View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queensland University of Technology ePrints Archive

QUT Digital Repository:
http://eprints.qut.edu.au/

This is the author’s version published as:

Johnpillai, I. Kenneth, McCue, Scott W., & Hill, James M. (2005) Lie
group symmetry analysis for granular media stress equations.

Journal of Mathematical Analysis and Applications, 301(1), pp- 135-
157.

Copyright 2005 Elsevier



https://core.ac.uk/display/10902567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lie group symmetry analysis for granular media
stress equations

I. Kenneth Johnpillai, Scott W. McCue! and James M. Hill

School of Mathematics and Applied Statistics, University of Wollongong,
Wollongong NSW 2522, Australia

Abstract

The Airy stress function, although frequently employed in classical linear elasticity,
does not receive similar usage for granular media problems. For plane strain quasi-static
deformations of a cohesionless Coulomb-Mohr granular solid, a single nonlinear partial
differential equation is formulated for the Airy stress function by combining the equi-
librium equations with the yield condition. This has certain advantages from the usual
approach, in which two stress invariants and a stress angle are introduced, and a sys-
tem of two partial differential equations is needed to describe the flow. In the present
study, the symmetry analysis of differential equations is utilised for our single partial
differential equation, and by computing an optimal system of one-dimensional Lie alge-
bras, a complete set of group-invariant solutions is derived. By this it is meant that any
group-invariant solution of the governing partial differential equation (provided it can be
derived via the classical symmetries method) may be obtained as a member of this set by
a suitable group transformation. For general values of the parameters (angle of internal
friction ¢ and gravity g¢) it is found there are three distinct classes of solutions which
correspond to granular flows considered previously in the literature. For the two limiting
cases of high angle of internal friction and zero gravity, the governing partial differential
equation admit larger families of Lie point symmetries, and from these symmetries, fur-
ther solutions are derived, many of which are new. Furthermore, the majority of these
solutions are exact, which is rare for granular flow, especially in the case of gravity driven

flows.
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1 Introduction

The presence of granular or powder-like materials and their usage arises in many aspects
of human life, varying from day-to-day activities in the home and the workplace, through
to important industrial applications. The economies of countries such as Australia and
South Africa heavily depend upon agricultural and mining export industries, and therefore
there is considerable interest from many industries in the handling of bulk solids and more
generally in the transport, storage and flow properties of granular materials (see Roberts
[17], Arnold and Wypych [4], and Spencer and Hill [21]).

Granular materials constitute an intermediate state between solids and fluids and can
behave like either, depending on the bulk density of the solid particles p. Many formula-
tions for the equations which govern the deformation and the flow of these materials have
been proposed, however there is no single model which is generally accepted to describe
and predict the behaviour of all real materials under all practical or experimental condi-
tions. At present there are mathematical models arising from continuum mechanics [23],
statistical mechanics [12, 16], molecular dynamics modelling [1] and cellular automata
modelling [18]. It is likely that different models will be required, not only for different
materials, but also for the same material under different conditions.

Here, we follow the continuum mechanical approach, for which it is well accepted
that the Coulomb-Mohr yield condition provides a reasonable basis for the determination
of the stress profiles for quasi-static steady flow of granular materials (see for example,
Spencer [23, 24]). The Coulomb-Mohr yield condition for a frictional and cohesive granular
material postulates that slip occurs on the surface element with unit normal n if the

magnitude of the shear component of traction 7 attains the critical value
7| = c—otang, (1.1)

where ¢ is the angle of internal friction, c¢ is the cohesion, and ¢ denotes the normal
component of traction, here taken positive in tension. This sign convention, which means
that positive forces produce positive stretches, is the one normally adopted in continuum
mechanics. However, we observe that in the context of granular materials, the majority

of stress distributions are compressive and therefore the stresses are negative. The two



mechanical properties of the material are the cohesion ¢ and the angle of internal friction ¢.
The special case ¢ = 0 corresponds to a frictionless or purely cohesive material and gives
rise to the Tresca yield condition of metal plasticity (see R. Hill [8]), while the limiting
case ¢ = m/2 corresponds to an idealised ‘highly frictional’ material (see Section 4). For
the present study we restrict ourselves to cohesionless materials (¢ = 0), such as dry
powders, but note that in the highly frictional limit (¢ = 7/2) the governing equations
are the same, regardless of the value of c.

In plane strain linear elasticity, the Airy stress function, which satisfies the bi-harmonic
equation, is commonly employed to formulate governing equations to determine stresses.
However, in the mechanics of granular materials, the usual convention is to introduce
two stress invariants and a stress angle, the latter of which describes the direction of the
maximum principal stress. This representation arises from the Mohr diagram and consti-
tutes the fundamental preferred method of analysis adopted by the engineering profession.
However, from a mathematical perspective the use of a stress angle, necessarily involv-
ing trigonometric functions, tends to introduce unnecessary complexities, which is the
prime motivation for this study. Here we exploit the classical Airy stress function, which
we denote by ¢(z,y), to formulate the single nonlinear second order partial differential
equation

V2, = Vaslyy + pgYbyy — 1 (WVaz + by + pgy)® cos® ¢, (1.2)

which governs the quasi-static gravity flow of a cohesionless Coulomb-Mohr granular ma-
terial in two dimensions, under the influence of gravity. The quantities p and g are the
bulk density and the acceleration due to gravity, respectively.

By considering the Lie point symmetries admitted by (1.2), we are able to derive a
complete set (or optimal system) of group-invariant solutions for quasi-static flow. This
means that apart from solutions which may arise from non-classical symmetries, we may
exclude the possibility of there being group-invariant solutions to (1.2) which are not
equivalent to ones presented here. The motivation is therefore to find and classify all
group-invariant solutions for quasi-static flow, identify solutions which have been consid-
ered before in the literature, and highlight any new solutions. To achieve this end we use

the Airy stress function, since this approach yields a single governing partial differential



equation (1.2) which is more amenable to computer algebraic symmetry methods. In
contrast, the traditional approach commonly used employs the stress invariants and the
stress angle, and results in a system of two highly coupled nonlinear first order partial
differential equations for which the derivation of all Lie point symmetries is much more
difficult, because it involves trigonometric nonlinearities. Thus, although the two formula-
tions are evidently equivalent, the Airy stress function approach results in a much simpler
partial differential equation. We note that although the flow of granular materials occurs
in many practical circumstances, only a limited number of exact analytical solutions are
known, especially those incorporating gravity. Accordingly, any exact solutions to the
governing equations have many potential applications.

The plan of the paper is as follows. In the following section, we summarise the basic
continuum mechanics equations for two-dimensional flow of granular materials and derive
the governing partial differential equation (1.2) for the Airy stress function. In Section 3
we use the Lie point symmetries admitted by this equation to derive an optimal system of
group-invariant solutions. We find there are three equivalence classes of solutions, exam-
ples from which can be used to describe flow down an include, flow between contracting
vertical walls, and flow through a converging wedge. The limiting case of ¢ = 7/2 is con-
sidered in Section 4. Here equation (1.2) admits further Lie point symmetries, and the
optimal system contains nine equivalence classes of group-invariant solutions. All of these
solutions can be derived exactly by solving the corresponding nonlinear ordinary differen-
tial equations. While the solutions presented in Section 3 have been considered before in
the literature, many of those derived in Section 4 are new. Sections 5 is concerned with
granular flows for which the effects of gravity may be ignored. Here we consider the group
transformations admitted by (1.2) (with ¢ = 0), and again derive the optimal system of

group-invariant solutions. Finally, Section 6 contains a brief discussion.

2 Basic equations of granular continuum mechanics

In this section, we briefly summarise the basic equations that describe plane strain quasi-

static steady flow of a granular material which conforms to the Coulomb-Mohr yield



condition.

We consider here the two-dimensional state of stress using the usual rectangular Carte-
sian coordinates (z,y). The in-plane physical stress components are denoted by 0,4, 04y
and oy,. These components of the stress tensor satisfy the equilibrium equations

8Uzz aamy =0 aawy 8099
o0z oy " Ox oy

= pg, (2.1)

where, as noted in the Introduction, p denotes the bulk density, which we assume to be
constant, and g is the acceleration due to gravity. For cohesive granular materials, the

stress relations are completed with the assumption of the Coulomb-Mohr yield condition
{(0pz — ayy)2 + 4053/}1/2 = 2cC08 P — (Ogy + Oyy) SiN P, (2.2)

where ¢ denotes the angle of internal friction which we assume to be constant, and c
denotes the coefficient of cohesion. The above equations are generally accepted as a
reasonable basis for the determination of the stress components, although, as stated in
the introduction, other more complicated theories exist.

We now introduce the Airy stress function 1 = (z,y), which is defined by the

relations
Ogr = wyya Ogy = _wzya Oyy = 1/J$$ + pgy, (23)
where the subscripts associated with the stress function v denote partial derivatives. The

equilibrium equations (2.1) are now automatically satisfied, and the yield condition (2.2)

becomes

("/Jacac + wyy + pgy)2 + 4( gy - ¢mm¢’yy - ,Ogydjyy) sec’ ¢ = 4c?

—  4c(thgz + thyy + pgy) tan ¢. (2.4)

The case ¢ = 0 corresponds to metal plasticity, and equation (2.4) with ¢ = 0 is given in
Ames [2]. We do not consider this case here.

From this point onwards we consider only cohesionless granular materials, and thus
assume ¢ = 0. With this assumption, equation (2.4) reduces to (1.2), which is a non-linear
second-order partial differential equation with variable coefficients. In the following four
sections we provide a Lie symmetry analysis and deduce solutions for various special cases

of this equation.



3 Group-invariant solutions for ¢ # 7/2 and g # 0

In this section, we seek group-invariant solutions of equation (1.2). Using the symbolic
manipulator package DIMSYM [19], we find (1.2) admits a 6-parameter Lie group of

transformations, with the associated group operators

0 0 0 0
0 0 0 0 0

These operators form a basis for the corresponding Lie algebra, and the list of commuta-
tors

is presented in Table 1.

I T, s Iy L5 I
| 0 0 Ty 0 —pgl's Ty
Iy 0 0 0 0 0 3l
Iy | —I'y 0 0 0 0 213
ry 0 0 0 0 —Iy 20y
['s | pgl's 0 0 Iy 0 I
I'g| —I'y =3Iy —2I'sy -2I'y —Ij 0

Table 1: Table of commutators of operators (3.2) for equation (1.2)

Since the partial differential equation (1.2) involves two independent variables only,
we may reduce it to an ordinary differential equation in the usual way by considering any
one-parameter subgroup of the symmetry group (see [9], [14], for example). There are, of
course, infinitely many of these subgroups (any linear combination of the Lie operators
given in (3.1) corresponds to a one-parameter subgroup), so it is instructive to seek an
“optimal system” of one-parameter subgroups, which will lead to an optimal system of

group-invariant solutions, thus avoiding any redundancy and unnecessary computations.



We say that for a given differential equation, an optimal system of group-invariant
solutions is a set of such solutions with the property that any other group-invariant
solution is related to exactly one of these solutions by a group transformation admitted by
the differential equation. That is, the set of all invariant solutions splits into equivalence
classes, and an optimal system is one which contains an invariant solution from each
class. In a similar way, an optimal system of subalgebras is defined to be a system
for which every other subalgebra is equivalent to a member of this system under some
element of the adjoint representation of the group. It can be shown that the problem of
finding an optimal system of either one-parameter subgroups or group-invariant solutions
is equivalent to finding an optimal system of one-parameter subalgebras. For details the
reader is referred to the texts [14] and [15].

To compute the adjoint representation of the Lie algebra spanned by (3.2) we use the

formula

1
Ad(exp(el,))T; = T'; — €[y, T;] + 58[&, Ty, 00— ...,

where [I';,I';] is the usual commutator, defined in (3.2). The resulting operators are
given in Table 2. The optimal system of subalgebras is found by taking a general linear
combination of the basis vectors (3.2) and simplifying it as much as possible by subjecting
it to carefully chosen adjoint transformations. Again, the reader is referred to Olver [14]
for details. The result is that an optimal system of one-dimensional subalgebras for this

example is provided by those generated by each of the following basis vectors,
{I1+al5+ 8Ty, Ts+aly, Tz+aly, Ty Ty, Te} (3.3)

where o and (8 are arbitrary constants. We now consider each of the corresponding

group-invariant solutions separately.

Example 3.1 By considering the set of operators I'y + al's + S['4, we may obtain the

functional form
U(z,y) = Blay — 50a°) — spgax’ + f(y — ax),

where f is an arbitrary function of z = y —az. On substitution of this equation into (1.2)



I Ty T3 Ty Ts T

Iy ry, Iy, T5—ely Ty [5 + pgel's — 2pge’ly T — el
Iy Iy Iy I ry L5 [g — 3el’y
Iy | 't +ely Iy I3 ry [s [g — 2els
ry Iy Iy I ry ['s + eI’y [g — 2el'y
[s | Ty — pgel's Ty I Iy —ely [ g — el's
T's eI’y eI, e’y e’y eIy I's

Table 2: Table of adjoint operators. The (7, j)th entry is Ad(exp(el;))[;

we have

(1+a2)? f"?+2[pg(1+a—2sec? ) z—aB(1+a’+2sec? ¢)| f'+ (pgz—aB)*+45% sec® ¢ = 0,
(3.4)

where the primes denote differentiation with respect to z, and (3.4) may be written as

[aB(1 4 o? + 2sec? ¢) — pg(1 + a? — 2sec? §)z]

fll —

(1+a?)
2pg sec ¢y/tan? ¢ — a2 \/
(1+a?)
where the quantities A and B are given by
_ afisec’¢ _ B(1+a”) tang
~ py(tan®d—a2)” T pg(tan® ¢ — a?)’

provided that either

18] (sgn(B) + atan¢ 18] (sgn(B) — atan¢
= T <a—sgn(ﬂ)tan¢> o <a+sgn(ﬁ)tan¢)'

Hence, the solution of (3.4) is given by

[BaB(1 + a? + 2sec? )22 — pg(1 + a® — 2sec? §)2?]

flz) =

6(1+ a?)
pgsec gr/tan? ¢ — a2 [1
e [ A7~ Bo{(e+ a7+ 207)
- BQ(z+A)log|z+A+\/(z+A)2—B2|] + Ciz + Cy, (3.5)



where C and () are arbitrary constants of integration.

This solution describes quasi-static flow down an incline (Sokolovskii [20]). The pa-
rameter o corresponds to « = — tan d, where § is the angle which the incline makes with
the horizontal. In the limit o« — 0 with 8 # 0, the functional form is ¢¥(z,y) = Bzxy+ f(y),

and for this case the solution is

1
1 3 2
fly) = gpgy°(2sec” ¢ — 1) & pgsec ¢ tan ¢ [g\l?ﬁ e g

ywyz_w‘

p2g2

_ BPoot’ <y2 N 232 cot? ¢>

B2 cot? ¢

202g? ylog + Ciy + Cy, (3.6)

provided that |y| > B cot ¢/pg.
The parameter 3 is a constant related to the shear stress. In the limit § — 0 with
a # 0, the functional form is ¥ (z,y) = —pgaz®/6 + f(y — ax) and for this case the

solution is
flz) = —Lzs[(l + a? — 2sec? ) F 2sec ¢y/tan? ¢ — a2] + C1z + Co, (3.7)
6(1 + a?)?
provided that |a| < tan ¢. In this limit there is a traction-free surface located at z = 0.
Finally, in the limit o, 8 — 0, the solution corresponds to horizontal flow with zero
shear stress. Here the functional form becomes ¥ (z,y) = f(y) and for this case the

solution is

fy) = §pgy’® tan® (% + g) + Cry + Co. (3.8)

Example 3.2 The functional form t(z,y) = (oy? — pgz?y) + f(z) may be obtained by
considering the operator I's + al'y of (3.3), where f is an arbitrary function of z. Upon
substitution of this functional form into (1.2), we obtain the following equation

"+ 20(1 — 2sec® @) f" + [o® + (2pgw sec ¢)*] = 0, (3.9)

which may be rewritten in the form

n_ a/(2 se(;? ¢ — 1) + 92sec ¢\/a2 tan2 ¢ . p2g2x2,

where the primes denote differentiation with respect to z. Upon solving we obtain the

general solution for (3.9)

2002 2 tan2
Q 9 o’ tan® ¢ . [ pgzcot o a?tan® ¢
flz) = 5(25ec ¢ — 1) £ pgsec ¢ | ——5— { Tarcsin <7 | — 72
g a 2y




1 2 {an? 1/3
1 <a an ¢—x2> 4z + O, (3.10)

3 02g?

provided that a # 0 and z? < o? tan? ¢/(pg)?, where C; and C, are arbitrary constants
of integration. For o — 0, the ordinary differential equation obtained by the substitution
of the functional form ¢ (z,y) = —1pgz’y + f(z) generated by I's gives rise to complex
solution which is non-physical. For a = —pgl cot ¢, where [ is the positive constant and
|z| <1, the solution (with positive sign) corresponds to one given by Spencer and Bradley

[22], and describes material which is compressed between two vertical walls.

Example 3.3 Finally, the operator I'g leads to the important functional form
vy =1 (4). (3.11)
Here the function f satisfies the nonlinear ordinary differential equation
(14+E)2f" —8E(1+ ) f'f" +12(1 + €2 — 2sec® ) f f" + 16(£2 + sec? @) f

—48Eff' + 367 + p'g"¢" + 2pg (6f — A& + (1 +€°)f") =0,

where the primes denote differentiation with respect to & = y/x. The similarity solution
(3.11) corresponds to the well-known so-called ‘radial stress field’, first considered by
Jenike [10] and Sokolovskii [20]. It can be used to model the flow of granular materials
near the outlet of a wedged-shaped hopper. Unfortunately we are unable to solve this

ordinary differential equation analytically.

We note that the operators I's + al'y, I'y and I'; have no group-invariant solutions,
so that all group-invariant solutions which may be obtained via classical means fall into
either one of these three equivalence classes, and can be obtained by one of the solutions

presented in Examples 3.1-3.3 by an appropriate group transformation.

4 Group-invariant solutions for ¢ = 7/2 and g # 0

Materials for which ¢ = 7/2 may be referred to as ‘highly frictional’, as this is the

limiting value for the angle of internal friction. In this limit, the Coulomb-Mohr yield

10



condition states that oiy = 04204y, Which implies the maximum principal stress (smallest
in magnitude) tends to zero at every point in the material. In practise, the largest
measured angle of internal friction is about 70° (see Sture [25], for example), however it
is still instructive to proceed for the following reasons. Firstly, there are materials for
which cos? ¢ is small, and hence this idealised theory can describe a bound, or limit, for
physically meaningful materials. Secondly, the governing equation for ¢ = 7/2 can be
used to describe the leading order term of a regular perturbation for v, with correction
terms (not considered here) being of order (1 —sin ¢). Thirdly, it so happens that for the
limit ¢ = 7/2, we are able to construct a number of exact solutions to the nonlinear partial
differential equation (1.2), which is an exception in the theory of granular materials, and
hence worth pursuing. Finally, these exact solutions may be used to validate numerical
schemes which are devised for the more general case of ¢ < 7/2.

With the value ¢ = 7/2, equation (1.2) reduces to

wiy = wzzwyy + ng%y, (4.1)

from which the following Lie-point symmetries are obtained

0 0 0 0 0
0 0 0 0 8
ls=y—+t¢p—, I1=0——ipgz®—, Is= 2

We compute an optimal system of subalgebras in the same way as that described in the
previous section, however for brevity we omit the details. The result is that an optimal

system is spanned by each of the operators

{Pg—aFG, Pg:l:P5, F8+P6:|:P7, F8—2P6:|:P2, Fg—rﬁirg, F6+arl+ﬂf4,

1_11 + CVF4 + ﬂr'ﬁ F? + F47 l—‘7 + F2) I15 + F47 P7a F5: F47 F37 FZ}) (42)

where a and [ are arbitrary constants. We now present the corresponding functional

forms, and solve for the group-invariant solutions exactly.

Example 4.1 The operator I's — al'g corresponds to interesting similarity solutions of

the form

Yz, y) =z f(z%y),

11



which on substitution into (4.1) yields

4% = f"lpgé + (@ = 1)(a = 2)f — a(a + 1)¢f', (4.3)

where the primes denote differentiation with respect to & = x*y. We are able to solve
(4.3) exactly for four different values of a.

For a = —1, the similarity solution is of the form is ¢ = 23 f(y/x). This is the same
functional form as that considered in Example 3.3, and hence is a special case of the
solution which describes the radial stress field. In contrast to Example 3.3, we are able

to solve for f exactly. From (4.3) the appropriate differential equation is

(6 + pg&) f" = 41", (4.4)
which, with the use of the transformation u(£) = 6f + pg&, can be reduced to

3un” = 2(u' — pg)>.
After making the substitution u'(£) = p(u) and solving the resultant equation, we obtain

3pg
6f+pg&=Ci(p— g3/2exp{—7}. 4.5
A further integration gives
6 C P 1 3 C
£ = / + / —Q(t—pg)?’/zexp{—i}dt—i- ) , (4.6)
p—pg pP—pg) t 2(t — pg) p—pyg

where C] and C5 are constants of integration, and therefore, the parametric solution of

(4.4) is given by equations (4.5)-(4.6). A solution equivalent to this has been presented
by Hill and Cox [7].
For o = 0, the resulting functional form is 1 = 22 f(y). From (4.3), we find that

(2f + pgy) f" = 417, (4.7)

which can be reduced to

uu” = 2(u' — pg)*. (4.8)

by making the substitution u(y) = 2f + pgy. Furthermore, we transform (4.8) into
upp’ = 2(p — pg)? by using u'(y) = p(u), and upon solving this equation, we obtain

2f+pgy=Cl(p—pg)mexp{—ﬁ}- (4.9)

12



A further integration yields

2f pCy r1 1/2 { Pg } pCo
Y= + / —(t—pg) ' expl ————— p dt + , 4.10
pP—pg DP—pyg t2( ) 2(t — pg) p—pg (4.10)

where C; and (s, are constants of integration, and therefore, the parametric solution of
(4.7) is given by (4.9)-(4.10). This solution is equivalent to one presented by Thamwattana
and Hill [26].

For o = 1, the functional form is ¢ = zf(zy). From (4.3), we deduce

Ef"(pg — 2f") = 417, (4.11)

where the primes denote differentiation with respect to & = xy. This equation may be

reduced to
&(pg = 2p)p’ = 47, (4.12)
following the transformation f'(£) = p(§), and integration of (4.12) yields
_ )
E=Cip 1/Qexp{—';:)—p}, (4.13)
where C denotes an arbitrary constant of integration. A further integration gives

f(&) =pE-C / T\ 2emnlitgy 4 Oy (4.14)

where Cy is constant of integration, and therefore, the parametric solution of (4.11) is
given by (4.13)-(4.14), where p is the parameter.

For a = 2, the functional form is 1 = f(z%y) and equation (4.3) becomes
£f"(pg — 6f") = 4f". (4.15)
Upon making the substitution f/(£) = p(£) into (4.15) we obtain
&p'(pg — 6p) = 4p°,
and on solving this equation, we find
¢ =Cip *Pexp {;—Zg} : (4.16)

where C denotes an arbitrary constant of integration. A further integration gives

1©=pe—C [t rexp {2 dt+C (417)

13



where Cj is a further arbitrary constant. Equations (4.16)-(4.17) constitute the general
parametric solution of (4.15).

We note that while solutions equivalent to those for &« = —1 and a = 0 have been
derived previously in the literature, the ones for « = 1 and o = 2 are new. Unless

indicated otherwise, the remainder of the solutions given in this section are new.

Example 4.2 The functional form ¢(z,y) = —3pga®logz + z*f(y — log ) may be ob-
tained by considering the operator I's + I's (I's — I's may be obtained from I's + I's by
discrete symmetry) of (4.2). Upon substitution of this functional form into (4.1), we

obtain
2f' 1" = 817 + [Af + pg(22 — )] = 0, (4.18)
where the primes denote differentiation with respect to z = y —logx. The transformation

u(z) =4f + pg(2z — 3) reduces (4.18) to
u”(u' — 2pg + 2u) = 4(u' — 2pg)?, (4.19)

and upon making the substitution p(u) = u'(2) — 2pg into (4.19) we obtain

dq 9
49 ) = 4p°.
du(p+ pg)(p +2u) = 4p

On rewriting this equation in the following form

du _ (p+2pg) _ »+2pg
dp 2p? 4p

and solving it, we obtain

u = (1/4)p'/%e P9I/P[I(p) + C4], (4.20)
where C; denotes an arbitrary constant and the integral I(p) is given by

I(p) = / (6 + 2pg)t e/ dt.

A further integration gives
,_ A =309  p+209 v Vit
P 4p (t+ pg)
where Cy is a further arbitrary constant. Equations (4.20)-(4.21) constitute the general

e MI(t) + Oy dt + M, (4.21)

parametric solution of (4.19), from which we may deduce the general parametric solution

of the original equation (4.18).

14



Example 4.3 The functional form ¢ (z,y) = —¢pga®logz+a® f(y/x—log z) corresponds
to the operator I's + I's + I'7 of (4.2) (I's + I'¢ — I'; may be obtained from I's + ' + I';

by the discrete symmetry). Here, the function f satisfies the differential equation

Af* =16f — f'+ pg(z = 5/6)]f", (4.22)

where the primes denote differentiation with respect to z = y/x — logz. Equation (4.22)
may be solved in a similar manner as described in Example 4.2 and we merely state the

parametric solutions of (4.22):

1
6f + pg(z—>5/6)= Z(Cl _ I(p))p3/2673pg/2p,

36f —5pg  p+20g (P 1[Cy - IO\ Ci(p + 2p9)
6p 4p 4 (t + pg)? p

where C; and C, are arbitrary constants of integration, and the integral I(p) is given by

I

P
I(p) :/ (t + pg)t=>/%e3r9/2t 4t

Example 4.4 We may obtain the functional form v (z,y) = logz + f(yz?) from Ty —
2l + I'y of (4.2) (I's — 2I'¢ — 'y may be obtained from I's — 2T’ + I'y by the discrete

symmetry). On substitution of this functional form into (4.1), we find the equation

4f?% = [pgz —1—62f1f", (4.23)

where the primes denote differentiation with respect to z = x?y. Upon solving the equa-

tion (4.23), we obtain the parametric solution:

= )+ Cilp el
f(z) = pe+ i / L) + O g 4 O,
where C) and C, are arbitrary constants of integration, and the integral I(w) is given by
I(p) = / P12l gy

Example 4.5 The operator I's — I's + I's of (4.2) corresponds to the group-invariant
solution ¢ (z,y) = xlogx + x f(xy), with f satisfying

417 = [pgz + 1 —22f"]f". (4.24)
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This equation is similar to one solved in the previous Example 4.4; we simply provide the

parametric solution
2 = 1)+ Cilp el
f(z) = pz— % [0+ CgePenit i 1 0,
where C; and Cy are arbitrary constants of integration, and the integral I(p) is given by

I(p) = / " y3/2e /4 gy

Example 4.6 The functional form ¥ (z,y) = Bylogy + yf(z — alogy) is found by con-
sidering the operator I's + aI'; + Sy from (4.2). Upon substitution of this functional

form into (4.1) we obtain the equation

f?+ pglaf' = B) = [B+ pga® + af1f",

where the primes denote differentiation with respect to z = x — alogy. For «, 8 # 0, we
obtain the parametric solution

28 + pgo Og‘p+%pga—ﬂ
2./pg(48 + pga?) [P+ P90+ 0

+Ch,

(8]
z = §loglp2+pg(ap—ﬂ)| +

f(z) = plz+a)

_ [2p(28 + pge) — (o + 45)(pg0)’] | ‘p + 3090 — 3
4,/pg(4B + pga?) p+apga+tp

o 1
—(2p + pga) log |p* + pg(ap — B)| — 5(28 = pga) +log|p + spgo— f|

4
+ (28 + pga)log|p + tpga + B]] — Cip + Cs,

where C and () are arbitrary constants of integration.

For a, f — 0, the functional form is ¥(z,y) = yf(z), which yields the trivial solution
f(z) = constant.

For a — 0 and 3 # 0, the functional form becomes ¥ (z,y) = Sylogy + yf(z) and its

corresponding ordinary differential equation is

f?—pgB=pBrf"

The solution to this equation is

f(z) = v/pgBz — Blog|l — C1e22VP9IB| 4 C,.
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For 8 — 0 and « # 0, the functional form is ¢(z,y) = yf(x — alogy), so that f must
satisfy equation is

(f = )+ pga) =0,

where the primes denote differentiation with respect to z = ¢ — alogy. It follows that

there are two possible solutions
f(Z) = —pgaz + Cla f(Z) = aCQeZ/a + 03:
where Cj is a further arbitrary constant.

Example 4.7 The functional form ¢ (z,y) = a(zy — 382°) — 5;p96z* + f(y — 3 82?) may
be found from the operator I'; + aI'y + SI'; of (4.2). Upon substitution of this functional

form into (4.1), we obtain the equation

lpgz = BF1f" = o, (4.25)

where the primes denote differentiation with respect to z = y— % Bx2. Upon solving (4.25)

we find the parametric solution for o, 8 # 0

2
z = 8 ( + oz_) + Cyervle’
Py

P9
2\ 2 2

C

flz) = pz—£<p+a—> -
P9 Py

P91’ 4 Oy, (4.26)
2pg

where C and (5 are arbitrary constants of integration.

For a, f — 0, the functional form is ¢ (z,y) = f(y), which gives rise to trivial solution
in y.

For o — 0 and 8 # 0, the functional form is ¥ (z,y) = —ipgﬁx‘l + fly — %sz) and

the corresponding differential equation is

lpgz = Bf1f" = 0.
There are two possible solutions
f(z) =Ciz+Cy, f(2) = %z? + G,

where (5 is an further arbitrary constant of integration.
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For 8 — 0 and « # 0, the functional form is ¥(z,y) = azy+ f(y) and the correspond-

ing differential equation is f” = a?/(pgy), with solution

2
«
fly) = p—g(ylogy+y) + Ciy + Ca.
This latter solution and the following two examples are less interesting, and have been

considered before by Thamwattana and Hill [26].

Example 4.8 By considering the operator I';+T'; of (4.2), we may derive group invariant
solutions of the form ¥(z,y) = y?/2z — ;pgz*y + f(x) (I'7 — 'y may be obtained from
I'; + T4 by the discrete symmetry). On substitution of this functional form into (4.1), we

obtain

ra-(3)~

which gives rise to the solution

2 0
f(ﬂ?) = <p3—9> :26—0 + 0133 + 02,

where C and () are arbitrary constants of integration.

Example 4.9 For I'; 4+ T4, we obtain the functional form ¢ (z,y) = (v — pgz?y) + f(2),
which leads to the ordinary differential equation f”(z) = (pgz)?. Integration reveals the
solution

Y(z,y) = S(pg)°z* + Ciz + Cs,

where C; and () are arbitrary constants of integration.

It is noted that the operators I'; = I'y, I'7, ['s, I'4, I's and 'y have no group-invariant
solutions. Thus, for the limiting case ¢ = 7/2, all group-invariant solutions of (4.1)
which may be obtained via classical Lie symmetries are equivalent to exactly one of the

Examples 4.1-4.9.

5 Group-invariant solutions for ¢ # 7/2 and g =0

In this section we examine an optimal system of group-invariant solutions of equation (1.2)

for the case in which the effects of gravity may be ignored. We see that on neglecting
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gravity, equation (1.2) becomes

wa%y = wmmwyy - l(wzz + ¢yy)2 C052 ¢a (51)
4

which is presented in Ames [2]. With the use of DIMSYM [19], we find this equation

admits the 8-parameter Lie group of operators

0 0 0 0 0
=, Dh=_—, I3=_-, Dy=a.-, 5=y
0 0 0 0 0 0

An optimal system of one-dimensional subalgebras of (5.1) is derived in the same

fashion as in Sections 3 and 4. For the sake of brevity, we simply state the result

{T7+al'y+plg—ls, T'7+al'y+ Pl —yIs £y, I't+als—Tg) £,

Fg + CYFG, Fg + F4, Fg — FS + F3, FG, FS + Fl, Fl + OfP4, F4, F3}, (53)

where «, 8, and 7 are arbitrary constants. Now we provide a complete list of functional

forms, and solve for the group-invariant solutions.

Example 5.1 From the first operator I'; + al'y + 8¢ — 7I's of (5.3), we obtain the

functional form

Y(r,0) = (sin@ — BcosB) + P 1 f(rer?), (5.4)

T
14 B2

1/2

where r = (22 + y*)'/? and 6 is given by 6 = arctan(y/z). Since the functional form (5.4)

is in 7 and 6, we reduce the equation (5.1) to

[7'2wrr + wﬂﬂ + Twr]Z +4 sec2 ¢[T2¢,?e + ¢§ - 7'21%«%0 - Tgwrwrr - 27‘%%0] =0 (55)

by the transformations z = rcosf and y = rsinf. From (5.4)-(5.5), we obtain the

non-linear ordinary differential equation

dsec” §[(1+ ) ff" + (B = v)ESI" = (B =) [ + 28— v)Ef f' — (B — )]
—[A+*)ES" + 28y =+ DES + (B -1 [ =0, (5.6)
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where the primes denote differentiation with respect to & = re?. Equation (5.6) may be

reduced to

dsec? g[(1 + v u'v" + (67 — P )uu” — (B —7)° + L+ ) u” + (B — ) (B — 37)uu'

—(8 =) = [(L+Y)u" +29(B —y)u' + (B —7)*u]> =0 (5.7)

by the transformation f(£) = u(z) with z = log&, where here the primes denote differen-
tiation with respect to z. It is noted that the first term in (5.4) is itself an exact solution
to (5.5), so without loss of generality, we set o = 0 in what follows. We are unable to
solve equation (5.7) for general # and 7, however we shall solve (5.7) for two particular
cases.

Firstly, if we look for solutions of (5.7) of the form u(z) = Ae™* for certain constants

A and m, we find that A is arbitrary while m satisfies the quartic equation

[(L+7*)m? +29(B—7)m+(B—7)°F = dsec” g(m—1)[(1+7")m* +27(B—7)m+(8-7)°]
Accordingly, m may be determined as a root of one of the following quadratic equations
(1+9%)m? +2y(8 = 7)m + (B —7)* =0, (5.8)
or

(L +9°)m* +2y(8 — y)m + (8 —7)* = 4(m — 1) sec” ¢, (5.9)
and since the roots of (5.8) are necessarily complex, we conclude that (5.7) admits two
real solutions of the form u(z) = Ae™*, where A is an arbitrary constant and m = my, ms

are the two (assumed real) roots of (5.9).
Secondly, 8 = 7, the functional form (5.4) is 1(r,0) = f(re"’) and equation (5.7)

becomes

Tl 49 cos® pu" — w'u" +u”? = 0. (5.10)
On solving the equation (5.10), we find that

u(z) = %Cl cos P(sec ¢ F y/tan® ¢ — +2) exp { : _?_272 (sec ¢ & y/tan? ¢ — 42) sec qﬁ} + Cs,

provided that |y| < tan ¢ and here C; and C, are arbitrary constants of integration. Thus,

for this case the solution of (5.6) is

1 —2_(sec an? ¢—v2)sec
J(6) = 5C1cos b(sec d F \/tan? ¢ — y2)¢T OIS 4 g (5.11)
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Example 5.2 By considering the operator I'; +al'y+ ' —yI's+1'; of (5.3) (the discrete
symmetry (z,y,¥) — (z,y, —¢) will map 'y +al'y+ ¢ —yI's = T'; to 'y +al'y + 5T —
vI's + '), we obtain the functional form

WRO) =~ e (0 — Feos®) +e V(R i £,
Y(R,0) = 79 + oft (sin® — ycosO) + f(Re™®), if B=1, (5.12)

(1+9%) 1492
where R and O are defined by

2 2 1/2
(e 2 __1 _ A+7)y -1
R-{(az 1+72) +<y 1+72> } , and @—:&chtan<(1+72)3E_7 )

Since the functional form is in R and ©, we transform the equation (5.1) into

4sec® 9| R*Yhe + 16 — R*Vrrtboo — R*Yrirr — 2RVt Ro)
+[R*Yrr + Yoo + Rir]* = 0 (5.13)

by the transformations x —y/(1++v?) = Rcos© and y —1/(1++?%) = Rsin©. For § # v,
substitution of (5.12); into (5.13), we obtain

dsec? G[(1L+ ") f" + (B2 = ¥)Ef " — (B — )" f* +2(8 —1)*Ef f' — (B —7)°f7]

[T +)EF + 28y =+ DEF + (B—7)f) =0, (5.14)
which is identical to equation (5.6), where here the primes denote differentiation with
respect to & = Re”®. Accordingly, equation (5.14) may be further reduced to (5.7) by the
transformation f(£) = u(z) with z = log&, where here the primes denote differentiation

with respect to z, and the first particular case listed above also applies here.

For § = =, by substituting (5.12), into (5.13), we arrive at
L+ Ef + 1) =4 +7°)°Ef f" — a®y*]sec’ ¢, (5.15)

where the primes denote differentiation with respect to £ = Re”®. In a similar fashion,
upon making the transformations f(£) = u(z) with z = logé&, equation (5.15) may be

reduced to

1
Z(1 + 72)4C082¢UH2 _ (1 + 72)3u/uu + (1 + ")/2)32/2 + CMQ’)/2 — 0’ (516)
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where the primes denote differentiation with respect to z. By the transformation v'(z) =

p(z), equation (5.16) may be reduced to

1

1L+ cos” p” = (1+7°)°pp + (1 +9°)%" + a** =0,
from which we find that

1
z = Flog|(L+7)°p + 0’|

1 p /(1 +72)2(tan? ¢ — 12)1* — 0272

(1 / dt + C,,
2( )" cos g (1+72)32 4+ a?9? o

1 ay (1+1)"

u(z) = 5 |P [ EEDRE arctan ( oy p

1 pt\/ 2(tan? ¢ — y2)t2 — 22

+-(1 / dt+ Cs, (5.17
5 (14 7%)*cos ¢ 1+7)3t2+0427 + Cy, (5.17)

where C; and C, are arbitrary constants of integration. Equations (5.17) constitute the
general parametric solutions of (5.16), from which the general parametric solutions of the

original equation (5.15) can be deduced.

Example 5.3 By considering the generator I'; + a(I's — I's) + ' of (5.3) (the discrete
symmetry (z,y, %) — (2,y, —¢) will map I' + o(T's — I's) — I's to I'y + a(T's — I's) + I'3),
we find the functional form +(z,y) = 6 + f(re®?). Substitution of this functional form

into (5.5), leads to the non-linear second-order ordinary differential equation

(1+ (" + &) = dsec® §[(1 + o) f'f" + 2067 [ — 1], (5.18)

af

where the primes denote differentiation with respect to & = re®’. Equation (5.18) may

be transformed into

(1+ a?)?

7 cos?pu" — (1 + a®)u'v" — 200" + (1 + &®)u* + 200’ +1 =0 (5.19)

by making the transformation f(£) = wu(z) with z = log&, where this time the primes
denote differentiation with respect to z. Equation (5.19) may be reduced to the non-linear
first-order ordinary differential equation

(14a?)?

1 cos®> pp? — [(1+ a®)p + 2alp’ + [(1 + o?)p* + 2ap + 1] = 0, (5.20)
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by the substitution u'(z) = p(z). Upon solving (5.20), we find that

1
z = - log |(1+a®)p” +2ap+ 1| + gtan_l{(l +a’)p+a}

(1+ Jants—a? /(¢ — B
o’ COS(/) an’ ¢ a/ dt+C,  (5.21)

(1+a?) t2+2at—|—1

provided that || < tan¢, where C; is an arbitrary constant of integration and the
constants A and B are given by

a(l+ a? — 2sec? ¢) p_  tan ¢

A= =
(1+ o?)(tan? ¢ — a?)’ tan? ¢ — a2

A further integration yields

u(z) = Slp—tan~ {(1+0”)p+ o)

2 2 —_ A2 _ B2
1+« )cosqﬁ2 tan® ¢ — « / i (0722)t;4—)i— 2atB—|— : dt +C,y,  (5.22)
where (5 is another arbitrary constant. Equations (5.21)-(5.22) constitute the general
parametric solution of (5.19), from which we may deduce the the general parametric
solution of original equation (5.18).

For a = 0, the functional form becomes ¥ (z,y) = 6 + f(r). In this case we can

evaluate the integral in (5.22), with the result

1 p /12 — cot?
Zlog‘p2+1|ﬂ:81n¢/ qubdt‘i‘Cl,
1 1
u(z) = E(p —tan"'(p)) & i[sin P/ p? — cot? ¢ — tan™" (sin ¢\/p? — cot? ¢)] + Oy,

(5.23)
where ('} and () are constants of integration.

Example 5.4 The consideration of I's+al's of (5.3) leads to the functional form ¢ (x,y) =
2" f(y/z). Upon substitution of this functional form into (5.1) we obtain the highly

non-linear ordinary differential equation

[(1+ED)f" —206f + a(l + ) f]* = dasec® ¢[(1 + ) ff" — af?], (5.24)

where the primes denote differentiation with respect to £ = y/x. For a = —1, a complex
solution may be obtained, while for & = 0 corresponds to the trivial solution f(§) =

Ci€ + (5, where ' and C; are arbitrary constants.
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Highly non-linear second-order ordinary differential equations of type (5.24) were first
studied by Appell [3] in the late 1880’s. He derived the condition, later known as Appell’s
condition, to determine non-singular solutions. Curtiss [5] obtained the same condition
using a different argument. Recently, Chalkley [6] established that the non-linear second-
order ordinary differential equations of type (5.24) satisfy Appell’s condition if and only
if equations of type (5.24) satisfy the conditions stated in Chalkley [6]. Using these
conditions, the value of a for which the non-trivial non-singular solution (singular solution
as well) may be found for equation (5.24) is « = 1, and these solutions are presented by

Johnpillai and Hill [11].

Example 5.5 The operator I's+I'4 of (5.3) (the discrete symmetry (x,y, ) — (—z,y, )
will map I's — 'y to T's + I'4) leads to the functional form

U(z,y) = zlogx + xf(y/x). (5.25)
where the function f satisfies the non-linear ordinary differential equation
[(1+ )" +1]% = 4f"sec? ¢ (5.26)

with the primes here denoting differentiation with respect to & = y/x. We may solve the

quadratic (5.26) to give

() = —ﬁ[l + €2 — 2sec? ¢ F 2sec py/tan? ¢ — £2],

provided that |£| < tan ¢. By integrating twice, we obtain the solution
1
f&) = [gtan®ptan™ &+ 5 log(1 + &)]

. Ecsc o
+| sec py/tan? ¢ — £2 + £ tan® ¢ arcsin
oo s =€ gt gann (G522
1 \/tan? ¢ — £2 — sec ¢
+5 log + C1§ + O, (5.27)
2 Vtan? ¢ — &2 + sec ¢
where C; and Cy are constants of integration. Thus, a group-invariant solution of (5.1)

is given by (5.25), and f(&) is given by (5.27).
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Example 5.6 From the operator I's — '+ I3 of (5.3) (the discrete symmetry (z,y, 1) —
(z,y,—%) will map I's — I's — '3 to ['s — ['s + I'3), we find the functional form ¥ (z,y) =

logz + f(y/z). The following non-linear ordinary differential equation

[(1+ &))" +26f —1]* = —dsec? (" + %) (5.28)

may be obtained by substituting this functional form into (5.1), where the primes denote
differentiation with respect to & = y/x. Equation (5.28) may be reduced to the first-order

non-linear ordinary differential equation
(14 €2)?p? — 2[1 + €2 — 2sec® ¢ — 26(1 + E2)plp’ + 4(€2 +sec? p)p® —4ép+1=0

by making a transformation f'(§) = p(£). Unfortunately, we are unable to make any

further progress solving this equation analytically.

Example 5.7 We may obtain the functional form ¢(z,y) = e®f(y) by considering the
operator I's+T'; of (5.3) (the discrete symmetry (z,y, 1) — (—z,y, ) will map I's —I'; to
g +T4). From (5.1) we find the function f satisfies the non-linear second-order ordinary

differential equation
" 4+2(1 —2sec® @) ff" +4sec’ of* + f2 =0, (5.29)
On making the transformation u(y) = f'/f, equation (5.29) reduces to
u? + 2[u® + (1 — 2sec® ¢)|u’ + (u® +1)* = 0. (5.30)
Upon solving (5.30), we obtain
y =G(u,Ch), (5.31)

where (' is a constant of integration and G is given by

2
G = 2 ¢ + tan? ¢ tan~" (u)

u?+1
. U CSC ¢ U Sec ¢

tan? ¢ arcsin
7 [t garin (724 ) 3

From the transformation u(y) = f'/f and (5.31), it follows that

tan? ¢ — uZ] + (. (5.32)

log f = yu — /G(u, Ch) du + Cs,
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where Cs is a further arbitrary constant. This equation gives on integration

logf = yu—logvu?+1—utan® ptan™"(u)
ucscd > + sec ¢y/tan? ¢ — u?

Vvu?+1

san? plog (secqb—i-\/ta,n?qg_uz O
\/m 1 2

which together with (5.31) and (5.32) constitutes the general parametric solution of (5.29)

+ [u tan? ¢ arcsin (

provided that |u| < tan ¢ (see Murphy [13]).

Example 5.8 The operator I'y +al'y of (5.3) corresponds to the group-invariant solution

Y(z,y) = azz® + f(y), where f satisfies the ordinary differential equation
" +2a(1 —2sec’ @) f" + o = 0.

By solving this quadratic and integrating, we obtain the solution

2
fly) = % [ytan (% + %)] + Cry + Oy,

where C; and Cy denote arbitrary constants of integration.

It is noted that the generators [, Iy, and I's of (5.3) have no group-invariant solutions.
Thus the above solutions provided in Examples 5.1-5.8 constitute an optimal system of
group-invariant solutions to the equation (5.1) whereby any other group-invariant solution

can be found by transforming one of these solutions by a suitable group element.

6 Discussion

In the study of quasi-static plane flow of a Coulomb-Mohr granular material, the usual

approach is to introduce the stress invariants p and ¢ and the stress angle 1, defined by

204y

1/2 _
b= _%(wa +0oy), q= % {(Um — Uyy)2 + 4053/} , tan2y = (6.1)

Ozz — Oyy
As mentioned in the Introduction, with the use of (6.1), the equilibrium equations (2.1)

and the yield condition (2.2) can be combined to give two highly nonlinear coupled first
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order partial differential equations for ¢ and %, and the introduction of trigonometric
functions make the equations difficult to treat analytically. Physically, p is the aver-
age hydrostatic pressure, ¢ is the maximum shear stress, and v is the angle which the
maximum principal stress makes with the z-axis. These quantities are usually used graph-
ically in conjunction with Mohr diagrams, and are especially favoured by engineers in the
analysis of problems. Again, the reader is referred to Spencer [23] for details on this
formulation.

In contrast, here we have made use of the Airy stress function v, which is borrowed
from the study of plane strain linear elasticity. This function is a potential function for
the stresses, and once v is determined, we must differentiate twice to recover the stresses.
However, this approach has the important advantage in that the equilibrium equations
(2.1) and the yield condition (2.2) combine to give a single nonlinear partial differential
equation (1.2), which is far more amenable to classical Lie symmetry methods. We have
therefore been able to derive a complete set of group-invariant solutions for this problem,
and in particular, derive new exact solutions for the special limiting case of the angle of

internal friction ¢ = 7/2.
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