QUT Digital Repository: http://eprints.qut.edu.au/

<u>Klenowski, Paul, Semmler, A., Chee, K., Iconomou, Mary</u>, & <u>Molenaar, Peter</u> (2010) *Contribution of transmembrane domain V amino acids to \beta11-adrenoceptor activity and affinity*. In: Drug Discovery Biology, Monash University : Molecular Pharmacology of G Protein-Coupled Receptors meeting 2010, December 2nd - 4th, 2010, Monash Institute of Pharmaceutical Sciences.

© Copyright 2010 please consult authors

Poster 12

1

h f

> s a e .s n a e x e e G

CONTRIBUTION OF TRANSMEMBRANE DOMAIN V AMINO ACIDS TO $\beta_{1L}\text{-}ADRENOCEPTOR ACTIVITY AND AFFINITY$

Paul Klenowski¹, Annalese BT Semmler¹, Kelly Chee¹, Mary Iconomou¹, Peter Molenaar^{1,2}

¹Institute of Health and Biomedical Innovation, Gardens Point, QLD; Discipline of Medicine, ²University of Queensland, The Prince Charles Hospital, Chermside, QLD

There are two binding sites on the β_1 -adrenoceptor (AR), β_{1H} and β_{1L} corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation (reviewed Kaumann and Molenaar, 2008). Some β -blockers that block β_1AR and β_2ARs can activate $\beta_{1L}ARs$ at higher concentrations than those required to cause blockade. The β_2AR does not form a corresponding low affinity binding site (Baker et al 2002) and therefore we postulated that heterologous amino acids are responsible for the formation of $\beta_{1L}AR$.

Our aim was to investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β_1AR and β_2ARs contribute to $\beta_{1L}AR$. β_1ARs , β_2ARs and mutant β_1ARs containing all ($\beta_1(\beta_2TMDV)AR$) or single amino acids of TMDV of the β_2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 or (-)-isoprenaline in the absence or presence of (-)-bupranolol.

1	(-)-CGP 12177	(-)-Bupranolol affinity (pK _B)	
	pEC ₅₀	vs (-)-CGP 12177	vs (-)-isoprenaline
β ₁ AR	8.00 ± 0.11 (11)	7.23 ± 0.23 (5)	9.52 ± 0.28 (5)
$\beta_2 AR$ (high density)	9.24 ± 0.14 (5)	9.82 ± 0.52 (8)	
$\beta_2 AR$ (low density)	no effect		
$\beta_1(\beta_2 TMV)AR$	8.86 ± 0.10 (15)	8.06 ± 0.17 (8)	9.08 ± 0.22 (6)
β1(V230I)AR	9.07 ± 0.07 (10)	7.64 ± 0.12 (8)	9.36 ± 0.28 (9)
β ₁ (R222Q)AR	8.09 ± 0.29 (6)	7.33 ± 0.23 (5)	9.36 ± 0.08 (6)
$\beta_1(V230A)AR$	7.59 ± 0.09 (6)	7.32 ± 0.24 (4)	8.62 ± 0.18 (5)

The potency of (-)-CGP12177 was higher at β_2AR than at β_1AR consistent with activation through a low affinity site at the β_1AR ($\beta_{1L}AR$) but not β_2AR . The presence of V230 in β_1AR accounted for the lower potency of (-)-CGP 12177.

The affinity of (-)-bupranolol at β_1AR and mutants was higher when determined with (-)isoprenaline than with (-)-CGP 12177. The affinity of (-)-bupranolol determined against (-)-CGP 12177 was lower at β_1AR compared to β_2AR . The presence of V230 in β_1AR accounted in part for the lower affinity.

In conclusion V230 of the β_1 AR contributes in part to the low affinity binding site of β_1 AR.

Baker JG, Hall IP, Hill SJ (2002). Pharmacological characterization of CGP12177 at the human β 2-adrenoceptor. Br J Pharmacol 137, 400–408

Kaumann AJ, Molenaar P (2008) The low-affinity site of the β 1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118, 303-336