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15.1 Introduction 

Diffusion is the process that leads to the mixing of substances as a 

result of spontaneous and random thermal motion of individual 

atoms and molecules. It was first detected by the English botanist 

Robert Brown in 1827, and the phenomenon became known as 

‘Brownian motion’. More specifically, the motion observed by 

Brown was translational diffusion – thermal motion resulting in 

random variations of the position of a molecule. This type of motion 

was given a correct theoretical interpretation in 1905 by Albert 

Einstein, who derived the relationship between temperature, the 

viscosity of the medium, the size of the diffusing molecule, and its 

diffusion coefficient (1). It is translational diffusion that is indirectly 

observed in MR diffusion-tensor imaging (DTI). The relationship 

obtained by Einstein provides the physical basis for using 

translational diffusion to probe the microscopic environment 

surrounding the molecule.  

In living systems translational diffusion is vital for the transport of 

water and metabolites both into and around cells. In the presence of 

a concentration gradient, diffusion results in the mixing of 

substances: The molecules of a compound on average tend to move 

from areas of high concentration into areas of low concentration, 

resulting in a net transport of the compound in the direction of the 

gradient. A classic example of this is the spontaneous mixing of a 

dyestuff into a stationary solvent.  



 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 15.1 Diffusion in the presence of a concentration gradient 
C(x, t), gives rise to a net flux or flow of particles J(x, t) from high to 
low concentration.  

 

Diffusive mass transport can serve as the basis for the 

measurement of molecular diffusion: a concentration gradient is 

artificially created, and its equilibration with time observed. This 

method of measuring diffusion is not always physically relevant 

because a concentration gradient is neither required for diffusion nor 

always present. The majority of DTI applications are based on the 

diffusion of water, whose concentration is essentially uniform in 

extracellular and intracellular microenvironments of living 

organisms. Diffusion of molecules of the same substance in the 

absence of a concentration gradient is known as ‘self-diffusion’. It is 

self-diffusion that is observed in DTI. Self-diffusion can be 

measured by the technique of Pulsed Field Gradient Nuclear 

Magnetic Resonance (PFG-NMR), which is exquisitely sensitive to 

the microstructural environment of nuclear spins. (Other examples 

of applications of magnetic resonance to tissues can be seen in 



 

 
 

Chapters 5, 9 and 10.) In recent years, PFG-NMR has been 

increasingly combined with Magnetic Resonance Imaging (MRI) to 

study diffusion of water protons in biological tissues for diagnosis of 

stroke and multiple sclerosis, for white matter fibre tracking in the 

brain, muscle fibre tracking and other applications.  

While no concentration gradient is necessary for DTI, the notion 

of a concentration gradient is instructive for understanding how DTI 

works. In an isotropic medium such as bulk water, the process of 

diffusion is itself isotropic and can be described by a scalar diffusion 

coefficient D. If we were to “label” a subset of molecules, the flux of 

the labelled molecules would be governed by Fick’s first law of 

diffusion:  

 

   ( , ) ( , ) C C Ct D C t D
x y z

⎛ ⎞∂ ∂ ∂= − ≡ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
J r r i j k∇    (15.1) 

 
Here, C(r, t) is the spatial concentration profile of the labelled 

molecules; D is the diffusion coefficient; and J is the flux of 

particles, defined as the amount of substance that flows through a 

unit area per unit time. The meaning of Eq. (15.1) is that in isotropic 

media the flux occurs strictly in the direction of the concentration 

gradient. Combining Eq. (15.1) with the conservation of mass and 

the assumption that D is independent of concentration yields Fick’s 

second law of diffusion or the diffusion equation: 
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Diffusion in biological tissues is substantially different from 

isotropic diffusion. Tissues are intrinsically heterogeneous: there are 

barriers to free diffusion of water molecules arising from the presence 

of macromolecules, organelles, cell membranes and larger scale 

structures. As a result, diffusion of water molecules in many tissues is 

both restricted and anisotropic.  

Restricted diffusion results in measurements of the diffusion 

coefficient giving results that are dependent on the time-scale of the 

diffusion interval Δ over which the measurement is performed. This is 

known as an ‘apparent diffusion coefficient’ (ADC). Besides Δ, the 

ADC is dependent on the nature and the length scale of the 

obstructions and is generally smaller than the self-diffusion 

coefficient of bulk water (D0 = 2.3⋅10−9 m2 s−1 at 25 oC). For example, 

the ADC of water confined between parallel, semi-permeable barriers 

approximately equals D0 at Δ << d2/D0, where d is the separation 

between the barriers, but decreases to D0/(1+1/P) at Δ >> d2/D0 

(where P is the permeability of the barriers) (2).  

Anisotropic diffusion means that the diffusing molecules encounter 

less restriction in some directions than others. Diffusion can be 

anisotropic when the tissue possesses some form of global alignment. 

Two well-known examples of anisotropic tissues are the white matter 

of the brain and the heart muscle. In muscles, the global alignment 

arises from the elongated form of the muscle cells forming muscle 

fibres. In white matter, the anisotropy arises from the fact that nerve 

fibre tracts follow specific pathways. In both these cases, the cellular 



 

 
 

structures preferentially restrict the diffusion of water in the direction 

perpendicular to the fibres. Diffusion is also anisotropic in the two 

tissues that are the focus of this Chapter: articular cartilage (AC) and 

the eye lens. In AC, the anisotropic restrictions to diffusion are 

imposed by the aligned collagen fibres that form the 

biomacromolecular “scaffold” of the tissue. In the crystalline eye lens, 

the restrictions are imposed by the fibre cells.  

To take account of anisotropic diffusion, a common approach is to 

re-write the diffusion equation in terms of a diffusion tensor: 

 
               ( , ) ( , )t C t= − ⋅J r D r∇            (15.3) 
 
where the diffusion tensor D is represented by a symmetric and real 3 

x 3 matrix:  
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xz yz zz

D D D
D D D
D D D
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In the anisotropic case, Fick's second law becomes:  

 

xx xy xz

xy yy yz

xz yz zz

D D D x
C C D D D y C
t x y z

D D D z

⎛ ⎞ ∂ ∂⎛ ⎞
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D∇ ∇  (15.5) 

 
 

Note that while the diagonal elements of the diffusion tensor scale 



 

 
 

concentration gradients and fluxes that are in the same direction, the 

off-diagonal elements couple fluxes and concentration gradients in 

orthogonal directions. This is because in the anisotropic case the 

distribution of diffusional displacements of molecules tends to follow 

the geometry of the restricting barriers. This is the physical basis for 

using DTI to measure the microscopic morphology of the tissue. In 

Sections 15.2.4 and 15.4, we discuss applications of DTI to the eye 

lens and articular cartilage, respectively, as examples.  

A convenient way of representing the diffusion tensor is the 

diffusion ellipsoid, which is illustrated in Fig. 15.2. The shape of the 

ellipsoid represents the directional asymmetry of the average 

displacements of the diffusing molecules. The directions of the 

principal axes of the ellipsoid characterise the orientation of the 

diffusion tensor, which in turn represents the spatial anisotropy of the 

restricting barriers imposed by the tissue.  

  

 
Figure 15.2 Diffusion ellipsoid as a visual representation of the 

diffusion tensor. The straight lines radiating from the centre of the 
ellipsoid illustrate two possible choices of the diffusion sampling 
directions, as discussed in Section 15.2.2.  



 

 
 

In the isotropic case, the diffusion tensor is a diagonal matrix:  

 

                

0 0
0 0
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D
D

D
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⎝ ⎠

D               (15.6) 

 
where D is the isotropic diffusion coefficient. In this case, Eq. (15.5) 

reverts to Eq. (15.2), and the ellipsoid in Fig. 15.2 becomes a sphere.  

15.2 Acquisition of diffusion-tensor images  

15.2.1 Fundamentals of Diffusion Tensor Imaging (DTI) 
Diffusion-tensor (DT) images can be obtained using Nuclear 

Magnetic Resonance (NMR). NMR measures the frequency of 

precession of nuclear spins such as that of the proton (1H), which in a 

magnetic field B0, is given by the Larmor equation:  

                    0B0ω = γ                (15.7) 
 

The key to achieving spatial resolution in MRI is the application of 

time dependent magnetic field gradients that are superimposed on the 

(ideally uniform) static magnetic field B0. In practice the gradients are 

applied via a set of dedicated 3-axis gradient coils, each of which is 

capable of applying a gradient in one of the orthogonal directions (x, 

y, and z). Thus in the presence of a magnetic field gradient g,  

             , ,z z zB B B
x y z

⎛ ⎞∂ ∂ ∂= ⎜ ⎟∂ ∂ ∂⎝ ⎠
g           (15.8) 

 



 

 
 

the magnetic field strength and hence the precession frequency 

become position-dependent.  The strength of the magnetic field 

experienced by a spin at position r is given by:  

 
                  0B B= ⋅+ g r              (15.9) 

 

The corresponding Larmor precession frequency is changed by the 

contribution from the gradient: 

 

             0
( )( ) ( )B
t

∂ φω = = γ + ⋅
∂

rr g r         (15.10) 

 
 
 

Figure 15.3 The effect of a magnetic field gradient on precession 
of spins. A constant magnetic field gradient g (illustrated by the blue 
ramp) applied in some arbitrary direction changes the magnetic field 
at position r from B0 to a new value B = B0 + g⋅r. The gradient 
perturbs the precession of the spins, giving rise to an additional 
position-dependent phase φ′, which may be positive or negative 
depending on whether the magnetic field produced by the gradient 
coils strengthens or weakens the static magnetic field B0.  



 

 
 

The precession frequency ω is the rate of change of the phase, φ, 

of a spin – i.e., its precession angle in the transverse plane. 

Therefore, the time-dependent phase φ is the integral of the 

precession frequency over time. In MRI we switch gradients on and 

off in different directions to provide spatial resolution, so the 

gradients are time dependent and the phase of a spin is given by:  

        0
0 0

( , ) ( , ) ( )
t t

t t dt B t t dt′ ′ ′ ′φ = ω = γ + γ ⋅∫ ∫r r g r      (15.11) 

 
We observe the phase relative to the reference frequency given by 

Eq. (15.7). For example if the gradient is applied in the x direction in 

the form of a rectangular pulse of amplitude gx and duration δ the 

additional phase produced by the gradients is  

        
0

( , ) ( ) 2x x xt g t x dt g x k x
δ

′ ′ ′φ = γ = γ δ = π∫r      (15.12) 

 
where the “spatial frequency” kx = γδgx/2π is also known as the “k 

value”. It plays an important role in the description of spatial 

encoding in MRI and can be thought of as the frequency of spatial 

harmonic functions used to encode the image.  

In MRI to achieve spatial resolution in the plane of the selected 

slice (x, y) we apply gradients in both x and y directions sequentially.  

The NMR signal is then sampled for a range of values of the 

corresponding spatial frequencies kx and ky.  

For one of these gradients (gx say) this is achieved by keeping the 

amplitude fixed and incrementing the time t at which the signal is 



 

 
 

recorded (the process called 'frequency encoding').  

In the case of the orthogonal gradient (gy) the amplitude of the 

gradient is stepped through an appropriate series of values. For this 

gradient the appropriate spatial frequency can be written: 

           
0

( ) / 2y y yk g t dt g
δ

′ ′= γ = γ δ π∫           (15.13) 

 
The MR image is then generated from the resulting two-

dimensional data set S(kx, ky) by Fourier transformation: 

 
        

2 ( )( , ) ( , ) x yi k x k y
x y x yS x y S k k e dk dk− π += ∫∫       (15.14) 

 
The Fourier transform relationship between an MR image and the 

raw NMR data is analogous to that between an object and its 

diffraction pattern.  

15.2.2 The Pulsed Field Gradient Spin Echo (PFGSE) Method  
Consider the effect of a gradient pair consisting of two 

consecutive gradient pulses of opposite sign shown in Fig. 15.4 (or 

alternatively two pulses of the same sign separated by the 180o RF 

pulse in a ‘spin echo’ sequence).  

It is easy to show that spins moving with velocity v acquire a net 

phase shift (relative to stationary spins) that is independent of their 

starting location and given by:  

                 ( )φ = − γ ⋅ δ Δv g v            (15.15) 
 
where δ  is the duration of each gradient in the pair and Δ  is the se- 



 

 
 

 
Figure 15.4 Gradient pulse pairs used for diffusion attenuation. 

The first gradient sensitises the magnetisation of the sample to 
diffusional displacement by winding a magnetisation helix. The 
second gradient rewinds the helix and thus enables the measurement 
of the diffusion-attenuated signal. The two gradients must have the 
same amplitude if they are accompanied by the refocusing RF π 
pulse; otherwise their amplitudes must be opposite.  

 

paration of the gradients. Random motion of the spins gives rise to a 

phase dispersion and attenuation of the spin echo NMR signal.  

Stejskal and Tanner (3) showed in the 1960's that, for a spin echo 

sequence this additional attenuation takes the form:  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15.5 A pulsed field gradient spin echo (PGSE) sequence 

showing the effects of diffusive attenuation on spin echo amplitude. 



 

 
 

            
2

2/ (
0( , ) TE T D gS g S e e

2 2− − γ δ Δ−δ/3)Δ =        (15.16) 
 

The first term is the normal echo attenuation due to transverse 

(spin-spin) relaxation. By stepping out the echo time TE we can 

measure T2.  

The second term is the diffusion term.  By incrementing the 

amplitude of the magnetic field gradient pulses (g), we can measure 

the self-diffusion coefficient D.  

For a fixed echo time TE we write:  

 
             2/

0 0
TE TbD bDS S e S e e−− −′= =          (15.17) 

where  

               2b g2 2 δ⎛ ⎞= γ δ Δ −⎜ ⎟3⎝ ⎠
            (15.18) 

 
The apparent diffusion coefficient (ADC) is then given by:  

 

              
0

ln SADC b
S

⎛ ⎞
= − ⎜ ⎟′⎝ ⎠

            (15.19) 

 
For the case of anisotropic diffusion described by a diffusion tensor 

D, the expression for the echo attenuation in a PFG spin echo 

experiment becomes:  

 
             (

0( , )S g S e
2 2−γ ⋅ ⋅ δ Δ−δ/3)′Δ = g D g           (15.20) 

 
where g = (gx, gy, gz) is the gradient vector, and the scalar product 



 

 
 

g⋅D⋅g is defined analogously to Eq. (15.5).  

Overall, if diffusion is anisotropic, the echo attenuation will have an 

orientation dependence with respect to the measuring gradient g. 

Gradients along the x, y and z directions sample respectively the 

diagonal elements Dxx, Dyy and Dzz of the diffusion tensor. In order to 

sample the off-diagonal elements we must apply gradients in oblique 

directions – ie combinations of gx and gy or gy and gz etc. Because the 

diffusion tensor is symmetric, there are just 6 independent elements.  

To fully determine the diffusion tensor therefore requires a minimum 

of 7 separate measurements – for example:  

 

  

0 0 0 0
1 1 10 , 0 , , 0 , , 0 ,
2 2 20 0 0 0
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (15.21) 

 
This choice of diffusion gradient directions is illustrated in Fig. 

15.2a. We shall refer to a data set measured with this set of gradients 

as the minimal diffusion-tensor dataset. As seen below, this is 

neither the only nor the best choice of DTI gradient directions. Other 

gradient combinations exist that achieve optimal signal-to-noise 

ratio (S/N) in the resulting diffusion tensor images and/or optimal 

gradient amplifier efficiency (see Sec. 15.2.5). The first 

measurement with all gradients off is required to determine S0′.  

15.2.3 Diffusion Imaging Sequences 
Diffusion gradients can readily be incorporated in a conventional 

spin echo MRI sequence as follows:  



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15.6 Spin echo diffusion imaging pulse sequence. “RF” 

denotes the RF pulses and acquisition. Gradient pulses: S, slice 
selection; P, encoding in the Phase direction; R, encoding in the Read 
direction; D, diffusion gradients.   

 

The sequence is repeated for the appropriate different combinations 

of gradients gx, gy and gz to yield a set of 7 different diffusion 

weighted images. These are then used to calculate the elements of the 

diffusion tensor, pixel by pixel, to yield 6 images representing the 

three diagonal elements and 3 off-diagonal elements of the diffusion 

tensor. (Because of the symmetry of the diffusion tensor the off-

diagonal elements are duplicated in the 3 x 3 diffusion tensor image). 

Once obtained the diffusion tensor must be diagonalised to obtain the 

eigenvalues and eigenvectors. For more details see e.g. Basser and 

Jones (4). 



 

 
 

For a given DTI imaging sequence and available MRI hardware, 

the effects of T2 relaxation can be minimised by making more 

efficient use of available gradient power to maximise b values and 

reduce the minimum echo time TE. For example by ensuring that 

gradients are applied simultaneously along two axes at the maximum 

amplitude for each individual axis, the resultant gradient amplitude 

is increased by a factor of 2 , while by employing all three basic 

gradients in an icosahedral  arrangement it is possible to increase the 

maximum amplitude by Fibonacci’s golden ratio: ( )1 5 / 2+  [see 

e.g. reference (5) and references therein]. This choice of diffusion 

gradient directions is illustrated in Fig. 15.2b.  

For clinical applications of DTI, patient motion can be a serious 

problem because even relatively small bulk motions can obscure the 

effects of water diffusion on the NMR signal. In such applications it 

is common to employ spin echo single shot echo planar imaging 

(SS-EPI) sequences that incorporate diffusion weighting in order to 

acquire an entire DWI data set in a fraction of a second, (albeit at 

somewhat reduced spatial resolution when compared with more 

conventional spin echo imaging sequences). Such SS-EPI sequences 

also have the added advantage of a relatively high signal to noise 

ratio (SNR) per unit of scanning time, allowing a complete DTI data 

set to be acquired in 1-2 minutes. Further improvemens in 

acquisition time and/or SNR can be achieved by combining such 

sequences with parallel imaging techniques and/or partial Fourier 

encoding of k-space (see e.g. (6) and references therein).  



 

 
 

15.2.4 Example: Anisotropic Diffusion of Water in the Eye Lens 
We have used the PFGSE method to measure the components of 

the diffusion tensor for water (H2O) in human eye lenses (7).  In this 

case we were measuring diffusion on a timescale of  ~20ms 

corresponding to diffusion lengths 2 10Dt mμ= ≅l with D = 

2.3⋅10−9 m2 s−1 for bulk water at 20 oC and t = 20 ms. This is 

comparable to the cell dimensions. Since the cells are fibre–like in 

shape (ie long and thin) with diameter ~8 μm, we might expect to 

observe diffusion anisotropy on this timescale.  

Note that four of the off-diagonal elements in the (undiagonalised) 

diffusion tensor are almost zero. This implies that in this example 

diagonalisation (see below) involves a simple rotation of axes about 

the normal to the image plane. 

If we assume cylindrical symmetry for the cell fibres within a voxel 

then ε = 0 and in the principal axes frame we can describe the 

diffusion in terms of a 2 x 2 tensor:  

 

                  
//

0
0
D

D
⊥⎛ ⎞′ ≡ ⎜ ⎟

⎝ ⎠
D              (15.22) 

 
What is more if we choose the image plane to correspond to the 

centre of symmetry of the lens, we only require one angle θ to 

describe the orientation of the principal axis of the diffusion tensor 

with respect to the gradients gx and gz say. Consequently we only 

require four images to calculate D//, D⊥ and θ, corresponding to gra- 



 

 
 

 

 
Figure 15.7. Diffusion tensor images of human eye lenses in vitro 

from a 29 year old donor (left column) and an 86 year old donor (right 
column) (7). Top row images are of the raw (undiagonalised) 
diffusion tensor; those in the bottom row are after diagonalisation. 

 

dients of 0, gx, gz and 1 ( )
2 x zg g+ .  

The next problem is how to display the data, since even in this case 

of cylindrical symmetry and a 2 x 2 diffusion tensor, we have 3 

parameters to display for each pixel! The method we have developed 

using MATLAB is to display for each pixel a pair of orthogonal lines 

whose lengths are proportional to D// and D⊥ respectively, with the 

direction of the larger component defining the angle θ viz:  



 

 
 

 
Figure 15.8 2D diffusion tensor images of a human eye lens from a 

29 year old donor: a) axes of the principal components D// and D⊥ of 
the diagonalised diffusion tensor with respect to the directions of the 
diffusion gradients; b) quiver plot showing both principal components 
on the same scale; c) and d) plots of D// and D⊥ respectively.  

 

More generally, if the diffusion tensor does not display cylindrical 

symmetry, there are 6 parameters to define per pixel (three 

eigenvalues and three Euler angles defining the directions of the 

eigenvectors relative to the laboratory frame). In such cases it may be 

necessary to map the principal eigenvalues, the orientations of the 

eigenvectors, the fractional anistropy and the mean eigenvalues (see 

below) as separate diffusion maps or images in order to visualise the 

full diffusion tensor.  

15.2.5 Data Acquisition 
In situations where time is limited by the need to minimise motion 

artefacts or to achieve adequate patient throughput, it may be practical 



 

 
 

only to acquire data for the minimum number of diffusion gradient 

combinations required to define the diffusion tensor. In other cases it 

may be necessary to employ signal averaging in order to reduce 

‘sorting bias’ (see below) and/or to acquire data for additional 

gradient directions to improve precision in measuring the eigenvalues 

and eigenvectors of the diffusion tensor and derived parameters such 

as the fractional anisotropy (FA). Even for the case where the number 

of gradient directions is restricted to the minimum value (6), 

significant improvements in precision of DTI-derived parameters can 

be achieved by appropriate choice of those directions (8).  

Several authors have investigated optimum strategies for measuring 

diffusion parameters in anisotropic systems using MRI (4,5,8-13). 

Jones et al. (9) derived expressions for the optimum diffusion 

weighting (b values) and the optimum ratio of the number of signal 

acquisitions acquired with high diffusion weighting (NH) to the 

number (NL) with low or minimum diffusion weighting, for which b ~ 

0. (Note that for an imaging sequence b = 0 is generally not strictly 

achievable due to the influence of the imaging gradients which 

produce some diffusive attenuation of the signal.) If the effects of 

transverse relaxation (T2) are ignored they found b = 1.09×3/Tr(D) 

and NH = 11.3⋅NL, where Tr(D)=Dxx+Dyy+Dzz is the trace of the 

diffusion tensor and b here refers to the difference in diffusion 

weighting between high and low values (assuming the latter is non-

zero). This result applies provided that the diffusion is not too 

anisotropic (so that diffusive attenuation is similar in all directions). It 

compares with the situation of minimum overall imaging time in 



 

 
 

which each of the 7 combinations of gradient magnitude and direction 

is applied only once, for which clearly NH = 6NL and according to 

Jones et al. (9) the optimum b = 1.05⋅3/Tr(D). However these results 

must be modified to take account of the effects of T2 relaxation, which 

results in additional signal attenuation since it is necessary to operate 

with a finite echo time TE in order to allow sufficient time to apply 

the gradients. For example, in the case of white matter in the human 

brain, for which T2 ~ 80 ms, Jones et al. (9) find that it is necessary to 

reduce both the b value and the ratio NH/NL to ~77% of the asymptotic 

(long T2) values quoted above.  

Chang et al. (14) used a first order perturbation method to derive 

analytical expressions for estimating the variance of diffusion 

eigenvalues and eigenvectors as well as DTI derived quantities such 

as the trace and fractional anisotropy of the diffusion tensor, for a 

given experimental design and over a useful range of signal to noise 

ratios. They also validated their results using Monte Carlo 

simulations. 

A number of authors have compared the merits of applying 

diffusion gradients in more than the minimum six directions. Some 

reports (10,12) have suggested there may be no advantage in using 

more than the minimum number of sampling directions provided that 

the selected orientations point to the vertices of an icosahedron (11). 

However a more recent Monte Carlo analysis (5) supports earlier 

suggestions (13,15) that ~20-30 unique and evenly distributed 

sampling directions are required for robust estimation of mean 



 

 
 

diffusivity, fractional anisotropy (FA) and diffusion tensor orientation. 

Batchelor et al. (11) conclude that ‘the recommended choice of 

(gradient) directions for a DT-MRI experiment is … the icosohedral 

set of directions with the highest number of directions achievable in 

the available time.’ 

The use of multiple sets of magnetic field gradient directions is of 

particular importance for applications involving fibre tracking in the 

brain. Fibre tracking or ‘Tractography’ is used to infer axonal 

connectivity in the white matter of the brain (16-19). It relies on the 

fact that the myelin sheaths surrounding neuronal fibres in the white 

matter restrict water diffusion perpendicular to the direction of the 

fibre bundles, while diffusion parallel to the nerve fibres is relatively 

unrestricted. Consequently the eigenvectors corresponding to the 

largest eigenvalues reflect the (average) fibre direction within a voxel. 

By analysing the directions of the principal eigenvectors in adjacent 

voxels, it is possible to trace the fibre tracts and infer connectivity 

between different regions of the brain. The situation becomes more 

complicated if two or more fibre bundles with significantly different 

directions intersect or cross within a voxel due to partial volume 

effects. (Typical voxel dimensions in DTI ~ 1-3 mm are much larger 

than the individual white matter tracts ~ 1- 10μm). Behrens et al. (20) 

estimate that a third of white matter voxels in the human brain fall 

into this category. In such cases the use of a single diffusion tensor 

will yield a principal diffusion eigenvector that represents a weighted 

average of the individual fibre directions and as such will not 

correspond to the direction of any of the individual fibre bundles. This 



 

 
 

problem can be at least partially alleviated by acquiring data for 

multiple gradient directions using high angular resolution diffusion 

imaging (HARDI) and employing spherical tomographic inversion 

methods (21) or constrained spherical deconvolution (CSD) 

techniques (22) to model the resulting DWI data in terms of a set of 

spherical harmonics rather than a single diffusion tensor. High angular 

resolution diffusion imaging (HARDI) techniques employ stronger 

diffusion weighting gradients (b-values ≥ 3000 s/mm2) compared with 

those ~ 1000 s/mm2 more routinely employed in clinical DTI. 

Recently Tournier et al. (23) using such methods have shown in a 

DWI phantom that it is possible to resolve two fibre orientations with 

a crossing angle as small as 30o. 

15.3 Digital processing of Diffusion-Tensor images   

The raw data set obtained from a DTI measurement described in 

Section 15.2 contains one or more zero-gradient images and six or 

more diffusion-weighted images corresponding to distinct diffusion 

directions. In order to render this data in a form amenable to 

interpretation, the following processing steps are usually performed:  

(I) For each voxel in the image, the six independent components 

of the diffusion tensor (DT) are calculated. The tensor obtained in 

this step is the so-called laboratory-frame DT: it is linked to 

laboratory-based coordinate axes, which may be defined as the 

directions of the hardware X, Y, Z gradient coils or the Read, Phase 

and Slice directions of the image.  



 

 
 

(II) The laboratory-frame diffusion tensor can then be diagonalised. 

The diagonalisation procedure yields:  

 (i) the principal diffusivities or eigenvalues D1, D2 and D3 of 

the diffusion tensor;  

 (ii) the orientation of the principal axes or eigenvectors of the 

DT with respect to the laboratory frame.  

This represents the DT in the ‘sample’ frame linked to the physical 

alignment order in the tissue. The relationship between the laboratory-

frame and the diagonalised DT is illustrated in Fig. 15.9 and discussed 

in detail later in this Section.  

Steps (I) and (II) can be regarded as the primary DTI processing. 

These steps are common to all DTI processing and carried out 

irrespective of the tissue imaged.  

 

 
Figure 15.9  Diagonalisation of the diffusion tensor involves 

finding the rotation of the coordinate frame that aligns the 
coordinate axes with the principal axes of the ellipsoid.  

 



 

 
 

 (III) In “secondary” processing, the diffusion-tensor image obtained 

in step (II) is represented as a voxel-by-voxel map of one or more of 

the following parameters:  

 direction of the principal eigenvector;  

 angle between the principal eigenvector and a specified axis;  

 principal eigenvalue (maximum diffusivity);  

 mean eigenvalue (mean diffusivity);  

 fractional anisotropy;  

 the non-axial anisotropy parameters of the DT.  

The user must decide what DT parameters best enable 

visualisation of the image acquired.  

(IV) In “tertiary” processing the information from individual 

voxels is translated into “global” characteristics describing the 

image as a whole. An example of such analysis is the nerve fibre 

tracking used in DTI of the brain or the spinal cord. The voxels of 

the image are grouped into tracts such that the principal eigenvectors 

of the voxels within a tract form continuous “flow lines” 

representing a large bundle of axons.  

Unlike the primary DTI processing, the secondary and tertiary 

processing are organ- or tissue-dependent. The choice of the 

processing approaches and the DT metrics is determined by the 

morphology of the tissue and the information sought about the 

tissue. In avascular tissues, the objective is to characterise the 

overall alignment order in the tissue rather than identify individual 

fibres. (The latter is not possible because of the huge number of 



 

 
 

fibres within a single voxel). Examples of secondary processing of 

DT images of cartilage will be presented in Section 15.4.  

In the following, we provide an overview of the basic principles 

and the mathematics underlying DT image processing. The 

processing techniques are described without reference to a specific 

platform and are generally applicable.  

15.3.1 Primary DTI processing: Calculation of the laboratory-
frame diffusion tensor  

In Section 15.2, the signal intensity was represented as a function 

of the diffusion gradient as shown in Eq. (15.20). This representation 

provides an intuitive and visual explanation of the diffusive 

atteniuation of the signal in DT images. In practice, it is more 

convenient to base DTI processing on the so-called B matrix. 

Equation (15.20) can be rewritten as follows (24):  

 

            
3 3

1 10

( )ln :ij ij
i j

S b D
S = =

⎡ ⎤
= − ≡ −⎢ ⎥

⎣ ⎦
∑∑g b D      (15.23) 

 
where the indices i, j take the values of x, y or z. The B matrix, b, is 

a 3 x 3 real symmetric matrix. In the spin-echo experiment, its 

values are given by  

 
             ( )2 / 3ij i jb g g 2= γ δ Δ −δ           (15.24) 
 
where gi, gj are the components of the diffusion gradient vector g. 

The B matrix is an extension of the quantity b introduced in Eq. 

(15.18) to multiple gradient directions.  



 

 
 

There are two main advantages to using the B matrix rather than 

the gradient vectors for processing of DT images. First, the 

functional form of the signal attenuation is dependent on the DTI 

pulse sequence used. Equation (15.20) applies to the basic spin-echo 

pulse-sequence with rectangular diffusion gradients. The attenuation 

expression is different if a different pulse sequence or non-

rectangular diffusion gradients are used (25). Calculation of the 

attenuation factor can be difficult and time-consuming for the 

general pulse sequence (26). Fortunately, the attenuation equation is 

amenable to algorithmic, software-based calculation. When the 

attenuation factor is kept in the simple and general form given by 

Eq. (15.23), any pulse sequence-specific factors can be incorporated 

into the B matrix as part of the algorithm. The software of most 

modern MRI spectrometers is capable of automatic calculation of 

the B matrix for any pulse sequence installed on the spectrometer, 

eliminating the need for the operator to perform this time-consuming 

calculation manually.  

The second advantage of using the B matrix is that it facilitates 

accounting for contribution to the diffusive attenuation due to the 

imaging gradients. This source usually leads to much smaller 

attenuation than the diffusion gradients. However, it can be 

important when an accurate diffusion tensor is sought or when 

imaging at high spatial resolution. As with diffusion-gradient 

attenuation factors, the spectrometer software can automatically 

build all the pulse sequence-specific corrections to the diffusion 

attenuation factor into the B matrix. Once the B matrix for each 



 

 
 

diffusion gradient is known, the calculation of the diffusion tensor 

can be performed in a way that is independent of the measurement 

method. Automatic calculation of the B matrix means that DTI 

processing is greatly simplified from the operator’s point of view.  

Equation (15.23) yields the signal attenuation for a known B 

matrix and a known diffusion tensor. In DTI measurements, where 

the diffusion tensor is not known a priori, the inverse problem must 

be solved: the diffusion tensor needs to be determined from a set of 

NG ≥ 7 measurements of the signal intensity. In this inverse problem, 

the inputs are NG distinct 3 x 3 B matrices (one B matrix for each 

diffusion gradient vector) and the corresponding NG measured signal 

values. The diffusion tensor is the output. In diffusion tensor 

imaging, this problem is solved for each voxel in the image, yielding 

a separate diffusion tensor for each voxel (see Fig. 15.10).  

In practice, two typical scenarios are encountered:  

(1) The diffusion gradient directions correspond to the “pure” 

elements of the laboratory-frame DT: Dxx, Dxy,..., as shown in 

Eq. (15.21) and Fig. 15.2a.   

In this scenario, the diagonal elements of the laboratory-frame 

diffusion tensor are simply the diffusivities along the respective 

gradient directions:  
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b S

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
          (15.25) 

 
The off-diagonal elements are given by (27):  



 

 
 

 
 

 

 

 

 

 

 

 

 

 
Figure 15.10  Schematic illustration of a DTI dataset. Each voxel 

in the image is characterised by a unique diffusion tensor: three 
eigenvalues (the principal diffusivities) and three mutually 
perpendicular eigenvectors. In this illustration, the lenghts of the 
eigenvectors are proportional to the corresponding eigenvalues.  
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Equations (15.25) and (15.26) are applicable only in the special case 

when the gradient directions are given by Eq. (15.21). This special 

case is very instructive for beginners because it visually and simply 

illustrates the meaning of the diagonal and the off-diagonal elements 

of the diffusion tensor.  



 

 
 

 (2) The second scenario is a data set containing more than the 

minimal number of diffusion gradient directions, as illustrated in 

Fig. 15.2b.  

In this case, the signal corresponding to each direction depends on a 

combination of several (potentially all) elements of the diffusion 

tensor. The diffusion tensor is determined using least-squares fitting 

of Eq. (15.23) to all the measured signal values simultaneously:  

i) Create a vector of length NG containing the signal values from 

the NG measurements: s = (S1 ... SNG).  

ii) For each n = 1...NG, calculate yn = −ln(Sn);  

iii) Set up the linearised least-squares fit equation: 
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Because the matrix D in Eq. (15.27) is symmetric (Dij ≡ Dji), the 

LSF involves 7 parameters: 6 independent elements of the 

symmetric DT and the 7th is the amplitude of the non-attenuated 

signal.  

iv) Find the set of Dij that minimises the sum of the squared 

differences between sn and yn. This can be done using the standard 

linear LSF procedure (28) or mathematical software packages such 

as Mathematica or Matlab. The elements Dij comprise the 

reconstructed laboratory-frame diffusion tensor.  



 

 
 

The LSF-based approach of scenario (2) is generally applicable: it 

can be used with an arbitrary pattern of the gradient directions 

(including the optimal-sampling patterns discussed in Sec. 15.2) as 

well as the minimal 6+1 dataset. The zero-gradient measurement S0 

is crucially important in both scenarios. However, in the LSF-based 

approach the zero-gradient measurements do not have a special 

status: the least-squares fitting procedure treats them on par with 

diffusion-attenuated points. Nevertheless, the importance of the 

zero-gradient measurements can be recognised by assigning a 

greater LSF weight to them than to diffusion-attenuated 

measurements.  

As discussed earlier, one advantage of the LSF-based approach is 

that it allows the diffusive attenuation due to imaging gradients to be 

accounted for easily. Its other advantage is that, when redundant 

measurements are available (i.e., when more than the minimal set of 

6+1 measurements was made), it enables an estimation of the 

standard errors of the DT elements. This can be done as part of the 

LSF and does not require additional computation time. In the 

absence of redundant measurements, the seven parameters can 

always be adjusted to fit the 7 “minimal” measurements exactly; 

therefore, this advantage is realised only when redundant 

measurements are available.  

15.3.2 Diagonalisation of the diffusion tensor  
The laboratory-frame diffusion tensor is difficult to interpret 

directly because its off-diagonal elements lack a straightforward 



 

 
 

physical meaning. The off-diagonal elements can be negative; 

therefore, they are not simply the diffusivities along the directions 

given by Eq. (15.21) (any diffusivity must be positive).  

To enable a physical interpretation, the laboratory-frame DT is 

usually subjected to diagonalisation. In the first approximation, 

diagonalisation can be visualiased as a 3D rigid-body rotation that 

aligns the laboratory-frame coordinate axes with the principal axes 

of the DT ellipsoid, as shown in Fig. 15.9. Such a rotation is 

described by the Euler angles α, β, γ, which relate the orientation of 

the principal axes of the DT to the laboratory axes. The lengths of 

the principal axes correspond to the principal diffusivities (also 

known as the DT eigenvalues). The directions of the principal axes 

relative in the laboratory frame are known as the DT eigenvectors. 

DT eigenvectors tend to represent the alignment order in the tissue 

and therefore provide a means of visualising the tissue 

microstructure.  

Diagonalisation may also involve permutations of the coordinate 

axes or inversion of the signs of some or all of the axes. This is 

because there is no physical distinction between the positive and the 

negative direction of DT eigenvectors. In general, diagonalisation is 

represented by a unitary transformation:  

 
            ( ) ( )+′ = α,β, γ α,β, γD U D U          (15.28) 
 



 

 
 

where U is a unitary matrix, defined as a matrix whose Hermitian 

conjugate equals its inverse: UU+ = 1. Rotational transformations 

illustrated in Fig. 15.9 are a subset of unitary transformations.  

In general, a given diffusion tensor can be diagonalised by more 

than one matrix U. U can be found using the standard algorithms 

such as Jacobi diagonalisation (28). Packages such as Mathematica 

or Matlab contain built-in diagonalisation functions that can be used 

for this purpose.  

A general property of unitary transformations is that they conserve 

the sum of the diagonal elements (the trace of the matrix).  

Therefore, the trace of the DT remains unchanged under a 

transformation given by Eq. (15.28). This means that the mean 

diffusivity can be found from the laboratory-frame DT without 

diagonalisation:  

 

      ( ) ( )1 2 3
1 1
3 3av xx yy zzD D D D D D D= + + = + +      (15.29) 

 
In the experimental setting, the measured signal inevitably 

contains a contribution from random noise, which can distort the 

elements of the DT. In the limit of strong noise, the distortion can be 

sufficiently large to make some of the diagonal elements or the 

eigenvalues of the DT negative. In this case, the measurement 

should be considered unreliable and the DT in the given voxel 

discarded. Alternatively, the DT can be calculated using an 

algorithm that enforces its positive-definiteness (29).  



 

 
 

15.3.3 Gradient calibration factors  
Another important factor from the experimental standpoint is the 

need for gradient calibration factors. On many NMR spectrometers, 

diffusion gradient amplitudes are set as percentages of the maximum 

amplitude; however, the absolute amplitude corresponding to 

“100%” may differ between the x, y and z gradient coils. In this case, 

it is useful to introduce unitless calibration factors relating the actual 

and the nominal amplitude of each gradient:  
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The gradient calibration matrix, C, can be incorporated into the B 

matrix: in the coordinate system of the hardware gradients, the 

actual and the nominal matrices are related as  breal = C ⋅ bnom ⋅ C, 

where bnom is calculated from the un-calibrated gradient values. It is 

important to note that C is not a unitary matrix – rather, it is a 

rescaling matrix that scales different bij’s by the appropriate factors.  

In a different coordinate system (say, the RPS coordinates), the B 

matrix can be re-calibrated according to  

 
  ( ) ( ) ( )real nom nom′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅+ + +b UCU Ub U UCU C b C   (15.31) 
  
where the ′ refers to the RPS coordinates.  



 

 
 

An alternative approach is to make use of an isotropic region of 

the sample, for example the saline surrounding the aniosotropic 

tissue. In an isotropic region, the diffusion attenuation should 

depend only on the b value (i.e., the trace of the B matrix) and not 

on the direction of the diffusion gradient. By comparing the 

attenuation factors of Eq. (15.17) corresponding to different gradient 

directions, one can empirically introduce scalar calibration factors 

for each gradient direction. This approach is often more robust than 

that given by Eq. (15.31).  

15.3.4 Sorting bias  
Each eigenvalue of the diffusion tensor is associated with a 3D 

vector that represents the characteristic direction corresponding to 

that diffusivity, as illustrated in Fig. 15.10. The greatest eigenvalue 

and the corresponding eigenvector are referred to as the principal 

eigenvalue and the principal eigenvector. The second largest 

diffusivity is referred to as the secondary eigenvalue (secondary 

eigenvector).  

In the experimental context identifying the correct order of the 

eigenvalues is not completely straightforward because of the 

presence of noise in the images. Noise leads to the so-called sorting 

bias, which can be understood as follows. Suppose that two voxels, 

A and B, contain physically identical tissue and are therefore 

characterised by an identical underlying diffusion tensor, DTrue, with 

eigenvalues D1
True ≥ D2

True ≥ D3
True. The apparent diffusion tensor is 

a combination of the underlying DT and a contribution due to noise:  
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where ΔD1A ... ΔD3B are contributions from noise. Therefore, 

although the underlying DT in the two voxels is the same, the 

experimentally measured tensors in voxels A and B usually differ 

due to the random nature of the noise contribution. Suppose that, in 

a particular instance, ΔD1A and ΔD2B are negative, while ΔD1B and 

ΔD2A are positive. If the noise is sufficiently large, or the DT 

anisotropy small, the order of the eigenvalues in voxel A may be 

reversed: D1A < D2A but D1B > D2B. If the sorting of the eigenvalues 

is based only on the magnitude of the diffusivity, then the 

eigenvalues and the eigenvectors in voxel A will be assigned 

incorrectly: D2A will be taken as the principal eigenvalue and D1A as 

the secondary eigenvalue. This sorting bias has two main 

consequences:  

1) It results in an overestimation of the principal eigenvalue and 

underestimation of the secondary eigenvalue. This happens because 

the diffusivity-based sorting fails to take into account the possibility 

of negative ΔD1A, which introduces an inherent bias into the 

distribution of the eigenvalues;  

2) In the example above, the direction of the principal DT 

eigenvector in voxel A will be off by 90o because the eigenvalues 



 

 
 

are mis-identified. Therefore, sorting bias also introduces disjoint 

voxels in an eigenvector map.  

The basic principles of techniques that minimise sorting bias can 

be understood based on the following idea. If the morphology of the 

tissue varies slowly from one voxel to another, then it can be 

assumed that the corresponding eigenvectors in neighbouring voxels 

should have similar directions. Conversely, in the biased example 

described above, the apparent principal eigenvectors in voxels A and 

B would be nearly perpendicular. Therefore, in order to minimise 

sorting bias, the eigenvalues and eigenvectors need to be treated as 

pairs, and the sorting of eigenvalues needs to take into account the 

directions of the corresponding eigenvectors. A number of 

approaches exist that alleviate (but do not completely eliminate) 

sorting bias (30).  

15.3.5 Fractional anisotropy  

For a prolate diffusion tensor (D1 > D2 ≈ D3), the fractional 

anisotropy is defined as  
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This definition is appropriate for diffusion between long fibres 

(such as in articular cartilage) or within fibres (e.g., within nerve 



 

 
 

fibre tracts). In the case of extreme anisotropy the FA given by Eq. 

(15.33) equals 1, while in the perfectly isotropic case FA = 0.  

For an oblate diffusion tensor (D1 ≈ D2 > D3), the appropriate 

definition of the fractional anisotropy is   
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The FA given by Eq. (15.34) can be used for diffusion between 

confining planes (e.g., diffusion of water molecules in the aqueous 

domain of lamellar lipid bilayers) and also has the range between 1 

(extreme anisotropy) and 0 (isotropic limit).  

The value of fractional anisotropy represents the amount of 

restriction imposed on diffusional displacement of water molecules 

by the solid component of the tissue (e.g., collagen fibres or cell 

walls). The value of FA depends on both the relative volume 

fraction occupied by the solid domain and the degree of alignment of 

the fibres or cells. FA is therefore a useful morphological metric of 

the tissue. Specific examples of the relationship between FA and the 

morphology of the tissue are presented in Section 15.4.  

The theoretical value of the fractional anisotropy (FA) defined 

according to Eqs. (15.33) and (15.34) in the isotropic case is zero. In 

practice, the presence of noise in MR signal leads to a positive 

fractional anisotropy even when the underlying eigenvalues of the 

true DT are equal. The origin of this is fundamentally the same as 



 

 
 

the origin of sorting bias discussed above. If D1A
true = D2A

true =  

D3A
true, the measured eigenvalues D1A, D2A and D3A would almost 

always be different due to the presence of noise, as shown in Eq. 

(15.32). By combining Eqs. (15.32) and (15.33), it is easily seen that 

the measured fractional anisotropy in this case given by  

 

                
3FA
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D
D

Δ=              (15.35) 

 
Equation (15.35) represents a “noise” fractional anisotropy that is 

observed in isotropic parts of the sample such as water or saline 

surrounding the anisotropic tissue. Its magnitude depends on the 

conditions of the measurement but typically lies in the range 0.01-

0.1 (31-33). Non-zero FA due to noise is also observed in Monte 

Carlo simulations of the diffusion tensor, where it is inversely 

proportional to the square root of the ensemble size (28,34). Noise 

fractional anisotropy should be taken as a baseline when interpreting 

the values of FA in tissue. In the limit of low noise (ΔD/D << 1), the 

experimentally measured FA is the sum of the “true” underlying FA 

(FAtrue) and the noise contribution given by Eq. (15.35):  

 
                FA FA FAtrue noise= +           (15.36) 
 

 

15.3.6 Other anisotropy metrics  
The FA definitions of Eq. (15.33) and (15.34) are usually used to 

characterise axially symmetric tensors (when two of the eigenvalues 



 

 
 

are equal or nearly equal to each other). In the asymmetric case, the 

following model-free parameters can be applied to characterise the 

DT anisotropy:  
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In the case of axial symmetry ε = 0.  

15.4 Applications of DTI to articular cartilage  

In Section 15.2.4 we discussed two ways of presenting DT images 

of the eye lens: maps of individual DT elements and eigenvector 

maps. In the present Section we focus on another avascular tissue, 

articular cartilage (31-33). We discuss several types of DTI 

parameter maps used by us for visualising the diffusion tensor in this 

tissue. Different types of parameter maps emphasise different 

aspects of the diffusion tensor, and the choice of the type of map to 

be used is determined by what characteristics of the tissue 

microstructure need to be gleaned from the images.  

15.4.1 Bovine Articular Cartilage  
Figure 15.11 shows a spin echo MR image from a sample of 

bovine patellar articular cartilage (with bone attached) recorded at a 

magnetic field strength B0 of 16.4 T. The sample, immersed in 



 

 
 

Fomblin® oil (which gives no 1H NMR signal), was oriented with 

the normal to the articular surface at 55° to the static magnetic field 

in order to: (1) optimise the signal-to-noise ratio, and (2) suppress 

the characteristic banding seen in conventional MR images of 

articular cartilage and ensure relatively uniform signal intensity 

throughout the cartilage (31). Diffusion-weighted images were 

acquired with the minimal set of diffusion gradients using a spin-

echo pulse sequence with the following acquisition parameters: echo 

time, 18 ms; repetition time 700 ms; average b value 1550 s⋅mm−2; 2 

ms diffusion gradients; 12 ms diffusion interval; 10 x 12.8 mm field 

of view; 50 µm in-plane resolution and 400 µm slice thickness. Two 

images were acquired without diffusion gradients, one of which is 

shown in Fig. 15.11. Total acquisition time was 14h 38m.  

 

 

 

 

 

 

 

 

 

 
 
Figure 15.11  A raw SE image of an excised sample of bovine 

articular cartilage at 16.4 T.  



 

 
 

 
 

Figure 15.12  (a) Fractional anisotropy map of the sample shown 
in Fig. 15.11. Black corresponds to FA = 0; white, to FA = 0.15.  (b) 
Directional FA map of the same sample. The colours denote the 
direction of the principal DT eigenvector: Read, Phase, and Slice 
gradient directions are shown in red, green and blue, respectively. 
Colour intensity reflects the magnitude of the FA.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15.13  The average fractional anisotropy in the same 

sample plotted as a function of distance from the articular surface.  



 

 
 

The magnitude of the fractional anisotropy is shown in Fig. 15.12a 

with black representing the smallest FA. The direction of the 

principal diffusion eigenvector within the voxels is incorporated into 

the map in Fig. 15.12b using colour. Figure 15.13 shows the average 

FA as a function of distance from the articular surface.  

In Fig. 15.14, the principal eigenvectors are scaled by their 

eigenvalue to enable visualisation of how the collagen fibers ‘direct’ 

the diffusion of water perpendicular to the supporting bone in the 

radial zone. The fibres are less ordered in the transitional zone and 

align parallel to the articular surface in the superficial zone. This 

Figure shows the eigenvectors from two contiguous slices.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15.14  A quiver plot showing the directions of the 

principal DT eigenvectors in the same cartilage sample.  



 

 
 

15.4.2 Human Articular Cartilage  
The image in Fig. 15.15 was recorded at 7 T from a sample of 

human right lateral tibia, obtained from a 57-year-old male 

undergoing complete knee replacement. This region was the only 

remaining cartilage in the joint and was described by the surgeon as 

being in poor condition. Acquisition parameters: echo time, 13.3 ms; 

repetition time 2000 ms; 2 ms diffusion gradient duration; 8 ms 

diffusion interval; average b value 1075 s⋅mm−2; 20 x 20mm field of 

view, with a 156 µm in-plane isotropic voxel dimension and 2 mm 

slice thickness. Total acquisition time was 19 h.  

Figure 15.16 shows the conventional (a) and the directional (b) 

fractional anisotropy maps for the human cartilage sample shown in 

Fig. 15.15. The colour coding in the directional map is identical to 

Fig. 15.12b.  

 

 
 

 

 

 

 

 
 

 
Figure 15.15  MR image of human cartilage recorded at 7 T in 

vitro.  



 

 
 

 

Figure 15.16  The conventional (a) and the directional (b) FA 
maps of the same human cartilage sample. In (b), the principal 
eigenvector direction is represented by colours: red, left-right 
(Read); blue, up-down (Phase); Green, in-out (Slice).  

 

 

 

 

 

 

 

 

 

 

 
Figure 15.17  The average FA plotted against depth from the 

articular surface.  

 

The profile of average fractional anisotropy (± std dev) as a 

function of distance from the articular surface for the human 

cartilage sample is shown in Figure 15.17. The FA is within the 



 

 
 

expected range for cartilage of (0.04-0.28) (33), except for the 

region near the supporting bone where calcification is likely to 

contribute to an increase in the observed fractional anisotropy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15.18  Quiver plot showing the principal DT eigenvector 

for each voxel in the sample.  

 

Figure 15.18 shows a ‘quiver’ plot for a single slice of the same 

human cartilage sample in which the principal eigenvector is 

represented by a line, proportional in length to the principal 

eigenvalue.  

In addition to DTI processing with the Matlab or Mathematica 

software packages utilised by us, DTI data can be processed using 



 

 
 

proprietary software from the scanner manufacturers if available, or 

transformed data to a common format, such as DICOM, Analyse or 

NIFTI and processed using one of the readily available shareware 

diffusion processing packages.  
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