedl] is interpreted as a dissimilarity measure and used to
by a monocular camera does not allow for robust trackingerform measurement-to-track association. (7) With retspe
(bearing only tracking is here implemented as in [26])t0 the companion papers [12] [17] [18] [26], the contributio
Fig. 1(b) shows two overlapping bearing-only observationgf this publication is to set the theoretical foundations of
generated by two different landmarks. Data association b#he filtering framework and quantify its behavior through a
tween these observations based only on position informatignapping system run in an outdoor environment.
will fail resulting in a single track (Fig. 1(c)). However,
discrimination can still be achieved using richer inforioat I1l. M ODEL OF THEVISUAL ENVIRONMENT
combining position and appearance states. The proposed
filtering scheme provides a mechanism to estimate such This section presents the probabilistic model of the vi-

appearance states. sual environment from which human and robotic visual
likelihoods can be derived. The model is learnt off-line
Il. RELATED WORK AND CONTRIBUTIONS from training data. This involves two steps: 1) determinist

Within the robotics community, data association usingionlinear dimensionality reduction of visual featuresd an
visual descriptors in addition to position information ha) the learning of a probabilistic model over both the
been addressed in [3] [6] [10] [11] [14] [15] . However, noneoriginal high and resultant low dimensional spaces. Naa¢ th
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Fig. 1. (a) A ground vehicle equipped with a monocular colcamera circled the two landmarks in the image: a tree and a regbjak bearing only
observation of the tree and of the red car are representediaasdnical sets of ellipses. The ground vehicle is represkbly a red rectangle and its
trajectory indicated by the red curve. (c) Data associdbased only on positiomcorrectly causes the two observations to be fused into a single estimate
shown here as a single set of compact ellipses.

the proposed model is independent of any specific featuRamoset al. [17]. They proposed a model to probabilisti-

extraction algorithm. cally cluster data in the high and low dimensional spaces
] ) o ) simultaneously. The low dimensional part of this statisti-
A. Nonlinear Dimensionality Reduction cal representation conveniently represents highly nealin

Most raw visual features exist in a very high dimensionajtanifolds such as the ones generated by Isomap. It has the
: : . capability to model the local covariance structure of thiada
space and are not readily amenable to interpretation aﬂadifferent areas of the manifold. The graphical model of
communication. For example, In our experlments the feBtUI’ths probabi"stic representa‘[ion is d|sp|ayed in F|g)2(a
used are small patches from colour images. Each of theseparameterized as follows (random variables are written i

image patches is represented by a 3D RGB histogram wilpld):
9% bins resulting in a dimensionality of 729. To maintain

the tractability of the estimation problem and allow cheap
communication, visual features are compressed using a di-

p(z,%) =Y p(z,x,5) =Y _p(zx,s)p(x|s)p(s) (1)
el 32— Asx—ps] W ! [a—Asx—pis]}

mensionality reduction technique. p(z|x,s) = = -

Dimensionality reduction is traditionally performed ugin (2m) = [Ws|2
methods such as Principal Component Analysis (PCA) or el 3wl "5 evsl}
its numerous variants. Although they provide theoretjcall p(xls) = (2m) 8|52

optimal representations from a data-compression stangpoi

they are unable to provide neighborhood preserving repifesewhere the termsl, Hss AS} s, Vs’p(s)_ are the pgrameters
tations that are crucial to data association. This linoratias [© Pe learnt.D and d indicate the dimensionality of the
motivated the development of various nonlinear embeddinfg9h and IjqudlmensmnaI space respectivellyvs + ;s and
methodologies [2] [22] [23] [24]. These non-linear dimen-*s T AsXg A are the means and covariances respectively

sionality reduction techniques presume that the data ties §f the mixture describing the high dimensional spaeg.

or in the vicinity of a low-dimensional manifold and attemptand s are their counterpgrts n th.e low dlmenS|onaI. Space.
to map the high dimensional data into this low dimensional '€ As are known as loading matrices locally modelling the
manifold. The Isomap algorithm [24] is adopted in this work"@PPIng betweer and x as a linear transformation. The

because it provides an estimate of the manifold's intrinsi@Verall model is a mixture of linear regressions. The vaeiab
dimensionality. s is a hidden variable indexing one of the linear regression

in the mixture,s € {1,..., N} where N is the number of

B. The Probabilistic Model components of the mixtureV is defineda priori.

Integration into a Bayesian filtering framework requires
the definition of the likelihoodh(z|x), describing the mea-
surement uncertainty of a state, given observationg.
Here, we regard visual observatiomasin the original high-
dimensional space as measurements of compressed appear-
ance statex belonging to the low-dimensional space gen-
erated by Isomap. The Isomap algorithm and indeed most (a) (b)

nonlinear dimensionality reduction algorithms are inhdge _ , . .
N s . Fig. 2. Graphical models used to represent the visual envieon. Circles
deterministic. To model the probabilistic quantifz|x),  ingicate continuous variables and squares indicate désueeiables. Shaded
the joint distributionp(z,x) is learnt from a sample set nodes are observed variables while unshaded variablesidsterh (a) The
{(Zi,ﬂfi)}, wherez; has been computed by Isomap. joint distri_butionp(_z,x_, s). (b) Addition of human observations (c) DBN
Learning a joint probabilistic model over two spacegePresenting the filtering over.
with different dimensionality has previously been shown by




C. Parameter Learning This update has a parallel structure suggesting that re-

: : o rsive estimation of the visual states can be implemented
The learning scheme is based on a combination (gsj a bank ofN filters. In the following equation one line

Maximum Likelihood (ML) and Expectation Maximization corresponds to one of the filters performing in parallel:
(EM)[4]. The joint modelp(z, x, s) is learnt using a typical

set of observation$z;} and their corresponding compressed p(x|Ze) o U(zlx,s =1)...p(xls = Dp(s = 1) +
representationgz;} given by Isomap. Some observations -
from particular objects are labeled manually. In the ex-
periments, labeled subsets ¢f;} included observations
of “trees”, “red cars”, “sheds” and “white objects”. The Each filter is initialized with the learnt priop(x|s)p(s),
parameters of the components describing labeled data which is of Gaussian form. When an observation is

the high and low dimensional spaces are learnt using Miperformed, thes?” filter in the bank is multiplied by the
Clusters of unlabeled data points are captured automigticaterm(z;|x, s) which is also of Gaussian form (Eg. 2). Thus
by applying the EM algorithm. each filter in the bank only involves Gaussian terms and as
a result reduces to a linear Kalman filter.

+l(z¢|x,s = N)...p(x|s = N)p(s=N) (3)

D. Likelihoods given robotics and human observations . : .

. . The probabilistic representation of an observatiprton-
From this model, the likelihoog(z|x, s) of the states ists of th t of t — 1. N (Eq. 2) A

given a robotic observation, can be derived (derivations SIStS Of the set of termizx, s), s =1... N (Eq. 2). As a

are not detailed in this paper due to space constraint§gsult a high dimensional observatiensubstituted into the

It is as a result general and represents any observationlikelihood modell(z;|x, s) is passed onto the filter in com-

Whenz is fixed to a particular observed value the terms  pressed format without dimensionality reduction required

p(z|x, s) become likelihood functions defined by the closed- The apsence of explicit on-line data compression through

form solution: the use of the functionz:|x, s), and the update reducing
to N Kalman filters, results in a filtering scheme which is

Iz = z|x, 8) = asel"2DxmelT O beomsl)

Cs = (ATUTA) ™ my = CAAT U (20 — o) computationally efficient and therefore can be adopted for
A=t =mT e mat (=) TO L (2o — o))} real-time applications.
as = CEEETARE (2) The update of the weight of each filter in the bank does

not add significant computations. It is given pys|Z;) «

Human observation is represented by the variablin ~ P(%:|5)p(s|Z¢-1), where the ternp(z;|s) can be computed
Fig. 2(b). It is performed by selecting one of the labeldn closed-form. _ _
associated through learning to the components of the model.The distribution over the weights of the bapks|Z,) is
Formally, an observation submitted by a operator generaté§ed to classify a track. The classof a track is given
a likelihood functionp(ols). It is encoded as a discrete by arg max, p(s|Z,). s is associated to a label through the
probability table and its online evaluation is a simple ¢éabll€@mning defined in Sec. IlI-C.

lookup. In the experiments, the table entries were manually Bayesian Update with Human Observations

specified. Instances of this type of likelihood are further _ . .
described in [12]. Intuitively, a human observation result Under the same assumption of a static visual en-
yironment it can be shown thap(x|o,...,00)

in the selection of one of the model's components whicll” ;"' =,
1 Lz Uoils)p(x]s)p(s).

narrows down the area in which the appearance estimateg-:v;.sr: . . . .
likely to be. he parallel structure mentioned in the previous section

) o also underlies this update. As a result, robotic and human
Given the above likelihoods(z|x, s) andp(ols), observa- observations can be fused using the same filter bank. For
tions of the visual environment andz can be incorporated example, the fusion of — 1 robotics observations and one

into a Bayesian filtering framework which is described in thétuman observation obtained at timéead to the following
following section. sequence of updates:

IV. RECURSIVEFILTERING OVER VISUAL STATES p(x[ot, Ze-1)

This section presents the formulation of two types of up- ~ p(orls = Difze—afxi—1,8 = 1) p(xols = 1p(s = 1) +
dates: (1) updates given robotic observations and (2) epdat
given human qbservatiqns. These operations_are reprds_ente +p(osls = N)l(zi—1|x¢—1,5 = N) ... p(x0ls = N)p(s = N)
in the Dynamic Bayesian Network (DBN) displayed Fig.
2(c). A novel way to perform track-to-measurement assoThiS equation defines a multi-modal filter updating the Visua

ciation is proposed in the second part of the section. appearance of a landmark. It also shows that, given the
learnt model of the visual environment, fusion of robotic

A. Bayesian Update with Robotics Observations and human observations can be achieved in a very similar
With the assumption of a static visual environmen¢.( manner as fusion of conventional position observations.

the transitions encoded by the horizontal edges in Fig. 2(c o

are identity), it can be shown that the general recursion fs- Measurement-to-track Association

given byp(x|Z;) x Ziv:l [Ti— U(z|x, s)p(x|s)p(s), where The aim of estimating appearance states of a landmark

Z,=A{2z,...,21}. is to improve data association accuracy. We now present



a discrimination measure which measurement-to-track agreights of the unnormalised GMM resulting from the po-
sociation can be based on. It is derived from the visuaition update of track with observationz, [1]. The term
environment model and allows the ranking of associatiop(z,|H;) is computed as described in Sec. IV-C.

hypotheses in the appearance state space. This measurm [27], the probabilistic Bhattacharyya distance is used
is referred to as the evidence of an observatipnwith  for data association. This distance evaluates the sityilari
respect to a track and computed p&:|H;), where H; between an incoming likelihood and existing tracks. Its dis

is the hypothesis “observation, was generated by track advantage is that the distances scale differently in thiipos

1" [1]. Derivations specific to the model of the visualand appearance space. As a result, distances computed in the

environment lead top(z:|H;) = > . p(zls,Hi)p(s|H;), two spaces must be arbitrarily weighted so that they can be
where p(s|H;) is given by the weights of track, and combined in a decision rule for data association. The use
p(z|s,H;) = [p(z|x,s, H;)p(x|s, H;)dx which can be of evidences does not lead to this problem. The evidences
computed in closed-form. p(zp|H;) and p(z,|H;) are conditional probabilities which

naturally scale between zero and one and can be readily
compared without resorting to a pre-defined scaling.

The proposed filter was deployed in a mapping system
which updates, in real-time, position and appearance esti-
mates of observed landmarks. This section first descrilees th. Position and Visual Estimation Combined
filtering underlying the mapping process and then describesAs explained in the introduction data association fails
the implementation of the data association mechanism. based on position information only with all observations
fused into a single track (Fig. 1(c)). However, when the
appearance states of the tree and the car are simultaneously

A simple template matching algorithm is used to perestimated, two different tracks are maintained (Fig. 3(a))
form feature extraction from monocular colour images. Thehe labels displayed in Fig. 3(a) correspond to the maximum
extracted features, are 3D RGB histogram wit9* bins  weightmax, p(s|Z;, H;) of the respective tracks. They show
resulting in a dimensionality of 729. Two probability detysi that the filter associated to each track correctly estimtes
functions (PDFs) represent each extracted feature: one ovgndmarks’ class and thus maintains two separate tracks eac
position states and one over appearance states. The two statluding position and appearance states.
spaces are assumed statistically independent. The visual environment model learnt for this experiment

The high dimensional feature vecteris substituted in s displayed in Figure 3(b). The training set as projected by
the formulation of the likelihood function defined (EQ. 2)isomap and the low dimensional components defined by their
and fused to prior appearance estimates using the teclsniqugeany, and covariance matriX, (Eq. 1) are displayed. The
described in previous sections. The dimensionality of thgiodel was learnt as proposed in Sec. IlI-B. For the major
appearance state space is set to 3 since the Isomap algorithart, the training set was labeled. Unlabeled data was added
indicates that a reduction to 3 dimensions retains sufficiefo allow the model to express indecision and stay consistent
information. in the eventuality of an observation belonging to none of the

The image patch used to compute each feature providesmeled categories.

a bearing only observation of a landmark position. This The model's low dimensional components and five suc-
information is represented as a Gaussian Mixture Modelessive estimates of the tree’s and the car's appearance are
(GMM) and used to calculate a location estimate in Cartesiaflsplayed in Fig. 3(c). Each estimate is represented as a mea
space. Details of position estimation can be found in [26].and a covariance (the first two moments of the posterior). The
two sets of estimates are close of the components labeled
“red car” and “tree trunk” respectively. This shows that

Data association requires validation gating to be performehe filter associated to each track correctly identifies the
in the first instance. Formulating a gate that is computablegions in the state space corresponding to the landmarks’
in real-time is still an open problem for non-Gaussian fiterappearance. The distance that separates these two regions
[1]. In this system gating prior to measurement-to-traclguarantees visual discrimination and explains why twoksac
association is performed by ensuring that the evidence ite maintained in Fig. 3(a).
each state space is above a pre-defined threshold. This experiment illustrates the use of appearance states as

The data association module can then associate a newvay to enhance data association. We now demonstrate in
observation to the track with maximum evidence. The valughe context of a mapping application how the filter tracks
of the evidence takes into account position and visual obhe drifts in landmarks’ appearance and allows for accurate

servationsz,, andz, and is defined ag(z,,z,|H;). Since |andmark classification over time and in turn for robust data
the two state spaces are assumed statistically independggtociation.

p(zp,20|Hi) = p(zp|Hi)p(zo|H;). This implies that the .

evidence can be computed as the product of the evidenBe Outdoor mapping

in the position space(z,|H;) and in the appearance space On the right of Fig. 5 is shown an example of map
p(zy|H;). The termp(z,|H;) is obtained by summing the estimated from observations performed by a human operator,

V. IMPLEMENTATION

VI. EXPERIMENTS

A. Feature representation

B. Data association



Car's visual Tree's visu
states estimates | states estimate:

..-Red tar component |

@) (b) ©

Fig. 3. (a) Unlike in Fig. 1, data association using position appearance states ensures discrimination betweendheatks. (b) Visual state space)(
displayed with the low dimensional part of the training sed #ime model’s low dimensional components. The training set wadern@ of 12,388 points
belonging to 27 different classes, one class being unldi@@60 points). The model contains 27 components. Some cordspces between labels and
components are indicated. Note that the component “tree tisrtkidden by data points. (c) The low dimensional componehth® model (in magenta)
and five successive estimates of the tree’s and the car's @ppeastates (in blue). The regions corresponding to theset® of estimates are magnified
in the top insets. The successive means of each object’s éssiraee joined by segments.

Fig. 4. Data is obtained from multiple sources including cameanounted on an autonomous air vehicle and ground vehicleer@itons are also
submitted to the system by human operators. Each of the diffeensor modalities are incorporated into our filtering seheClose-ups of the sensor
payloads including monocular colour cameras are shown inrthets.

Fig. 5. RHS: A example of estimated map. Landmarks are represbgtposition including uncertainty (coloured ellipsesyldheir labels (most probable
class). Platforms are shown as icons; UAV = air vehicle, GV sugd vehicle, HO = human operator. LHS: An aerial image of tts¢ f&cility with
arrows indicating correspondences between real landmaxkshe probabilistic representation.



a ground and an air vehicle (displayed in Fig. 4). The leffig. 7(a) and Fig. 7(b) show the ground vehicle wrongly

image is a geo-referenced aerial photograph of the testimdentifying a tree as a “white object” (bottom of the map)

area. It is given here as a ground truth reference. A feand recovering as more observations are obtained.

correspondences between estimated and true landmarks arghe examples presented in Fig. 6 and Fig. 7 illustrate

indicated by arrows. the role of filtering over appearance states as a recovery
This map was estimated during a 20 min long runmechanism from spurious measurements. The contribution

The ground vehicle was travelling at an average speed of this recovery mechanism to the classification accuracy is

15km/h, the air vehicle at an average speed106km/h. quantified in the next section.

The human operator was walking and used a laptop to enter

observations via an online graphical user interface (GUIC. Quantitative Analysis

-(I;TJeI Ffl?hs |t_|o|n Ofl.t he_dlfferent ggen;s Véfsmorgtﬁ\;?jj with the The effectiveness of filtering over appearance states can be
- Their localisation was given by an SENSOrSy jantified by considering classification accuracy over mult

o ; u
Lapdn;)a;l:]s posmoln antlj appearance st%tez l\)Netrr? esi'??éo time steps. Standard classification relies on indepgnde
using both monocular colour images provided by the venhic mputations at each time step, ignoring past information.

and observations submitted by the operator. Details on ﬂWe show here that incorporation of past information through

commu hication protocols between the different agents atfie filtering process ultimately increases classificatiocua
given in [27]. racy
Updates of positign and vi;ual sta?es were performed at AClassification at each time step while ignoring the
frequency of2H z (2 images Wlth multiple extracted featgres ast information was obtained by computingux, p(z|s).
per second). Feature extraction was the most computalion lassification with visual filtering was calculated using

: . g 0 ; :
intensive task requiring 60% of the processing time. Threnaxsp(dzt’m) for the filter banki at time stept. Results

f||te_r was aple to keep up with the frgquency of the featuregre presented in the form of Receiver Operating Charaeteris
delivery. This shows that the analytical formulation of thetiC (ROC) curves shown in Fig. 8. Two curves with and with-

filter is appropriate for real-time applications. o .
, ) out filtering are shown (red and blue curves respectively).
Each observation was embedded in the appearance st:r\ﬁe g ( P Y)

. L L e classes “tree” and “red car” were analysed. The curves
space dl_splayed in Fig. 3(b) throu_gh the_ likelihood furetio were generated using data obtained from 13 individual runs
defined in Sec. llI-D. The low dimensional format of the

- o ) the ground vehicle representing 2.8 hours of logging. 350
I|I_<eI|hoqu reduced the comm.unlcanon cost since a set_ oft acks were observed multiple times with an average of 6
dimensional means and covariances had to be communica Bdg

instead of 729 dimensional feature vectors and associate ates.
L . Better classification is indicated by a larger Area Under
uncertainty information.

Note that the model displayed in Fig. 3(b) was learnt usinthe Curve (AUC). For the two classes analysed, the AUCS

. : . . . gf the blue curves are smaller than the AUCs of the red
imaging data acquired by both the air and the ground vehicle. . : L

. , . . . curves. These results show that the inclusion of filteringrov
This results in a model of the visual environment which

. ) al
is shared across the two platforms and allows the filter t0

consistently fuse the likelihoods sent by both vehicles. . h ; .
) . . rate landmark classification over time and in turn contebut
In this shared representation space, human observatigns o : L
; : o, robust data association. However it has one limitation
of landmark's appearance were made by selecting a IabeAmin from the circular dependency which exists between
corresponding to one of the components of the learnt mode]; Y P y

Fig. 6 shows a subsection of the map where both human a| ata association and landmark representation. This aircul

robotic observations have been fused. An operator codect epen_de_ncy can be fo_rmL!IaFed as follows. Accura_te data
. . . association requires a discriminative landmark reprediemt
a label which was wrongly assigned by the ground vehicle.

g ; ... .While a discriminative representation requires data aasoc
The operator entered a “tree” observation close to the ‘&vhi ion 1o allow for the fusion of relevant measurements. The
object” track as shown in Fig. 6(a). The data associatio :

module associated this new observation to the existing(trag rcap;(z;ed t::lete; geenaer;ar;tgz Zsﬂﬁzr;;'ng;z ;esgrfézg?g}.?: or
which resulted in the updated track displayed in Fig. 6(b P 9 pp ’ P

The top of Fig. 6(b) shows how the probability of the ormed using a mechanism that avoids any arbitrary scaling

. . .between the two state spaces. These two improvements how-
estimated class changed over time (marker colour and sizée ; o - .
ever leave us with the difficulty of defining gating threstwld

are proportional to the probability mass). The first three oriori (Sec. V-B) which is a heuristic way of dealing

observations were performed by the ground vehicle. After th\(jlv'th the circular dependency between data association and
human observation was made, the probability mass shift(?d Pe y
Sqndmark representation.

ppearance states improved classification.
Tracking drifts in landmarks’ appearance allows for accu-

towards the true class. Note that the landmark was mis

classified by the platform because this landmark was a dead

tree with a white looking trunk. This illustrates how thediit

through its ability to fuse multimodal data, provides a liaici A multimodal filter designed to track drifts in landmark

for human robot cooperation. For more details, see [12]. appearance has been presented. It has been shown that the
Another example of label correction is shown in Fig. 7ability to update a landmark appearance estimate congsbut

VIl. CONCLUSION
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Fig. 6. Human operator refining a feature entered by a robptth@a GMM in green represents a landmark previously obseryed passing ground
vehicle (trajectory in red). Through the interface disgidyon the right, the operator contributes to the estimatioth@ffeature by submitting a Gaussian
position observation (black) and the label “tree” as a clatsservation. Generation of position estimates from humanotins detailed in [12]. (b) The
filter update results in a corrected label.

(b)

Fig. 7. (a) Aerial image of the environment. The arrows hidftlig few of the correspondences with the estimated map of lakdmér) Based on
repeated robotic observations, a recovery from misclaasiic of a tree initially classified as a “white object” is sito

independence between the position and the appearance space
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