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Abstract 

In computational linguistics, information retrieval and 
applied cognition, words and concepts are often represented 
as vectors in high dimensional spaces computed from a 
corpus of text. These high dimensional spaces are often 
referred to as Semantic Spaces. We describe a novel and 
efficient approach to computing these semantic spaces via 
the use of complex valued vector representations. We report 
on the practical implementation of the proposed method and 
some associated experiments. We also briefly discuss how 
the proposed system relates to previous theoretical work in 
Information Retrieval and Quantum Mechanics and how the 
notions of probability, logic and geometry are integrated 
within a single Hilbert space representation. In this sense the 
proposed system has more general application and gives rise 
to a variety of opportunities for future research.  

Introduction 

 
In a variety of studies from cognitive science there have 
been encouraging results indicating that vector 
representations automatically generated from a corpus of 
text are able to replicate human word association norms, 
for example, semantic association (Lund and Burgess 
1996; Landauer 2002; Lowe 2001; Widdows 2004). Such 
models are often referred to as “semantic space” models. 
These studies provide evidence that vector representations 
within semantic space models capture the semantics of 
words in a pragmatic, every day sense. This opens the door 
to exploiting such models for developing information 
processing technologies, which are at least partially 
sensitive to cognitive semantics.  

Models such as Latent Semantic Analysis (Landauer and 

Dumais 1997) and Hyperspace Analogue to Language 

(Lund 1996) rely on co-occurrence matrices to produce 

high dimensional semantic vectors. Such large matrices are 

often dimensionally reduced via Singular Value 

Decomposition (SVD), a computationally expensive 

process. An alternative to these full co-occurrence matrix 

based methods is Random Indexing (Kanerva, 

Kristofersson and Holst 2000; Sahlgren 2005) (RI) which 

performs online dimensional reduction and is much more 

computationally efficient while still providing comparable 

quality (Widdows 2008). The semantic vectors generated 

by RI are not fixed but are rather incrementally updated to 

reflect the similarity in meaning between the entities that 

they represent. 
 The basis of the claim that Semantic Space models are 
able to capture meaning is the distributional hypothesis 
(Harris 1954), which states that words with similar 
meanings tend to occur in similar contexts. The vector   
corresponding to word w encodes co-occurrence 
information of words co-occurring with w in context and 
therefore the vector can be viewed as a computational 
manifestation of Firth's famous quote, “You shall know a 
word by the company it keeps” (Firth 1957). 
 Vector spaces are attractive for modeling the contextual 
meaning of words as they are mathematically well defined, 
are well understood and provide a computationally 
tractable framework with which to compute the semantics 
of a given textual corpus (Sahlgren 2005). Vector spaces 
also fit well with human cognition and its grounding in 
spatial metaphors (Gardenfors 2004). A metric defined on 
a vector space provides a means for easily computing 
similarity between objects in that space.   
 One of the challenges for Semantic Space models has 
been that they often don‟t capture the structural 
relationships between words in texts. The models are based 
on a „bag of words‟ approach. The structural relationships 
are not captured due to the perceived difficulty of not being 
able to effectively encode structural information within 
vectors. It is relevant and worth mentioning that this 
difficulty is the same as that found in the area of neural 
networks which are often charged with not being able to 
represent compositionality and systematicity (Plate 1994). 
These problems are grounded in the tension between 
localist (symbolic) and distributed forms of representation. 
 Within the Semantic Spaces research community recent 
years have seen the emergence of several methods that 
have been shown to be effective in encoding structural 
information in high dimensional vectors. Jones, Kintsch 
and Mewhort (Jones, Kintsch, and Mewhort 2006) 
introduced the BEAGLE model which uses Holographic 
Reduced Representations (HRR) to simultaneously encode 
word order and context information within semantic 
vectors. More recently (Sahlgren, Holst, and Kanerva 
2008) have introduced a derived model for encoding word 
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order based on permutations. The permutation model was 
recently introduced to the quantum interaction community 
(Widdows and Cohen 2009). There is evidence that 
capturing word order does improve the quality of the 
semantic representation (Jones, Kintsch and Mewhort 
2006; Widdows and Cohen 2009). 
 A disadvantage of the BEAGLE model is that it relies on 
a compression of the outer product of two semantic vectors 
which is computationally costly to compute. In this article 
an alternative is proposed and evaluated which involves 
using complex valued vectors in which the complex valued 
elements can be interpreted as the frequency components 
of semantic waveforms or signals. This approach uses 
aspects of both BEAGLE and the Permutation approach 
but also introduces novel conceptualizations that have 
interesting relationships to some existing areas of research. 
 
 
BEAGLE - Beyond Bag of Words 
 

BEAGLE, or Bound Encoding of the Aggregate Language 

Environment, is one of the more recent examples of a 

computational model of word meaning. The major advance 

offered by BEAGLE  is that word representations  include 

both a consideration of order information (i.e., structure) in 

addition to word context information. The basis for 

encoding structure is the use of an outer product of two 

vectors resulting in a matrix, or rank 2 tensor. By way of 

illustration, assume the word dog is represented by a 

column vector d and the word bite to be represented by the 

column vector b. The association between these words,  

“dog bite”, can be represented as the outer product of these 

two vectors: db
T
 The resulting matrix represents an ordered 

association between the words dog  and bite . Such 

matrices have been used to model ordered word 

associations in human memory, e.g., (Humphreys, Bain, 

and Pike 1989) and more recently in BEAGLE (using the 

compressed outer product).  Note db
T 

is not necessarily 

equal to the matrix bd
T
, which is what one would expect as 

word order in language is by and large not commutative. 

The above scheme using outer products can be 

generalized into representing arbitrarily long sequences of 

words by using the Kronecker (tensor) product
1
, but the 

tensor representations explode rapidly in dimensionality. 

One approach to redress this problem is to constrain the 

dimensionality by compressing the outer product into a 

vector representation of the same dimensionality as the 

constituent vectors in the outer product. This is the 

approach used in a type of representation known as a 

Holographic Reduced Representation (HRR) introduced by 

Plate (Plate 1991). BEAGLE uses HRRs as they enable the 

binding of representations without increasing the 

dimensionality. This binding (compressed outer product), 

is accomplished via circular convolution.  

                                                 
1
 the ``outer" or ``dyadic" is a special case of the tensor 

product between two vectors of the same dimension 

For example, given two vectors x= (x0, ... ,xn) and y = (y0, 

... ,yn), the circular convolution x⊗y results in an n-

dimensional vector z = (z0, ..., zn) whereby each component 

zi of the vector representation is computed according to the 

following equation: 

 

(mod 1) ( )(mod 1)0

n

i j n i j nj
z x y   

 

The above equation can be visualized as depicted in Figure 

1. 

 

 
 

Figure 1. Circular Convolution 

 
Circular Convolution has complexity O(n

2
) but this can be 

reduced to O(n logn) by using a Fourier transform to 
transform both vectors into the frequency domain, applying 
an element-wise multiplication, and then transforming 
back. 
 The other operations required for BEAGLE are 
superposition, permutation and a similarity measure. 
Superposition equates to simple vector addition and allows 
one to represent items as sets (superpositions). Permutation 
corresponds to simply re-ordering the elements of the 
vector. The similarity measure that is generally used is the 
cosine of the angle between the normalized vectors that are 
being compared. 

BEAGLE uses two different vectors for each word w in 

the model: a) an environmental vector, and b) a memory 

vector. The environmental vector is a word signature 

vector with elements of the vector sampled from a normal 

distribution with mean 0.0 and variance 1/n, where n is the 

dimensionality of the vector. The information in the 

memory vector can also be stored in two separate vectors, 

one for context and one for structure.  

The context vector is a standard co-occurrence vector for 

w, the components of which give a weighted representation 

of how words are co-occurring with word w using a 

sentence or term window as the unit of context. 

The structure vector ow is used to accumulate word order 

information formed by the superposition of vectors 

representing n-grams involving word w. For example, 

consider the sentence “A dog bit the mailman”.  The 

structure vector odog is built up as a sum of so-called 



“bindings”, each of which is defined in terms of a 

convolution. For example, for bi-grams (n=2), 

 

binddog,1 = eA  ⊗ (Π Ф), 

binddog,2 =  ⊗ (Π ebit) 

 

Where eA is the environmental vector for “A”, ebit is the 

environmental vector for “bit”, Π is a predefined 

permutation, and ⊗ is the convolution product. The 

permutation is required to make convolution non-

commutative. The position of the word being coded is 

represented by a constant random placeholder vector,  

(sampled from the same element distribution from which 

the environment vectors e were constructed). 

All n-gram vectors (2  n  7) are thus formed are then 

superposed into a single vector, normalised, and then 

added to the structure vector for the target word. For 

example, 

odog= bind dog, j

j 1

7

 

Once again, when all words in the corpus have been 

processed, the structure vector for each word is normalised, 

and this normalised vector represents the structure signal 

for that word in the context of the corpus.  Observe how 

multiple circular convolutions must be computed for the 

structure vector of each word in the vocabulary of interest. 

This is computationally intensive. For a full and detailed 

description of the construction of structure vectors and 

their use the reader is encouraged to see (Jones, Kintsch, 

and Mewhort 2006) 
 
Random Indexing 
 
Random Indexing (Kanerva, Kristofersson and Holst 2000) 
(RI) introduced an effective and scalable method for 
constructing semantic spaces from large volumes of text. 
The method is based on work by Kanerva on Sparse 
Distributed Representations (Kanerva 88, 2000). A recent 
introduction to computing with large distributed 
representations is given by Kanerva in (Kanerva 2009). 
The RI method is based on the observation that there are 
many more nearly orthogonal than truly orthogonal 
directions in high dimensional space (Hecht-Nielsen 1994) 
so that if we project points in a vector space into a 
randomly selected subspace of sufficiently high 
dimensionality, the distances between the points are 
approximately preserved (Johnson and Lindenstrauss 
1984). The random projection matrix is often constructed 
from a Gaussian distribution but (Achlioptas 2001) has 
shown that simpler distributions can be used. RI generally 
uses sparse ternary random vectors with values (1, 0,-1). 
 
Encoding Word Order with Permutations  
 
Sahlgren, Holst, and Kanerva introduced the idea of 
permuting the coordinates of random vectors to encode 

information about word order (Sahlgren, Holst, and 
Kanerva 2008). When the coordinates of a vector are 
shuffled with a random permutation, the resulting vector is 
nearly orthogonal to the original one with very high 
probability. The original vector can be recovered by 
applying the reverse permutation, meaning that 
permutation is invertible. Since the elements of the random 
vectors are independent of each other, a simple rotation of 
the elements can be used for permutation. To encode the 
word order vector for “dog” using the phrase “A dog bit 
the mailman” and using a term context window of two, we 
have 
 
<dog> = (Π

-1
a) + (Π

+1
bit) + (Π

+2
the)  

 
where Π

n
 indicates rotation by n places. Using permutation 

to encode word order is very computationally efficient 
compared to using convolution to encode word order as 
implemented in BEAGLE. The primary difference is that 
ngrams encoded using convolution contribute very specific 
information to the focus word vector, while encoding using 
permutation contributes less specific but more 
generalizable information (Sahlgren, Holst, and Kanerva 
2008). Permutation can also be used to simply encode 
whether a word is to the left or to the right of the focus 
word. 

 
Circular Holographic Reduced 
Representations 
 
We now describe a variation of standard HRRs that are 
described by Plate In his PhD thesis (Plate 1994; see also 
Plate 1991). Plate informally refers to this variation as 
“circular vectors” or “HRRs in the frequency domain”. For 
the purpose of this paper we will refer to them as Circular 
HRRs or CHRRs.  The idea is based on the observation 
that if circular convolution is equivalent to element-wise 
multiplication with complex numbers in the frequency 
domain, then maybe it is possible to work exclusively with 
complex numbers and avoid some of the computational 
cost of Fourier transforms. The representation therefore 
becomes a vector of complex elements where each element 
can be thought of as representing a specific frequency 
component of a signal, or vector, with associated phase 
angle and amplitude. The representation is normalized 
when the complex elements all lie on the unit circle in the 
complex plane.  
 

 
 
Figure 2. A CHRR of dimension 5 

  
 Plate describes how operations on standard HRRs map 
to operations on CHRRs in the frequency domain. A 
primary advantage of the CHRR representation is that 
binding (convolution) can be computed in O(n) time in 



contrast to O(n logn) when using standard HRRs and 
Fourier transforms.  

Entity Circular System Standard System 

Random 
vector 

Elements iid as ∪(-
π,π) 

Elements iid as 
N(0,1/n) 

Superposition Angle of sum θ⊕φ Addition x + y 

Binding 
(Convolution) 

Modulo-2π sum of 
angles. 

Convolution x*y 

Inverse Negation(modulo-
2π) -θ 

Involution x* 
(approximate) 

Similarity Mean of the cosine 
of corresponding 
angle differences 

Dot-product x∙y 

Normalization Not needed when 
elements lie on unit 
circle 

<x> 

Permutation Permute elements Permute 
elements 

 
Table 1. Comparison of operations for the Circular and Standard 

Systems of HRRs. Note: We also add the operation of 

permutation which has been found to be very useful for encoding 

information such as sequence position. 

 
The operation of superposition is equal to the angle of the 
sum of the vectors being superposed. This operation raises 
some concerns when used in practical applications but how 
we handle it is described below. The similarity operation is 
equal to the mean of the cosines of the differences between 
the two vectors being compared.   

a.    b.               
 
Figure 3.  (a) Superposition,(A+B)  (b) Convolution A⊗B  
 
We also make use of the exact inverse operation, also 
called negation. The negation of one vector from another 
can be written as A not B. It is simply the superposition of 
A with the complement of B, in other words, the 
superposition of A with the vector that has components 
that are 180 degrees out of phase with the components of 
B. We use this operation in a similar way to the quantum 
negation operation introduced by Widdows and Peters in 
(Widdows and Peters 2003).  
 

 
Figure 4. Negation (A not B) via the superposition of the 

complement of B. 

A.  

 

B.  
 
Figure 5. CHRR permutation – B is rotated one place to the right 

in relation to A. 

 

We use CHRRs to construct a BEAGLE-like algorithm 
that is efficient and conceptually rich. 
 
Application to Semantic Spaces 
 
We now describe how we use CHRRs for encoding ngram 
structure vectors and how this method differs slightly from 
that used by BEAGLE. The easiest way to understand the 
method is to think of it as a hybrid BEAGLE-Permutation 
approach. NGrams are bound via convolution (in the 
frequency domain) as in BEAGLE, but the place-holder 
vector Ф is not used. Instead, ngrams that are to the left of 
the target word are bound and then permuted (rotated) by -
1, and the ngrams that are to the right of the target word are 
bound and permuted by +1. We then bind these two results 
together so that the left and right portions of the term 
window remain associated when they are superposed into 
the memory vector for the target word. The motivation for 
constructing the structure vector in this way is that it 
eliminates the need to compute one of the convolutions. It 
is also possible, however, to not perform the final binding 
so that ngrams to the left and right of the target word are 
not associated with each other when they are superposed 
into the memory vector. This then results in a method that 
is very similar to pure Permutation with the difference 
being that it is not just single term vectors that are 
permuted and superposed, but also their combinations 
encoded as bound ngrams. As in BEAGLE, each time we 
bind two vectors, we permute one of them (the right hand 
vector) so that information relating to their relative order is 
preserved.    
 
The proposed system can therefore be used to encode word 
order in a BEAGLE-like fashion, a pure Permutation 
fashion, or a combination of both. The system can also 
construct traditional context vectors which don‟t encode 
word order, either using a document context or term-
window context. For the purposes of this paper we use the 
BEAGLE-like approach. 
  
Implementation 
 
Our implementation of the proposed method uses the Java 
programming language, primarily because it is cross-
platform. We find Java to be adequately fast while 
providing reduced development time compared to other 
languages such as C and Fortran. We have also 



implemented a Java version of BEAGLE which we use to 
compare with the newly proposed method. The BEAGLE 
implementation makes use of the Parallel Colt Java library 
for numerical routines and in particular Fourier transforms. 
We have also built our system to integrate as much as 
possible with the SemanticVectors package (Widdows and 
Ferraro 2008) maintained by Widdows and to which the 
first author of this paper is a contributor. A difference in 
data types in  the underlying representation prevents 
complete integration.  
 At the heart of the implementation is a CHRR object 
which represents a CHRR and the operations defined on it. 
It stores complex vector components in two different 
formats. When the CHRR is normalized, ie. all 
components lie on the unit circle, the phase angle is stored 
as a 16 bit Java Unicode char (format 1). This means that 
the phase angle is discretised using 16 bit precision ie. 
from 0 to 65535. The Java char data type is also naturally 
circular so that when we add phase angles they are 
effectively added modulo 2π. During the operation of 
superposition the vector components stored as phase angles 
are converted to complex values where the real and 
imaginary components are stored as floats (format 2). 
When superposition is complete (all text is processed) and 
the representation is normalized the complex values are 
converted back to phase angles represented as Java chars. 
The conversion is executed using lookup tables to improve 
efficiency. 
 When performing similarity operations a lookup table is 
also used to save us computing the cosine of angles. 
 
Experiments 
 
For our experiments we used the King James Bible and 
also the TASA corpus. The TASA corpus (compiled by 

Touchstone Applied Science Associates) was made available to 
us courtesy of Professor Thomas Landauer, University of 
Colorado (Landauer, Foltz and Laham 1998). The TASA 
corpus contains a collection of English text that is 
approximately equivalent to what the average college-level 
student has read in his or her lifetime.  
 When computing context vectors we use the corpora 
with stop words removed. When computing structure 
vectors we include the stop words as they are generally 
very important for syntactic structure. 
 We generated models (semantic spaces) using a wide 
range of parameter values for dimension and ngrams, as 
well as using both document-term contexts and term-term 
contexts. The vector dimension varied from 500 to 2048. 
Ngrams (the maximum number of terms in generated 
ngrams) varied from 3 to 5. We did not use 7 as used by 
Jones and Mewhort, as from previous experience this was 
not found to improve results. 
 We compared structure queries on the KJB corpus using 
CHRRs with results obtained by (Widdows 2009) using 
permutations to encode word order. As can be seen in table 
2, results are very similar. Results show similarity to the 
given query term in the generated semantic space. 

 

“king of ?” (CHRRs) “king of ?” (Permutation) 

0.712 

0.709 

0.687 

0.616 

0.610 

0.496 

Syria 

Assyria 

Zobah 

Jarmuth 

Persia 

Babylon 

0.728  

0.699  

0.662 

0.647 

0.604 

0.532 

Assyria 

Babylon 

Syria 

Zobah 

Persia 

Judah 

 
Table 2. Structure query, KJB corpus, ngrams = 3 (Permutation 

result is taken from (Widdows 2009) 

 

We also performed structure queries using CHRRs on 

the TASA corpus. As can be seen in table 3, structure 

queries are quite good at identifying names, object 

properties and parts of speech  

 

king ? across the ? 

0.550 
0.541 
0.539 
0.534 
0.519 
0.472 
0.400 
0.346 

midas 
myron 
pellinore 
aegeus 
farouk 
lear 
jr 
tuts 

0.200 
0.144 
0.135 
0.135 
0.129 
0.124 
0.119 
0.115 

pontoon 
flatlands 
rooftops 
lawn 
quadrangle 
tfr 
campground 
pleat 

Blue ? He ? 

0.484 

0.410 

0.406 

0.399 

0.301 

0.284 

0.266 

0.258 

jeans 

jays 

serge 

elk 

litmus 

eyed 

ribbon 
mitten 

0.688 

0.571 

0.561 

0.551 

0.550 

0.542 

0.537 

0.529 

shouted 

wrote 

remembered 

paused 

asked 

hated 

felt 

spoke 

 
Table 3. Structure query, TASA corpus, dim = 1024,  ngrams = 5 

 
Bank bank NOT savings 

0.464 

0.389 

0.377 

0.348 

0.326 

0.322 

0.319 

0.315 

0.311 

0.310 

0.310 

0.307 

0.306 

banks 

savings 

checking 

deposit 

invest 

customers 

borrow 

cochino 

escambia 

depositors 

balances 

lend 

depositor 

0.455 

0.257 

0.235 

0.219 

0.211 

0.211 

0.210 

0.208 

0.207 

0.205 

0.203 

0.202 

0.202 

bank 

yellowstone 

cochino 

mississippi 

banks 

cuyahoga 

nueces 

ohio 

hudson 

anthem 

park 

tiber 

rhine 

 
Table 4. Similarity query with negation, term-term context, 

TASA corpus, dimension = 1000 



 

We also successfully used the negation operation to 

identify the various senses of an ambiguous word, in this 

case the word “bank”. 

 

Results 
 

The experiments we have reported are only a small part of 

the experiments that are required to make a proper 

comparison of different semantic space building 

approaches. This will be the topic of future research. What 

we can say is that the results that we have obtained seem to 

be comparable in quality to results obtained using 

BEAGLE and Permutation. The system that we have 

described and implemented is significantly faster than that 

of BEAGLE but not as fast as that of using permutation to 

encode word order. We believe, however, that the real 

benefit of using CHRRs lies in the conceptual richness of 

the representation that is still yet to be explored.  

 
Related Research 
 
We have found that the representational system which we 
have described above for representing context and 
structure within text has many links to other areas of 
research. Some of these links may be formed purely by 
similarities in mathematical formalisms, while others may 
indicate a much deeper structural connection. We now 
elaborate on a few of these connections. 
 
Holography 
 
Before matrix memories were used to construct distributed 
associative memories, optical holography was proposed as 
an analogy for human memory. A number of authors 
including (Pribram 1966, Gabor 1968; Willshaw, 
Buneman, and Longuet-Higgins 1969; Borsellino and 
Poggio 1973) considered associative memory models 
based on convolution and correlation, mathematical 
operations used in holography. To construct a holographic 
image a wave which has been reflected from an object or 
scene (object wave) falls upon the recording medium. 
Another wave known as a reference beam also illuminates 
the recording medium so that interference occurs between 
the two beams. A seemingly random pattern is produced 
(hologram) which when illuminated by the original 
reference beam produces the original light field which was 
reflected from the objects or scene. This effect can be used 
to implement a form of holographic storage and it is a form 
of hetero-associative memory. It is this that inspired Plate 
to call his representations Holographic (Plate 1994). The 
vector memories described above to encode word order can 
also be compared to a type of holographic storage. There 
may be other types of wave-like phenomena that we can 
map to CHRRs and this opens up many avenues for further 
research.  
 

Quantum Interaction   
 
Recent times have seen the application of quantum 
formalisms to non-physical complex systems that exhibit 
contextual effects and interactions. (Kitto 2008). Cognitive 
processes, and in particular, the processes of concept 
formation (Gabora and Aerts 2002; Aerts, Broekaert,and 
Gabora 1999; Aerts and Gabora 2005), and of decision 
making (Busemeyer & Wang 2007; Khrennikov 2009) 
have been modeled using quantum formalisms. Semantics 
and Information retrieval are other areas that have also 
been increasingly modeled using quantum formalisms 
(Van Rijsbergen 2004; Widdows 2004; Bruza & Cole 
2005; Nelson & McEvoy 2007; Bruza et al. 2008). 
 Like CHRRs, the representation space in Quantum 
Theory is a Hilbert space on a complex field. Are there 
relationships between QT and the representational system 
outlined in this paper that may lead to interesting insights 
and be usefully applied? 
 Van Rijsbergen (2004) describes a framework for 
unifying the vector space, probabilistic and logical models 
of information retrieval such that the reasoning that occurs 
within each of the models is formulated algebraically and 
can be shown to depend on the geometry of the 
information space. The approach taken is to use the 
mathematics of Hilbert spaces in a way which is very 
similar to its use in quantum mechanics. CHHRs would 
seem to provide a practical implementation of some of the 
ideas expressed within this unifying framework. For 
example, the state of a word (or other linguistic unit) in 
memory may be represented as, for example, a 1000 
dimensional complex valued vector and can be written as 
|v> ∈ ℂ1000

. It is constructed from the weighted 
superposition of context and structure vectors that are 
encountered during the processing of text. Probabilities can 
be associated with subspaces and a language of conditional 
logic may be able to be constructed (Rijsbergen 2004). 
 Bruza & Cole (2005) relates the different senses of a 

word to the different eigenstates of the semantic 

representation. The eigenvalues are related to the 

probabilities of collapse when a quantum measurement is 

performed. In a Semantic Space using CHRRs, an 

observable such as semantic similarity, structural 

similarity, or both, could be measured via the application 

of a self-adjoint linear operator.  

 Can we think of the evolution of semantic CHRRs in the 

same way as that of a quantum state? What sought of 

operators may be employed? (see Gabora and Aerts 2009) 

 Reference should also be made to recent connections 

identified between HRRs in the frequency domain and 

Geometric Algebra in the context of quantum computation 

(Aerts, Czachor and De Moord 2009). This should be a 

subject of future research.  

 
Interference 
 
A primary effect in wave-like phenomena is the production 
of interference when two or more waves combine. When 



waves are in phase then there is constructive interference, 
while when they are out of phase there is destructive 
interference. When CHRRs are superposed the frequency 
components that are in phase (or close to each other in 
phase value) resonate and are amplified while those that 
are out of phase destroy or inhibit each other. 
 

            
 
A 

              
B 

 
Figure 6. A – Destructive interference between nearly 
orthogonal waves. B – Constructive interference between 
waves with similar phase. 
 
 In the context of finding vectors that are nearest 
neighbors of a query vector, the negation operation 
described and exemplified above (bank not savings) can be 
thought of as using destructive interference to destroy or 
reduce the influence of the vector which is negated.  
 In a recent paper Zuccon, Azzopardi, and Rijsbergen 
introduced the Quantum Probability Ranking Principle 
(Zuccon, Azzopardi, and Rijsbergen, 2009) (QPRP) for 
information retrieval in which interference effects between 
documents are used to compute optimal ranking solutions 
for document retrieval. It is proposed that this principle be 
used instead of the Probability Ranking Principle (PRP) 
when documents cannot be assumed to be independent of 
each other. We propose that the representations described 
in this paper may provide a very natural and intuitive 
method for implementation of this principle.   
 

Conclusion 
 

We have described a novel and efficient approach to 

computing a semantic space via the use of complex valued 

vector representations. This approach builds upon previous 

work in Holographic Reduced Representations and their 

application to Semantic Spaces. We have shown that the 

proposed method can be practically implemented and have 

provided results from computational experiments. These 

results indicate that further research and experiments in 

this area are warranted and that rich conceptual 

relationships exist between the proposed method and other 

research areas such as optical holography and quantum 

interaction. A more exhaustive and rigorous set of 

investigations are required to compare the proposed 

method with existing methods.  
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