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The paper investigates Shock Control Bumps (SCB) on a Natural Laminar
Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB ap-
proach is used to decelerate supersonic flow on the suction/pressure sides of
transonic aerofoil that leads delaying shock occurrence or weakening of shock
strength. Such an AFC technique reduces significantly the total drag at tran-
sonic speeds. This paper considers the SCB shape design optimisation at two
boundary layer transition positions (0% and 45%) using an Euler software
coupled with viscous boundary layer effects and robust Evolutionary Algo-
rithms (EAs). The optimisation method is based on a canonical Evolution
Strategy (ES) algorithm and incorporates the concepts of hierarchical topol-
ogy and parallel asynchronous evaluation of candidate solution. Two test cases
are considered with numerical experiments; the first test deals with a transi-
tion point occurring at the leading edge and the transition point is fixed at
45% of wing chord in the second test. Numerical results are presented and it is
demonstrated that an optimal SCB design can be found to significantly reduce
transonic wave drag and improves lift on drag (L/D) value when compared
to the baseline aerofoil design.

1 Introduction

With rising fuel price and increasing environmental concerns, the drag reduc-
tion of transonic aircraft is emerging as one of the most important aeronautical
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problems. Drag reduction allows improving eco-fuel efficiency which is directly
related to aircraft emissions. In other words, drag reduction saves mission op-
erating cost and reduces critical aircraft emissions. Recent advances in design
tools, materials, electronics and actuators offer implementation of flow con-
trol technologies to improve aerodynamic efficiency [1]. The use of active flow
control devices on current transonic aircraft wing can improve aerodynamic
efficiency while still using the existing airfoils or wing. Both civil and unm-
maned aircraft can benefit using this active flow control technique. In this
paper, the concept of Shock Control Bump (SCB) proposed by Ashill et al.
(1992) is introduced and it is implemented to a natural laminar flow aero-
foil RAE 5243 to reduce transonic total drag [1, 2]. Two optimisation test
cases are conducted using an Euler solver with another boundary layers vis-
cous software coupled to advanced Evolutionary Algorithms [3]; the first test
considers boundary layer transition at the leading edge of RAE5243 and the
second test considers the boundary layer transition at 45% of chord.

2 Methodology

The method couples the Hierarchical Asynchronous Parallel Multi-Objective
Evolutionary Algorithms (HAPMOEA software) with several analysis tools.
The HAPMOEA is based on the well known Darwinian principle and imple-
mented with Evolution Strategies [3]. The core of this method incorporates
the concepts of Covariance Matrix Adaptation, CMA, Distance Dependent
Mutation, DDM [4]. At the top level of this method, the asynchronous par-
allel computation [5], multi-fidelity hierarchical topology and Pareto tourna-
ment selection are implemented. At the bottom level, the method does two
major search operations (Mutation and combination) under the Pareto-game
strategy. In the middle level, the method couples an evolutionary optimiser
(HAPMOEA), analysis tools and a statistical design tool taking into account
uncertainty. Details and validations of HAPMOEA can be found in Ref. [6].

3 Aerodynamic Analysis Tool

In this paper the Euler - Boundary layer code MSES written by Drela [7] is
utilised. The MSES software is a coupled viscous/inviscid Euler method for
the analysis and design of multi-element /single-element airfoils. It is based on
a streamline-based Euler discretization and a two-equation integral boundary
layer formulation which are coupled through the displacement thickness and
are solved simultaneously by a full Newton method. The mesh of RAE 2822
obtained by MSES consists of 213 normal direction lines and 36 streamwise
lines in a bounds of = € [-2.0:3.0] and y € [-2.5:3.5]. A predefined lift coefficient
(Cy) can be obtained by adapting the angle of attack («) of the aerofoil.
Validation of MSES compared to wind tunnel experimental data can be found
in Ref. [3].
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4 Real World Design Problem

Baseline Analysis and Formulation

The baseline RAFE 5243 aerofoil design is tested at the following flow conditions
Mo, = 0.68, C; = 0.82, Re = 19.0 x 10% according to the Ref. 2 with two
boundary layer transitions at 0% and 45% of chord. Figures 1 and 2 show Cp
contours obtained by MSES. It can be seen that there is strong normal shock
on upper surface of baseline design at both transition conditions. The shock
occurs approximately at 56.0% of chord and 60.0% of chord for 0%c and 45%c
of boundary layer transitions respectively. In the following sections, two SCB
design optimizations are conducted to minimize the total drag (Cdrotar)-

Fig. 1. Baseline at 0%c transition. Fig. 2. Baseline at 45%c transition.

Problem Definition

This test case considers a single objective design optimisation of a SCB on
the suction side of the RAE 5243 aerofoil to minimize Cdrtq; at flow condi-
tions My, = 0.68, C; = 0.82, Re = 19.0 x 10° and with the boundary layer
transitions at 0%c and 45%c. The fitness function is shown in Eq. 1.

fl = min (CdTotal) = min (CdViscous + Cdche) (1)

Design Variables

Three design variables are considered for the parameterization of the bump
using a Beziers spline: SCB length (SCBp), SCB height (SCBp) and SCB
peak position (SCBp). The SCBy, and SCBy are indicated as percentage
of chord while the SCBp is in percentage of SCBp. The design bounds are;
SCBy €[0.0:40.0], SCBy €[0.0:5.0], and SCBp €[0.0:100]. The centre of
SCB (50% of SCBy,) will be placed at the sonic point where the flow speed
transits from supersonic to subsonic.
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Numerical Results

The optimisations for both SCB at 0%c and 45%c transitions are conducted
using a single 4x2.8 GHz processor. As illustrated in Figure 3, the algorithm
for SCB at 0%c trasition was allowed to run for 5 hours and 2,418 function
evaluations to the convergence value (Cdrote) 0.1115. The algorithm for SCB
at 45%c trasition was allowed to run for 5 hours and 1,693 function evaluations
to the convergence value (Cdrotqr) 0.00596 as shown Figure 4.
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Fig. 3. Convergence at 0%c transition. Fig. 4. Convergence at 45%c transition.

Table 1 compares the aerodynamic characteristics obtained by the baseline
design (RAE 5243) and the baseline design with suction side SCB at both
0% and 45% laminar boundary transition conditions with constant C) i.e.
C; = 0.82. Due to the geometry changes by adding SCB, the baseline design
with SCB will have slightly different angle of attack to chapture the constant
C; hence it will have a different vicous drag. Applying optimal SCB on the
suction side of RAE 5243 aerofoil for 0% transition reduces the wave drag by
75% which leads 18% of total drag reduction. This optimal SCB improves L/D
by 21.0%. Applying optimal SCB for 45% boundary layer transition reduces
the wave drag by 98% which leads 40% of total drag reduction while improving
L/D by 67.0%. Figures 5 and 6 show the Cp contour obtained by the optimal
SCB at 0%c and 45%c transition. It can be seen that there is significant drag
reduction when compared to the baseline design shown in Figures 1 and 2. It
is interesting to note that the knee shaped shock shown in Figure 6 for the
2D controlled flow also can be found in Ref. [2].

Figures 7 and 8 compare the geometry of the baseline design and with
optimal SCB at both 0% and 45% transition conditions. The optimal SCB
design (0% tran) consists of SCBy, = 39.56%c, SCBy = 1.53%c and SCBp =
65.8%SC By, placed between (0.3611, 0.0845) and (0.7568, 0.0453). The opti-
mal SCB design (45% tran) consists of SCBr, = 35.73%c, SCBy = 1.38%c
and SCBp = 67.0%SCBy, placed between (0.4189, 0.0860) and (0.7763,
0.0417). The optimal SCB for the 45% transition is located at 5%c towards
the trailing edge when compared to the optimal SCB at 0% transition due to
the sonic position.
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Table 1. Comparison of the objectives

Description Cdrotal Cdwave L/D
Baseline (@ 0%tran) 0.0136 0.0024 60.33
with SCB (@ 0%tran) 0.0112(—18%) 0.0006(—75%) 73.19(+21%)
Baseline (@45%tran) 0.0101 0.0032 81.72

with SCB (@45%tran) 0.0060(—40%) 0.00004(—98%) 136.57(+67%)

Fig. 5. Cp contour obtained by optimal Fig. 6. Cp contour obtained by optimal
SCB at 0%c trans. SCB at 45%c trans.

Fig. 7. Optimal SCB at 0%c tran. Fig. 8. Optimal SCB at 45%c tran.

Table 2 compares the baseline aerofoil geometry to one with an optimal
SCB. It can be seen that adding an optimal SCB does not change the maxi-
mum thickness of the baseline to avoid fiction drag penalty. In contrast, there
is slight increment on the maximum camber and its position which is moved
toward to the trailing edge by 10%c. In other words, the suction side of aero-
foil becomes flatter by using a SCB when compared to the baseline design as
shown Figures 5 and 6.

Table 2. Aerofoil geometry parameters

Description Thicknessyrae Camberiras

Baseline (@ 0%tran) 0.14(@40%c) 0.018(@54%c)
with SCB (@ 0%tran) 0.14(@Q40%c) 0.021(@63%c)
with SCB (@45%tran) 0.14(@40%c) 0.022(Q65%c)
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5 Conclusions

In this paper a robust evolutionary technique has been implemented, pro-
viding a potential tool for Shock Control Bump design optimization as an
effective active flow control procedure. Numerical results which are presented
clearly show the benefit of using SCB techniques on current aerofoil for tran-
sonic drag reduction which will save an operating and manufacturing cost
when compared to redesigning new aerofoil and wing planform shape. Future
work will focus on robust Taguchi design optimization of SCB adaptive ge-
ometries which can produce the aerodynamic model with better performance
and stability at uncertain operating conditions.
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