

Early Relational Reasoning and the Novice Programmer:

Swapping as the “Hello World” of Relational Reasoning

Malcolm Corney
Faculty of Science and Technology

Queensland University of

Technology,

Brisbane, QLD, Australia

m.corney@qut.edu.au

Raymond Lister
Faculty of Engineering and

Information Technology,

University of Technology, Sydney,

Sydney, NSW, Australia

Raymond.Lister@uts.edu.au

Donna Teague
Faculty of Science and Technology

Queensland University of

Technology,

Brisbane, QLD, Australia

d.teague@qut.edu.au

Abstract
••••

We report on a longitudinal research study of the

development of novice programmers in their first

semester of programming. In the third week, almost half

of our sample of students could not answer an explain-in-

plain-English question, for code consisting of just three

assignment statements, which swapped the values in two

variables. We regard code that swaps the values of two

variables as the simplest case of where a programming

student can manifest a SOLO relational response. Our

results demonstrate that the problems many students face

with understanding code can begin very early, on

relatively trivial code. However, using traditional

programming exercises, these problems often go

undetected until late in the semester. New approaches are

required to detect and fix these problems earlier.

Keywords: Novice programmer, SOLO, chunking.

1 Introduction
Over the last six years, the BRACElet project has studied

the relationship between the ability of novice

programmers to write code and explain code. Two of the

earliest BRACElet papers (Whalley et al., 2006; Lister et

al., 2006) studied how students answered the following

explain-in-plain-English question in an end-of-first-

semester programming exam:

 In plain English, explain what the following

 segment of Java code does:

 bool bValid = true;

 for (int i = 0 ; i < iMAX-1 ; i++)

 {

 if (iNumbers[i] > iNumbers[i+1])

 bValid = false;
 }

The BRACElet researchers analysed student responses to

this question in terms of the SOLO taxonomy (Biggs and

Collis, 1982). Some students of course provided

•
 Copyright © 2011, Australian Computer Society, Inc. This

paper appeared at the 13th Australasian Computer Education

Conference (ACE 2011), Perth, Australia. Conferences in

Research and Practice in Information Technology (CRPIT),

Vol. 114. J. Hamer and M. de Raadt, Eds. Reproduction for

academic, not-for profit purposes permitted provided this text is

included.

responses that were inadequate, vague or simply

incorrect, but there were also correct and comprehensive

responses from students that fell into two SOLO

categories:

• Multistructural: This is a response in which the

student provides a description of what each line of

the code does, without linking the lines together.

• Relational: This is a response in which the student

provides a correct summary of the overall

computation performed by the entire piece of code,

such as, for the above code “it checks to see if the

array is sorted”. We refer to the ability to read a

piece of code and deduce the overall computation

performed by that code as relational reasoning.

Since those first two BRACElet papers, replication

studies have tried several variations on the format of

explain-in-plain-English questions. Lister and Edwards

(2010) provided a summary of those variations. From all

those studies, it appears that there are some students who

are able to provide multistructural responses, but who

struggle to perform relational reasoning.

In another BRACElet study, Lopez et al. (2008) linked

relational reasoning with code writing. They found that a

combination of student scores on tracing tasks and the

ability to manifest relational reasoning on explain-in-

plain-English questions accounted for 46% of the

variance on a code writing task. Replication studies have

reported similar results (Lister, Fidge and Teague, 2009;

Venables, Tan and Lister, 2009; and Lister et al., 2010).

All of the above BRACElet studies used data collected

as part of end-of-first-semester exams. Also, most of

those studies used explain-in-plain-English questions

where the code involved iterative processes on arrays.

1.1 Relational Reasoning without Iteration
The motivation for our study came from a colleague, who

had taught first-semester programming classes for many

years, and who had won teaching awards while doing so.

Our colleague made the assertion that the first few weeks

of teaching programming are straightforward, but the

problems start with the introduction of loops.

That comment by our colleague led us to wonder –

does relational reasoning only become a problem for

novices when loops are introduced? We then looked at

examples of code that textbooks presented to students

prior to the introduction of loops. (All of the code-writing

problems we examined were in the procedural paradigm.)

We found that one common type of example presented to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10902223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

students could be characterized as input-calculate-output.

For example, consider a piece of code that calculates the

area of a rectangle, given the length and height. Such a

piece of code has the following general form:

 Input a value into a variable;

 Input a value into a second variable;

 Assign to a third variable the

 result of the calculation;

 Output the third variable;

Such code has properties that make it easier to understand

than the iterative code studied later in semester:

• All the variables are either directly manipulable by

the user (i.e. input) or directly observable by the user

(i.e. output). Thus all variables have a meaning

defined by the “real world” problem to be solved,

without reference to any algorithm.

• Given the “real world” definition of each variable,

the purpose of each line of code makes sense in

isolation from the other lines.

• None of the lines of code involve overwriting a

meaningful variable value with a new value. Such a

change to a variable would change the exact “real

world” problem being solved.

Could it be, then, that the first few weeks of semester,

prior to the introduction of loops, are straightforward

because the non-iterative code we traditionally present to

our students only requires a form of reasoning that is

simpler than the relational reasoning required for

understanding iterative code? If so, could we identify

non-iterative pieces of code that might better prepare

students for loops?

The above questions led us to identify the simplest

piece of non-iterative code that requires the same form of

relational reasoning as iterative code − the swapping of

the values between two variables:

 temp = a;
 a = b;

 b = temp;

Unlike the code for calculating the area of a rectangle:

• the variable temp is not an input/output variable but

only has meaning in the context of an algorithm;

• each line does not stand alone. For example, the final

line does more than simply assign the value of temp

into b − it assigns the original value of a into b; and

• the meaningful values in variables a and b are

overwritten.

Since some programming textbooks use a “Hello World”

program as their very first example, we refer to code that

swaps the values of two variables as the “Hello World” of

relational reasoning. We then asked the following

research question, which we pursue in this paper:

Would some students struggle in the early part of the

semester with the code for swapping the value of two

variables, just as earlier BRACElet research had

demonstrated that students struggled with iterative

code at the end of semester?

If there are students who struggle with the code for

swapping two variables, then the early part of semester

does not prepare students well for the iterative code to

follow.

Prior to our study, there was an earlier BRACElet

study that used an explain-in-plain-English question for

swapping two variables (Sheard et al., 2008). However

that study, like other BRACElet studies, examined

students at the end of the first semester.

2 The Learning Context

The students from whom data was collected for this study

were enrolled in an introductory computing course. This

subject was a breadth-first introduction to building IT

systems and was not devoted entirely to the teaching of

programming. Other material taught during this subject

included introductions to SQL and web-page

development. The first six weeks of the 13 week semester

were allocated to an introduction to programming, using

Python. In those six weeks, the students were expected to

reach a point where they could understand and write code

involving array/list structures, conditional statements,

loops, function definition and use, and recursion. In the

remaining seven weeks of the semester, students had

further practice with their Python skills, when they used

Python in the web-based systems they wrote (e.g. to

interact with SQL databases and to perform input/output

processing for web pages).

This paper is restricted to an analysis of the

performance of the students on the programming

component of this subject. For more details on the entire

subject, see Corney, Teague and Thomas (2010).

3 Method
Students attending the lectures in weeks 3 and 5 were

given two short written tests. These two tests are provided

in this paper, as the last two pages.

Normal exam conditions applied during these tests.

The lecture room was supervised by the first and third

authors to ensure that students completed the exams

individually. There was no strict time limit on either test.

Students were given as long as they needed. After 10 to

15 minutes all students had finished. Most had completed

the test well before that time.

Prior to both tests, the students were told that the tests

would not contribute to their grade. The students were

told that the teachers would use the test results as a guide

to what topics required more teaching or improved

methods of teaching. Of the test sheets returned by the

students for marking, a very small number were entirely

blank, and a few were completed but left anonymous. The

anonymous tests were excluded from the analysis

described below, since we could not collate a student’s

performance across tests without knowing their identity.

Following each test, the first author, who taught the

subject, talked about each of the questions. He

demonstrated an approach to solving the questions, and

he provided correct answers to the questions.

3.1 The Week 3 Test

This first test was administered in week 3 of the semester,

at which time the material being presented in lectures

assumed that students could understand the basic

concepts of variables and assignment statements. The test

was distributed to students on both sides of a single sheet

of paper. We provide this test on the second last page of

this research paper, reduced in size to conserve space. A

total of 227 students submitted this test.

3.1.1 Questions 1 to 3: Screening Questions
The three goals of these screening questions was to test

that a student (1) understood variables, (2) understood

assignment, and (3) could trace code of similar

complexity to the remaining questions in that test. Since

this test was administered very early in the semester, we

could not assume that students had these skills,

particularly as some students enrolled late.

In this paper, we are not interested in what percentage

of the class understood variables and assignment

statements. Asking these three screening questions is

analogous to, in a non-programming research study, first

giving an experimental subject a test on their ability to

read English. It is sometimes a wise precaution to know

that someone can read English before giving that person a

test on the real material of interest, when the test on the

real material happens to be written in English – it is the

experimental subject’s grasp of the real material that we

would want to measure, not the experimental subject’s

ability to read English. More specifically, our research

interest in this paper involves testing whether a novice

programmer understands a piece of code as a whole,

when the novice understands all the programming

constructs in that code. We therefore need to screen to

ensure that students understand those constructs. Students

who could not successfully answer all three of these

questions were eliminated from the analysis we present

later in the “Results” section.

A fourth goal in having the screening questions was to

ensure that we had a sample of students who had made a

genuine effort to answer the questions in the test.

Students who scored a perfect score on these screening

questions clearly approached the test seriously.

3.1.2 Questions 4 and 5: Explain a Swap
Both question 4 and question 5 are explain-in-plain-

English questions, and the code in both questions swaps

the values of two variables, using a third variable as a

temporary variable.

At week 3 of the semester, students had not

encountered an explain-in-plain-English question before,

so there was a danger that the students might not

understand the type of answer we wanted. For that

reason, we designed Question 4 so that it would show the

students what sort of answer we wanted, in three ways:

• Question 4 begins by providing an example of the

type of answer we wanted, “The purpose of the

following three lines of code is to swap the values in

variables a and b”.

• Question 4 specifies that the answer should be “one

sentence”. Furthermore, the box in which the

students are directed to write their answer is meant to

indicate that the answer should not be very long.

• Question 4 contains the note “Tell us what the second

set of three lines of code do all by themselves. Do

NOT think of those second three lines as being

executed after the first three lines of code.” We

added this note after a pilot test, at a different

university. In the pilot, we found that a small number

of students gave answers such as “It restores the

variables to their original values” because the

students thought of the second set of three lines as

being executed after the first set of three lines.

The aim of Question 5 was to see whether students could

generalise from Question 4, and see that Question 5 also

swapped values between two variables. We can report

that 91% of the 227 students who answered both

Question 4 and Question 5 were consistent across those

questions – either they answered both of these questions

correctly and relationally, or they answered both

questions either incorrectly or non-relationally. The

remaining 9% were split roughly even, among some who

answered Question 4 correctly and relationally, and some

who answered Question 5 correctly and relationally.

Given that 91% of students answered both questions

consistently, we subsequently focussed our analysis on

Question 4 and ignored Question 5.

3.2 The Week 5 Test

This second test was administered in week 5 of the

semester, at which time the material being presented in

lectures assumed (in addition to the concepts tested in

week 3) that students could understand if statements.

Like the week 3 test, this test was distributed to students

on both sides of a single sheet of paper. We provide this

test on the last page of this research paper, reduced in size

to conserve space. A total of 176 students submitted this

test, of whom 148 had also completed the week 3 test.

3.2.1 Question 1: Write a Swap
The first question required students to write code that

swaps the values between two variables. Recall that

Question 4 in the week 3 test had asked students to

explain a piece of code that also swapped two variables.

The research interest in asking students to write the swap

code was to see whether students, two weeks after the

first test, could remember the swap code well enough to

write it.

3.2.1.1 Two Temporary Variables

Of the 140 students who answered this question, 8

students (6%) made appropriate use of two temporary

variables, instead of the minimum necessary single

temporary variable. (Recall that the swap code in the

week 3 test used a single temporary variable, so these

students had clearly not memorised that code.) When a

student’s code with two temporary variables worked

correctly, it was marked as correct, since such an answer

was not excluded by the phrasing of the question.

Another 9% of students also used two temporary

variables, but they did so incorrectly.

3.2.2 Question 2: Screening Questions
The second question performed a similar screening role in

the week 5 test as the first three questions of the week 3

test. That is, the goal of Question 2 was to test that a

student could trace code containing if statements, which

also implied that the student had made an effort on the

test. As for the week 3 test, students who did not

successfully answer this question were eliminated from

the analysis we present later in the “Results” section.

3.2.3 Question 3: Explain a sort of three

variables
The third question is an explain-in-plain-English

question, in which the code contains if statements. In the

framing of this question, we took steps similar to those

steps we took in the framing of Question 4 in the week 3

test, to ensure that students were clear on what type of

answer was required.

3.3 End of Semester Exam

At the end of the 13 weeks of semester, the students

underwent an examination of the material from the entire

semester. In this research paper, we shall focus on three

programming-related questions from that exam, which

are described below.

3.3.1 MCQ: Explain Product of Even Numbers

Of the eight programming-related multiple choice

questions in the final exam, only one was an explain-in-

plain-English question:

Which best describes the purpose of the following
Python function definition?

def do_something_with_numbers():

 total = 1

 response = input('Please input an integer: ')

 while (response != 0):

 if response % 2 == 0:

 total = total * response

 response = input('Please input an integer: ')

 return total

(a) It does not do anything as the body of the
while loop never executes

(b) It returns the product of all numbers entered
(c) It returns the product of all even numbers

entered � the correct option
(d) It returns the product of all odd numbers

entered

3.3.2 Trace a Swap
One of the programming-related exam questions tested

the students again on code that swapped the values in two

variables:

What do the variables value_1, value_2 and
value_3 hold after the following Python code is
executed? Assume that they are all integer type
variables.

value_1 = 10

value_2 = 15

value_3 = value_1

value_1 = value_2

value_2 = value_3

Students were deemed to have supplied a correct answer

if they provided the correct values for all three variables.

3.3.3 Write the Reverse of a String
Only one exam question required students to write any

Python code:

The following Python source code copies a
String:

 source = 'the cat sat on the mat'

 target = ''

 for character in source:

 target = target + character

Rewrite this code snippet so that the target
String contains the source String in reverse
order. e.g. 'abc' becomes 'cba'.

A concise, correct answer needed only to be a copy of the

above code, with the final line changed to:

 target = character + target

Some students provided a more verbose but correct

answer, such as the following:

n = 0

target = ''

for character in source:

 target = target + source[len(source) - n - 1]

 n += 1

In this paper, we are interested in the students’ conceptual

grasp of programming, and not their ability to get code

exactly right, first time, under exam conditions.

Therefore, we ignored minor bugs. For example, some

students provided a similar solution to the more verbose

solution provided above, but they made errors in the

calculation of the subscript into the sequence source.

For example, instead of the correct (len(source) –

n – 1) as in the above solution, some students wrote

(len(source) – n). We ignored such errors. We

also ignored off-by-one errors in loops.

The most common answer attracting zero marks used

code similar to the concise answer given above, but

replaced the plus sign in target = target +

character with a minus sign: target = target

– character. Since the subtraction operator does not

exist for strings, those students were either manifesting a

conceptual error, or were making a guess.

4 Results

As described earlier, we culled all students who did not

correctly answer all four screening questions (i.e. the first

three questions in the week 3 test, and the second

question from the week 5 test). We also culled all

students who had not provided some form of answer to all

of the remaining questions, except Question 5 from the

week 3 test, since that question was left out of our data

analysis. (The reasons for leaving it out were discussed in

section 3.1.2). After this culling, 83 students remained.

The percentage of these students who answered each test

and exam question correctly is shown in Table 1.

Week 3 Week 5 End of Semester Exam

Explain

a swap
write a swap

explain a sort

of 3 variables

MCQ, explain the

product of even nums

trace a

swap

write the reverse

of a string

47% 73% 48% 76% 89% 59%

Table 1: The percentage of students who answered each question correctly (n=83)

Week 3

explain

a swap

 Week 5 End of Semester Exam

Column A Column B Column C Column D Column E

write a swap

explain a sort

of three

variables

MCQ, explain the

product of even nums

trace a

swap

write the reverse

of a string

Wrong (n = 44) 57% 36% 64% 82% 41%

Right (n = 39) 92% 62% 90% 97% 79%

χ2 test p = 0.001 p = 0.03 p = 0.01 p = 0.03 p = 0.001

Table 2: The performance of students, broken down according to the week 3 explanation question (n=83).

Week 5

write a swap

Week 5 End of Semester Exam

Column A Column B Column C Column D

explain a sort of

three variables

MCQ, explain the

product of even nums
trace a swap

write the reverse

of a string

Wrong (n = 22) 14% 59% 68% 27%

Right (n = 61) 61% 82% 97% 70%

χ2 test p = 0.001 p = 0.03 p = 0.001 p = 0.001

Table 3: The performance of students, broken down according to the week 5 writing question (n=83).

4.1 Results for Week 3 Explain a Swap

Table 2 shows the percentage of students who correctly

answered questions from the week 5 test and the end of

semester exam. These percentages are broken into two

rows, according to how students answered the

explanation of a swap in Question 4 of the Week 3 test.

The row that commences with the word “Right” shows

the percentages for the 39 students who correctly

answered Week 3 Question 4, while the row commencing

“Wrong” shows the percentages for the 44 students who

answered incorrectly.

As the bottom row of Table 2 shows, chi square

analysis of the raw numbers used to produce the

percentages in Table 2 show a statistically significant

difference (at the traditional p=0.05 criterion) between the

percentages within the “Right” and “Wrong” rows of

each column. That is, there is a statistically significant

difference in the performance of students on the week 5

test questions, and also on the end of semester exam

questions, depending upon whether the students answered

Week 3 Question 4 correctly or incorrectly.

It is remarkable that performance on a simple

explanation question in week 3 results in a consistent,

statistically significant difference in performance in other

tasks for the remainder of the semester – problems with

relational reasoning start early and persist.

The difference in performance on the week 5 “write a

swap” task (i.e. Column A, 57% for wrong vs. 92% for

right) is consistent with much of the literature in

cognitive psychology. A student who can explain

swapping at week 3 remembers that code as a meaningful

“chunk”. A student who cannot explain that code

struggles to remember three separate lines of code.

4.2 Results for Week 5 Write a Swap

Table 3 shows the percentage of students who correctly

answered questions from the week 5 test and the end of

semester exam. These percentages are broken into two

rows, according to whether students correctly answered

Question 1 of the Week 5 test, “write a swap”. As with

Table 2, a chi square analysis showed a statistically

significant difference between the “Right” and “Wrong”

percentages of each column.

Again, it is remarkable that performance on a simple

writing task in week 5 results in a consistent, statistically

significant difference in performance on each of the exam

questions, especially the dramatically differing

performance on writing code to reverse a string (Column

D, 27% for wrong vs. 70% for right).

Column A in Table 3 adds to the evidence from

BRACElet studies that code writing and code explanation

are closely linked cognitive skills. The students who

could write the swap code at week 5 (i.e. the row

beginning “Right”) performed much better on the other

week 5 task, where they had to explain some code

(Column A, 14% for Wrong vs. 61% for Right). This

result again demonstrates that the ability to “chunk” code

into meaningful pieces is important in both writing code

and explaining code.

Week 5

explain a sort of three

variables

Week 5 End of Semester Exam

Column A Column B Column C Column D

write a swap
MCQ, explain

product of even nums

trace a

swap

write the reverse

of a string

Wrong (n = 43) 56% 65% 84% 44%

 Right (n = 40) 93% 88% 95% 75%

χ2 test p = 0.001 p = 0.02 p = 0.1 p = 0.01

Table 4: The performance of students, broken down according to the week 5 explanation question (n=83).

Prior

Programming

Experience?

Week 3 Week 5 End of Semester Exam

Column A Column B Column C Column D Column E Column F

explain a

swap

write a

swap

explain a sort

of 3 variables

explain product

of even nums

trace a

swap

write reverse

of a string

No (n = 27) 52% 70% 37% 70% 78% 56%

Some (n = 21) 43% 67% 57% 81% 90% 57%

Yes (n = 11) 27% 73% 45% 64% 100% 55%

From Table 1

(n = 83)
47% 73% 48% 76% 89% 59%

Table 5: The percentage of students who answered each question correctly, based on their prior background in

programming (n=59, as 24 of the 83 students did not respond to the survey)

4.3 Results for Week 5 Explain a Sort

Table 4 shows the percentage of students who correctly

answered questions from the week 5 test and the end of

semester exam. These percentages are broken into two

rows, according to whether students correctly answered

the Week 5, Question 3 explanation question. As with

Tables 2 and 3, a chi square analysis showed a

statistically significant difference, at the traditional

p=0.05 level, between the percentages within each

column, except for “trace a swap” (column C).

4.4 Results for End of Semester Trace a Swap

The results in the “Right” and “Wrong” rows of both

Table 2 column D and Table 3 column C (both columns

for “trace a swap”) show a statistically significant

difference. For example, Table 3 column C shows that

97% of students who could write a swap in week 5 could

successfully trace the swap code at the end of semester,

compared to only 68% of students who could not write

the swap in week 5.

Given that all n=83 students in this study had passed a

screening test where they successfully answered four

tracing problems, why should a tracing problem in the

final exam present a problem? Our explanation to that

question is as follows. Tracing is an error prone activity.

The students who were able to explain the swapping code

in week 3, or who could write the swapping code in week

5, were more likely to recognize similar code in the final

exam. Consequently, those students might have been able

to determine the answer to this question in the final exam

without having to trace the code, or at least they could

have verified their trace by comparing the result to what

they thought it should be. However, the other students

(i.e. those who were not able explain the swapping code

in week 3, or who could not write the swapping code in

week 5) would have been less likely to recognize that the

code was swapping the values of two variables. Such

students had no alternative but to derive the answer by

tracing the code, and they had no means of checking their

answer, other than by tracing the code again.

4.5 Prior Knowledge

To assess whether prior programming experience may

have been a factor in the above results, we analysed the

responses to a survey that the students completed at the

beginning of the semester. The survey contained the

following questions:

• Have you ever written a computer program
before? (Yes, No)

• If you answered “Yes” to the above question, in
which language or languages have you written
computer programs? (Free form answer)

• With respect to programming, attempt to explain
what a variable is. (Free form answer)

• With respect to programming, attempt to explain
what a function or a method or a procedure is.
(Free form answer)

• With respect to programming, attempt to explain
what a parameter or argument is. (Free form

answer)

On the basis of the answers to the above survey

questions, one of the authors classified all the students

into 1 of 3 categories:

• “No” − the student indicated they had not

programmed before and did not know what variables,

methods and parameters were.

• “Some” − either the student indicated they had not

programmed before but gave good answers regarding

variables, methods and parameters OR the student

indicated they had programmed before but could not

answer all other questions; usually the parameter

question was the problem.

• “Yes” − the student indicated they had programmed

and gave good answers for the other questions.

Table 5 describes the percentage of students who

answered the test and exam questions correctly, broken

down according to the above three categories of prior

programming experience. Chi square analysis of the raw

numbers used to produce each column of Table 5 showed

no statistically significant differences (at the traditional

p=0.05 criterion) between the percentages shown within

each of those columns. We therefore conclude that prior

programming experience is not a confounding factor in

the results we have reported.

5 Discussion: To Read, Write and Understand

5.1 Statistics and Causation
We wish to stress that we are not claiming that the ability

to write code is dependent upon the ability to explain

code. To do so would be to make a well-known fallacy of

statistical reasoning commonly stated as “correlation

does not imply causation”. To use a frivolous example

sometimes used in introductory statistics lectures, there

may be a statistical relationship between ice cream sales

and deaths from drowning, but that is because both are

linked by hot weather. More formally, two statistical

variables may be related because both variables depend

upon a third variable.

A possible third variable that links code writing and

code explaining is the ability to understand and/or reason

about code. Research on the psychology of programming

has demonstrated that, as expertise develops, a

programmer’s knowledge is organized into more abstract,

flexible forms, which would benefit both code writing

and code explaining (Adelson, 1984; Corritore &

Wiedenbeck, 1991; Fix, Wiedenbeck & Scholtz, 1993;

Mayer, 1981; Shneiderman & Mayer, 1979; Soloway,

1986).

5.2 Pedagogical Implications
If understanding and/or reasoning about code is the third

variable upon which both code writing and code

explaining depend, then the crucial pedagogical question

is as follows:

How can we most efficiently develop our students’

capacity to understand and/or reason about code?

5.2.1 Learning by Code Writing

Is writing code the most efficient way to learn how to

understand and/or reason about code? Clearly, students

must write some code, but current pedagogical practise

emphasises code writing to such an extent that almost all

the active learning exercises we give our students (i.e.

laboratory exercises and assignments) require our

students to write code. Is fighting the compiler the most

time efficient way of improving student understanding of

code? Perhaps the most efficient way is a judicious mix

of having students write code and having them read code

(and testing their ability to read via tasks such as explain-

in-plain-English).

5.2.2 Roles of Variables

If lecturers are to teach relational reasoning explicitly,

and if lecturers are going to set and grade students on

exercises where the students must read and understand

code, then we need a vocabulary for relational reasoning.

One promising vocabulary is “roles of variables”

(Ben-Ari & Sajaniemi, 2004; Kuittinen & Sajaniemi,

2004; Sajaniemi, 2010). These are a dozen categories for

the purpose of a variable in a piece of code. Three of

these roles are:

• Stepper: is defined as being “a data entity stepping

through a succession of values that can be predicted

as soon as the succession starts”. This role is

illustrated by the for-loop control variable “i” in the

explain-in-plain English question on the first page of

this paper.

• One-way flag: is defined as being “a two-valued

data entity that cannot get its initial value once its

value has been changed”. This role is illustrated by

the variable “bValid” in the explain-in-plain

English question on the first page of this paper.

• Temporary: is defined as being “a data entity

holding some value for a very short time only”. This

role is illustrated by the variable “temp” in the code

on the second page of this paper, which is code for

swapping the values of two variables.

Lecturers could teach these roles, and explain code in

terms of these roles. Students could be graded on

exercises where they identify the roles of variables in a

piece of code, perhaps as part of an explain-in-plain-

English question. Our intuition is that a student who can

identify the roles of all the variables in a piece of code is

close to explaining what the code does (but that is a

conjecture that would make for interesting future work).

6 Conclusion

Understanding three assignment statements, that swap the

values in two variables, is not rocket science. Neither is

writing that same code. However, we have shown that, in

week 3 of semester, half of the students in our sample

have a problem with understanding such a simple piece of

code, and two weeks later one half of those students

cannot write that same code. Furthermore, as a group,

these students who could not answer those questions in

weeks 3 and 5 performed relatively worse on

programming tasks in the final exam. Thus, from the very

early stages of the semester, the students begin to separate

into two groups. The students in one group tend to think

relationally about code, of their accord. The students in

the other group do not tend to think relationally about

code. Early detection and treatment of those students in

the second group may improve failure rates.

We are not advocating that thinking relationally is an

innate skill. Instead, we believe that current pedagogical

practice does not help novice programmers learn to think

relationally. Today, learning to think relationally about

code is an implicit part of the curriculum of

programming. Some of our current students succeed in

teaching themselves that implicit part of the curriculum,

but many do not. We need to develop pedagogical

techniques that transform this implicit component of the

curriculum into an explicit part of the curriculum.

Finally, we urge the reader to either use our two in-

class tests, or design their own tests that are more to their

liking, and collect data from their own class. Not only

might the results illuminate the reader’s thinking about

their own teaching, but replications of our study will

determine whether the statistical relationships we have

found are widespread, or are the result of some relatively

unusual aspect of our teaching environment.

Acknowledgements
Raymond Lister’s participation in this work was partially

funded by an Associate Fellowship awarded by the

Australian Learning and Teaching Council.

References

Adelson, B. (1984) When novices surpass experts: The

difficulty of a task may increase with expertise.

Journal of Experimental Psychology: Learning,

Memory, and Cognition, 10(3), 483-495.

Ben-Ari, M. and Jorma Sajaniemi, J. (2004) Roles of

variables as seen by CS educators. 9th Annual

SIGCSE Conference on Innovation and Technology in

Computer Science Education (ITiCSE). pp. 52-56.

 http://doi.acm.org/10.1145/1007996.1008013

Biggs, J. B. and Collis, K. F. (1982): Evaluating the

quality of learning: The SOLO taxonomy (Structure of

the Observed Learning Outcome). New York:

Academic Press.

Corney, M., Teague, D., Thomas, R. (2010) Engaging

Students in Programming. Twelfth Australasian

Computing Education Conference (ACE 2010),

Brisbane, Australia, January 2010. CRPIT, 103. Tony

Clear and John Hamer, Eds., ACS. pp. 63-72.

http://crpit.com/confpapers/CRPITV103Corney.pdf

Corritore, C. & Wiedenbeck, S. (1991) What Do Novices

Learn During Program Comprehension? Int. J. of

Human-Computer Interaction, 3(2), 199-222.

Fix, V., Wiedenbeck, S., and Scholtz, J. (1993) Mental

representations of programs by novices and experts. In

INTERACT '93 and CHI '93 Conferences on Human

Factors in Computing Systems. pp. 74-79.

 http://doi.acm.org/10.1145/169059.169088

Kuittinen, M, and Sajaniemi, J. (2004) Teaching Roles of

Variables in Elementary Programming Courses. 9th

Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education (ITiCSE).

pp. 57–61.

Lister, R. And Edwards, J. (2010) Teaching Novice

Computer Programmers: bringing the scholarly

approach to Australia − A report on the BRACElet

project. Australian Learning and Teaching Council,

Sydney, Australia. ISBN: 1-921856-02-5.

Downloadable from http://www.altc.edu.au/altc-

associate-fellow-raymond-lister

Lister, R., Simon, B., Thompson, E., Whalley, J. L., and

Prasad, C. (2006) Not seeing the forest for the trees:

novice programmers and the SOLO taxonomy. 11th

Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education (ITICSE),

118-122. http://doi.acm.org/10.1145/1140123.1140157

Lister, R., Fidge C. and Teague, D. (2009) Further

evidence of a relationship between explaining, tracing

and writing skills in introductory programming. 14th

Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education

(ITiCSE), pp 161-165.

 http://doi.acm.org/10.1145/1595496.1562930

Lister, R., Clear, T., Simon, Bouvier, D. J., Carter, P.,

Eckerdal, A., Jacková, J., Lopez, M., McCartney, R.,

Robbins, P., Seppälä, O., and Thompson, E. (2010).

Naturally occurring data as research instrument:

analyzing examination responses to study the novice

programmer. SIGCSE Bull. 41, 4 (Jan.), pp. 156-173.

DOI= http://doi.acm.org/10.1145/1709424.1709460

Lopez, M., Whalley, J., Robbins, P., and Lister, R. 2008.

Relationships between reading, tracing and writing

skills in introductory programming. Fourth

International Workshop on Computing Education

Research (ICER), Sydney, Australia. pp. 101-112.

http://doi.acm.org/10.1145/1404520.1404531

Mayer, R. (1981) The Psychology of How Novices Learn

Computer Programming. ACM Computing Surveys, 13,

1 (March), pp. 121-141.

 http://doi.acm.org/10.1145/356835.356841

Sajaniemi, J. (2010) Roles of variables. http://cs.joensuu.

fi/~saja/var_roles/ [Accessed Nov 2010.]

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,

E., Whalley, J. (2008) Going SOLO to Assess Novice

Programmers. 13th Annual SIGCSE Conference on

Innovation and Technology in Computer Science

Education (ITICSE), Madrid, Spain. pp. 209-213.

http://doi.acm.org/10.1145/1384271.1384328.

Shneiderman, B. & Mayer, R., (1979) Syntactic/semantic

interactions in programmer behavior: A model and

experimental results. International Journal of

Computer and Information, 8(3), pp. 219-238.

Soloway, E. (1986) Learning to program = learning to

construct mechanisms and explanations. CACM, 29, 9

(Sep), 850-858. http://doi.acm.org/10.1145/6592.6594

Venables, A., Tan, G., and Lister, R. (2009). A closer

look at tracing, explaining and code writing skills in

the novice programmer. Fifth International Workshop

on Computing Education Research (ICER), Berkeley,

USA. pp. 117-128.

http://doi.acm.org/10.1145/1584322.1584336

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,

P., Kumar, P.K.A. and Prasard, C. (2006). An

Australasian Study of Reading and Comprehension

Skills in Novice Programmers, using the Bloom and

SOLO Taxonomies. Eighth Australasian Computing

Education Conference (ACE2006), Hobart, Australia.

CRPIT, 52, pp. 243-252. ACM International

Conference Proceeding Series, Vol. 165.

http://crpit.com/confpapers/CRPITV52Whalley.pdf

INB104 Test 1, [Sem 1, 2010 Week 3], page 1

Student’s Name _____________________ Student’s Number _________

For all questions in this test, you may write down any working out on this

test paper, except in the answer boxes. Write ONLY your answer in the

answer boxes.

Q1. In the boxes provided below, write the values in the variables after the

following code has been executed:

r = 2
s = 4

r = s

The value in r is and the value in s is

Q2. In the boxes provided below, write the values in the variables after the

following code has been executed:

p = 1
q = 8

p = q

q = p

The value in p is and the value in q is

Q3. In the boxes provided below, write the values in the variables after the

following code has been executed:

x = 5

y = 3

z = 7

x = z

y = x

z = y

The value in x is the value in y is

and the value in z is

The rest of the test is on the other side of this piece of paper …

INB104 Test 1, [Sem 1, 2010 Week 3], page 2

Student’s Name _____________________ Student’s Number _________

For all questions in this test, you may write down any working out on this

test paper, except in the answer boxes. Write ONLY your answer in the

answer boxes.

This is page 2 of the test. The rest of the test is on the other side of this

piece of paper.

Q4. The purpose of the following three lines of code is to swap the values

in variables a and b:

c = a

a = b

b = c

The three lines of code below are the same as the lines above, but in a

different order:

a = b

b = c

c = a

In one sentence that you should write in the box below, describe the

purpose of those second set of three lines. NOTE: Tell us what the

second set of three lines of code do all by themselves. Do NOT think

of those second three lines as being executed after the first three lines

of code.

Q5. In one sentence that you should write in the box below, describe the

purpose of the following three lines of code for any set of values

stored in variables i, j and k:

j = i

i = k

k = j

*** End of Test ***

INB104 Test 2, [Sem 1, 2010 Week 5], page 1

Student’s Name _____________________ Student’s Number _________

For all questions in this test, you may write down any working out on this

test paper, except in the answer boxes. Write ONLY your answer in the

answer boxes.

Q1. Suppose you have two integer variables, called p and q. In the box

below write code to swap the values in those two variables. You may

declare and use any extra variables required to make the swap. Give

each extra variable a meaningful name that reflects its purpose.

Q2. This question is about the following code, where the variables p, q, r

and s all have integer values:

 if (p < q):

 if (q > 4):

 s = 5

 else:

 s = 6

Assume that, before the above code is executed, the values in the four

variables are:

p = 1 q = 2 r = 3 s = 4

After the codes is executed, the value in variable s is

INB104 Test 2, [Sem 1, 2010 Week 5], page 2

Student’s Name _____________________ Student’s Number _________

For all questions in this test, you may write down any working out on this

test paper, except in the answer boxes. Write ONLY your answer in the

answer boxes.

Q3. If you were asked to describe the purpose of the code below, a good

answer would be “It prints the smaller of the two values stored in the

variables a and b”.

if (a < b):

 print a

else:

 print b

In one sentence that you should write in the empty box below, describe

the purpose of the following code.

Do NOT give a line−by−line description of what the code does. Instead, tell

us the purpose of the code, like the purpose given for the code in the above

example (i.e. “It prints the smaller of the two values stored in the variables a

and b”).

Assume that the variables y1, y2 and y3 are all variables with integer values.

In each of the three boxes that contain sentences beginning with “Code to

swap the values …”, assume that appropriate code is provided instead

of the box – do NOT write that code.

if (y1 < y2):

if (y2 < y3):

if (y1 < y2):

print y1

print y2

print y3

*** End of Test ***

Code to swap the values in y1 and y2 goes here.

Code to swap the values in y2 and y3 goes here.

Code to swap the values in y1 and y2 goes here.

