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Abstract. We present several new observations on the SMS4 block ci-
pher, and discuss their cryptographic significance. The crucial observa-
tion is the existence of fixed points and also of simple linear relationships
between the bits of the input and output words for each component of
the round functions for some input words. This implies that the non-
linear function 7' of SMS4 does not appear random and that the linear
transformation provides poor diffusion. Furthermore, the branch number
of the linear transformation in the key scheduling algorithm is shown to
be less than optimal. The main security implication of these observations
is that the round function is not always non-linear. Due to this linear-
ity, it is possible to reduce the number of effective rounds of SMS4 by
four. We also investigate the susceptibility of SMS4 to further cryptanal-
ysis. Finally, we demonstrate a successful differential attack on a slightly
modified variant of SMS4. These findings raise serious questions on the
security provided by SMS4.

Key words: SMS4, block cipher, round function, fixed point, encryp-
tion, key scheduling algorithm, linearity, cryptanalysis

1 Introduction

SMS4 [T47] is a 32-round block cipher with 128-bit input block and 128-bit mas-
ter key. It is used in the Chinese Wireless LAN Wired Authentication and Pri-
vacy Infrastructure (WAPI). Using the terminology of Schneier and Kelsey [16],
the cipher employs a homogeneous, complete, source-heavy unbalanced Feistel
network structure. The encryption and the key scheduling algorithms are nearly
identical. The only difference between the structures of these two algorithms is
the linear transformation used in each round function.

Since SMS4 was made public in January 2006, the cipher has endured ex-
tensive cryptanalysis. Reduced-round versions of the cipher have been cryptan-
alyzed using integral [12], rectangle [I3IT7/T9/10], impossible differential [I3I17],
boomerang [I0], differential [I0/T9] and linear [I0I]] attacks. The best attack
so far is a differential attack on 22 rounds by Zhang et al. [I8]. In the same
paper, they observe that the number of rotations and XOR operations used in
the linear transformation of the SMS4 block cipher is the minimum required to



2 M.R. Z’aba et al.

achieve an optimal branch number. They also show that the linear transforma-
tion is bijective and present the distribution of input and output patterns of this
transformation to assist in differential attacks.

In this paper, we present further observations on both the encryption and the
key scheduling algorithms of the SMS4 block cipher. The crucial observation is
the existence of fixed points and also of simple linear relationships between the
bits of the input and output words for each component in the round functions.
In particular, we show that the non-linear function 7" has 11 fixed points. Note
that the expected number of fixed points for a random permutation is one [9]
Chap. 6]. Therefore, the function T does not behave like a random permutation.
We also identified a set of input words for which the round functions of both the
encryption and the key scheduling algorithms produce the same output words.
Furthermore, we show that the branch number of the linear transformation in
the key scheduling algorithm is four, which is less than optimal.

One of the implications of these observations is that the first four round
functions of SMS4 are not always non-linear. Under this condition, the number
of effective rounds is reduced by four: from 32 to 28. We briefly explore the sus-
ceptibility of SMS4 against algebraic and advanced variants of the slide attacks.
Finally, we demonstrate that if the linear transformation in the key scheduling
algorithm was used in the encryption algorithm, then this variant of SMS4, re-
duced to 27 rounds, is vulnerable to a differential attack. In contrast, the best
differential attack on the original SMS4 is on 22 rounds [I8], which is also the
best existing attack so far. These observations might potentially be useful in
attacking SMS4 itself.

This paper is organized as follows. Section 2] describes the specification of the
SMS4 block cipher. The observations on the components in the round functions
of both the encryption and the key scheduling algorithms are analyzed in Sec-
tion Bl Section [ discusses the cryptographic significance of these observations.
Section [B] presents a differential attack on a slightly modified variant of SMS4.
A summary of our observations and conclusions are given in Section

2 Specification of SMS4

SMS4 [1417] is a block cipher that accepts a 128-bit plaintext block P, and a 128-
bit master key K. The master key is used as input to the key scheduling algorithm
to produce a set of thirty-two 32-bit round subkeys. The plaintext block and the
round subkeys are used as input to the encryption algorithm to produce the
ciphertext block C'. The encryption algorithm consists of 32 applications of the
round function.

2.1 Round Function of the Encryption Algorithm

Let P = (Xo, X1, X2, X3) denote the 128-bit plaintext block formed from the
concatenation of four 32-bit words X;. Let K; denote the 32-bit i-th round
subkey derived from the 128-bit master key K. The derivation of these subkeys
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is explained in Section Let T'= L o S denote the function composed of the
non-linear transformation S and the linear transformation L. Both S and L are
described in detail later. The i-th round function of the encryption algorithm
can be described as follows:

Xipa=Xi0T( X1 © Xij2® Xiy3 @ K;), i=0,1,...,31

and is depicted in Figure [l The ciphertext consists of the concatenation of the
four 32-bit words C' = (X35, X34, X33, X32), which is obtained in the reverse
order from the output of the final round function to facilitate decryption.

X Xit1 Xito Xits
K;

{714

Xit1 Xito Xits Xita

Fig. 1. Round Function of SMS4 in Round 7

Decryption is the same as encryption with the only difference being the order
in which the subkeys are used; this is in the reverse order as follows:

Xi=X;44® T(XiJrg D XitoB Xig1 P Ki), 1 =31,30,...,0.

The function T is the composition of the two transformations S and L,
where S is applied first, followed by L. These transformations operate on 32-
bit words. Let X; = (X; 0, Xi1,Xi2,X;,3) denote a 32-bit word formed from
the concatenation of four 8-bit words X; ;. The application of the non-linear
transformation S to X; consists of the application of a single 8 x 8 S-box s to
X, ; as follows:

S(X;) = (s(Xi,0), 8(Xi1), 8(Xi2), 8(Xi3))-

Let X; <« k denote the rotation of X; by k bits to the left. The linear
transformation L is defined as:

LX) =X,0(X; «2)d (X, x10)® (X; « 18) ® (X; < 24).

2.2 Round Function of the Key Scheduling Algorithm

In the initialization phase of the key scheduling algorithm, a 128-bit constant
FK is XORed with the 128-bit master key K to produce the initial inputs for the
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key scheduling algorithm. Let K = (M Ko, M K1, M K5, M K3) denote the master
key formed from the concatenation of four 32-bit words M K;. Similarly, let
FK = (FKy, FK,, FK,, FK3) denote the constant as the concatenation of four
32-bit words F'K;, where F'Ky = A3B1BAC6, F'K1 = 56AA3350, FFKs = 677D9197
and FK3 = B27022DC (in hexadecimal). Then, the initial input words to the key
scheduling algorithm are K;_4y = MK; & FK; for i = 0,1,2,3. Note that this
initialization phase has no cryptographic significance because the operation is
linear and the constants are known.

Let T/ = L' o S denote the function composed of the non-linear transfor-
mation S and the linear transformation L’ (L’ is described later). Note that
this transformation L’ is the only difference between the round functions of the
encryption and the key scheduling algorithms. Let K; and CK; denote the i-th
round 32-bit subkey and constant, respectively. The i-th round function of the
key scheduling algorithm can be described as follows:

Ki=Ki 46T (Ki 36K, 2®K;_18CK;), i=0,1,...,31.

The round constants CK; = (CK,; 9,CK; 1,CK; 2,CK; 3), which are composed
of the concatenation of four 8-bit words CKj ;, are defined as

CK; ; = (28 + 7j) mod 256, ¢ = 0,1,...,3land j =0,1,2,3.
The linear transformation L’ is defined as:

I(X)=X& (X «13)® (X « 23).

3 Observations on Components in the Round Functions

This section presents several new observations on each component in the round
functions of both the encryption and the key scheduling algorithms of SMS4.

3.1 Simple Linear Relationships between Input and Output Words

We observe the existence of a simple linear relationship between the bits of
some input and output words of each component in the encryption and the key
scheduling algorithms. For a component F', there exist a set of output words of
F which are equivalent to a simple rotation of the input word. That is, for some
32-bit words X,

F(X;) =Xi < j (1)

for some particular rotation values of j € {0,1,...,31}. A fixed point is a special
case of this relationship when j = 0. For example, consider the linear transfor-
mation L, i.e. F(X;) = L(X;) and the input word X; = 02020202. The output
word is F(02020202) = 08080808, so Equation [l is valid for j = 2,10, 18, 26.
In the remainder of this section, Nr denotes the total number of distinct
values X; that satisfy the relationship described in Equation [ for a particu-
lar component F. The set containing these input words X; is denoted by Op.
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Additionally, N ; denotes the number of individual values that satisfy this re-
lationship for a specific rotation value j. Note that the sum Z?io Np ; may be
higher than Np because some input words satisfy this relationship for multiple
values of j. For instance, in the previous example, i.e. F/(02020202) = 08080808,
the input word 02020202 is counted four times.

Non-linear Transformation S Recall that the non-linear transformation S
consists of the application of a single 8 x 8 S-box s, applied four times in parallel.
By reverse engineering, Liu et al. [I2] managed to deduce how the S-box for
SMS4 is constructed. They found that the S-box s uses an inversion in the finite
field, which is similar to that of the AES. Note that the design of the S-box
for the AES explicitly avoids fixed points [6]. However, we identified one fixed
point in s. The fixed point is the 8-bit value AB (in hexadecimal). Thus, the non-
linear transformation S also has a fixed point, which is the hexadecimal value
ABABABAB.

In addition to this fixed point, there also exist other input words X; that
satisfy the relationship S(X;) = X; < j for some j > 0. For these particular
input words, the transformation S is basically linear. There are Ng = 39 (in-
cluding the fixed point) distinct input words X; that have a relationship of this
form. Let @g denote the set containing the exact values of these X;, which are
given in Table Blin the Appendix. The number, Ng ;, of values that satisfy this
relationship for S, for each rotation value j is given in Table [T

Linear Transformation L We identified four fixed points (5 = 0) and 1020
other (j > 0) input words X; that satisfy the relationship L(X;) = X; « j, i.e.
Ny = 1024. Let @ denote the set containing the exact values of these X;. For
these input words, the linear transformation L provides poor diffusion because
the input bits of these words are not well scattered by L when producing the
output words. The number, NNy, ;, of values that satisfy this relationship for L,
for each rotation value j is given in Table [

Function T' As a non-linear cryptographic component, the function 7" of SMS4
should behave like a random permutation. The probability that a given permu-
tation of n elements has ¢ fixed points is given by [I5] Chap. 3]

_ 1 (n «— (D 1
pnvc—m'(c)'m—cﬂ'z BoS e

For both ¢ = 0 and ¢ = 1, as n tends to infinity, the probabilities p,, ¢ and py 1
approach e~ = 0.3679. Therefore, the number of permutations having at least
2 fixed points is approximately 1 — 2(0.3679) = 0.2642. Note that the expected
number of fixed points for a random permutation is one [9, Chap. 6].

By exhaustive search, we found 11 fixed points in the function T" of SMS4,
i.e. values X; such that T'(X;) = X; (for j = 0). The fixed points are 0BOBOBOB,
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Table 1. Number of output words which are equivalent to the rotation of the
input word by j bits to the left (0 < j < 31), for each component function

j Ns,j NL,J' NT,J' NL’,j NT’,j j Nsyj NL,j NT,J' NL’,j NT’,j
0 1 4 11 4 0 16 9 4 3 4 0
1 16 2 4 2 6 17 4 2 4 2 2
2 7 1024 7 8 8 18 3 1024 3 8 4
3 0 2 2 2 4 19 0 2 2 2 4
4 1 4 1 4 5 20 1 4 1 4 5
5 3 2 0 2 3 21 3 2 0 2 3
6 1 16 1 8 6 22 1 16 1 8 2
7 0 2 1 2 3 23 0 2 1 2 7
8 3 4 1 4 2 24 3 4 1 4 2
9 2 2 4 2 2 25 2 2 0 2 2
10 1 256 1 8 4 26 1 256 9 8 4
11 0 2 2 2 4 27 0 2 2 2 12
12 1 4 1 4 3 28 1 4 1 4 3
13 1 2 2 2 1 29 1 2 2 2 1
14 1 16 5 8 6 30 1 16 1 8 6
15 0 2 7 2 1 31 0 2 11 2 1

3E973E97, 3AE2C6AD, 62D367B9, 973E973E, E2C6AD3A, D367B962, C6AD3AE2, 67B962D3,
AD3AE2C6 and B962D367. For a random permutation, the probability of having
11 fixed points is approximately p, 11 = 1/(11!- e) = 9.216E — 9, which is quite
low. Interestingly, if the S-box of SMS4 is replaced by the S-box of the AES,
there are no fixed points in the resulting function 7.

Similarly, there exist input words X; that satisfy the relationship T(X;) =
X; & j for j > 0. In total, there are Ny = 59 distinct input words X; (including
the fixed points) that satisfy this relationship. Let @7 denote the set containing
the exact values of these X;, which are given in Table [ in the Appendix. The
number N7 ; for each value of j is given in Table[Il

Recall that the function T is composed of S and L, i.e. T'= Lo S. The 39
input words contained in the set @g do not all appear in the set ©p. However,
there are seven input words that appear in the intersection of these two sets,
Og N Op. These input words are 0AOAOAOA, OBOBOBOB, 21212121, 26262626,
ABABABAB, E7TETE7E7 and FAFAFAFA.

Linear Transformation L’ We found, by exhaustive search, that there are
no fixed points for L’. However, we found N; = 8 distinct input words X; that
satisfy the relationship L'(X;) = X; < j for some j > 0. Let O, denote the set
containing the exact values of these X;. As a linear transformation, the diffusion
provided by L’ is poor for these input words. Note that the size of the set Op,
is smaller than the size of O, despite the fact that L’ has fewer rotations than
L. The number Ny ; of values for each rotation value j is given in Table[Il
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Function T Unlike the function T, the function 7" has no fixed points. How-
ever, there still exist some input words X; that satisfy the relationship 77(X;) =
X, <« j for some j > 0. In total, there are Ny = 59 distinct input words X;
that satisfy this relationship. Let @7 denote the set containing the exact values
of these X;, which are given in Table [Blin the Appendix. The number Ny ; for
each value of j is given in Table [T

Recall that the function T” is composed of S and L', i.e. T/ = L' o S. The
number N7 of input words in the set @7/ is about 7 times more than the same
number for @y, and 20 more than @g. Unlike the function T, the input words
contained in the set ©g do not appear at all in the set Op, i.e. Og N Op = (.
However, there exist a set of input words for which the functions T' and T’
produce the same output words. This relationship is discussed in the following
section.

3.2 Relationship between T and T’

As noted in Section 2 the encryption and the key scheduling algorithms are
nearly identical, differing only in the linear transformation. We identified eight
input words for which the transformation L and L’ produce the same output
words, ie. L(Y;) = L'(Y;). These input words Y; are 00000000, 33333333,
55555555, 66666666, 99999999, AAAAAAAA, CCCCCCCC and FFFFFFFF.

Recall that the non-linear transformation S is the same in both the functions
T and T". If there exist some input words Y; such that L(Y;) = L'(Y;), then
there exist words X; = S~1(Y;) such that T(X;) = L(S(X;)) = L'(S(X;)) =
T’(X;). The eight input words X; are 71717171, 28282828, 97979797, ASASASAS5,
1F1F1F1F, 18181818, 04040404 and BO9B9B9BI.

3.3 On the Branch Number of L’

A commonly used measure of diffusion for Substitution-Permutation-Network
(SPN) block ciphers is the notion of the branch number [6]. For an SPN cipher,
this number denotes the minimum number of active S-boxes for any two consec-
utive rounds. However, in the context of a generic Feistel cipher such as SMS4,
this is not always true. Therefore, the branch number of a linear transformation
L, denoted B(L), can be defined as the minimum number of non-zero subword
differences for any input and output pair of L. If the input word to L is parti-
tioned into m sub-words, then the optimal branch number for L is B(L) = m+1
[6].

The branch number is calculated as follows. Let X; = (X0, Xi1, ..+, Xim—1)
denote a mb-bit word formed from the concatenation of m b-bit words. Let
I'x,=I%,,Ix;, .- I, ,,_, denote a binary vector of length m where I, ; =1
if X ; is nonzero and I'x, , = 0 otherwise. Let wt(I'y,) denote the Hamming
weight (i.e. the number of non-zero bits) of I'y, . The branch number of L,
denoted B(L), is defined as

B(L) = min{wt(I'x,) + wt(Iy,) : X; #0and V; = L(X,)}.
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Table 2. The input-output pattern distribution of L’

I'x, Iy,

o 1 2 4 8 3 5 6 9 A C 7 B D E F
o 1 . . . . .
1 1 3 31 . 220
2 31 . 1 220
4 31 . 1 3 220
8 . . . . . . . 1 3 15 236
3 7 1 1 3 1 .242 210 220 252 ngo
5 1 3 1 1 . 1 218 250 218 250 no1
6 3 1 7 . 1 1 210 220 252 242 noo
9 1 1 7 1 3 380 370 338 236 no
A 1 . . 1 3 1 251 218 250 235 nio
C . . . . . 1 1 1 1 T 222 252 242 228 noo
7 1 3 1 1 240 248 242 249 249 251 n20 MN1g8 MNis MNi11 N23
B 1 . . 1 245 252 254 242 249 250 m1 ns5 na ni2 Nog
D . 1 1 253 249 252 245 252 242 ns no ns ni13 N30
E 1 3 . 250 250 243 253 249 243 ni7 Nia N9 MNi15 N24
F 253 251 250 252 ns ne ns nr Ne MN1o0 MN28 N27 N2 MN25 N31

For SMS4, the input word to both L and L’ is partitioned into m = 4
subwords. Therefore, the optimal branch number for both L and L’ is 5. Zhang
et al. [I8] showed that the branch number of L is indeed optimal, and noted
that the number of rotations and XOR operations used in L are the minimum
needed to reach this optimal branch number. However, they did not investigate
the branch number for L’. We determine the branch number for L’ using a
computer program and by observing the input-output pattern distribution table
defined as follows.

Let both I'x, and I'y, denote binary vectors of length m = 4. Furthermore,
let W[I'x,][Iy,] denote the I'x,-th row and I'y,-th column entry for the input-
output pattern distribution table. The entries for this table are computed as
follows. Initialize the counter W to all-zero. For every input X; = 0,1,...,2%2 -1,
calculate the output Y; = L'(X;) and increment the counter W[I'x,][I'y;]. The
resulting table for L’ is given by Table Bl where the entry ‘.’ denotes zero, for
simplicity. Due to size constraints, some values are denoted by n; given as follows.

no = 63688, n7 = 64023, n14 = 64049, ng = 64082, nas = 16323877,
ny = 63894, ns = 64024, n15 = 64050, ngy = 64088, n2o = 16324086,
ng = 63895, ne = 64025, nig = 64051, mna3 = 16323681, nso = 16324087,
ns = 63919, nio = 64026, ni7 = 64057, o = 16323702, ns1 = 4229286763
na = 63930, ni; = 64027, nis = 64061, nus = 16323764,

ns = 63939, niz = 64032, nio = 64065, nac = 16323875,

ne = 64019, i3 = 64040, ngo = 64070, nor = 16323876,

The branch number of L’ can be determined by first searching in Table 2] for
a non-zero entry W[I'x,|[Iy;] with I'x, # 0 for which the sum of the Hamming
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weight for I'x, and Iy, is the lowest among other entries. Then, the branch
number is calculated as B(L') = wt(I'x,)+wt(I'y;). An example of such an entry
is W[1][7] and thus, the branch number of L’ is B(L') = wt(1)+wt(7) = 1+3 = 4,
which is not optimal.

The input-output pattern distribution table also gives information regard-
ing possible and impossible subword difference paths propagated by L’. This is
useful for differential-type attacks. The sub-optimal branch number for L’ is an
indication of a potential weakness. This is exploited in SectionBlin a differential
attack on a slightly modified variant of SMS4.

4 Cryptographic Significance

This section discusses the cryptographic significance of the observations made
in Section Bl

4.1 Implications for the Key Scheduling Algorithm

The length of the master key for SMS4 is 128 bits, hence there are 2'2® possible
values of the master key. The key scheduling algorithm produces 32 subkeys,
each of 32 bits, thus the sequence of subkeys forms a 32 x 32 = 1024-bit bi-
nary sequence. Clearly, there are extremely many sequences of subkeys that are
impossible.

Note that the function 7", which is a 32-bit to 32-bit map, is bijective (using
the theorem provided by Zhang et al. [18]). In every round, the value of a single
32-bit word is updated using the output of T”, a function which takes the other
three 32-bit words as input. After four rounds, all 128 bits of the master key
are completely updated by the round functions. Therefore, we can reasonably
conjecture that all possible values of the first four subkeys are equally likely
to occur (statistically independent), whereas the values for the remaining 28
subkeys are determined entirely by these four subkeys. This conjecture allows us
to make the following claim.

We know from Section [B.1] that there are 59 distinct words X; contained in
the set ©7/. Recall that the value of the master key after the initialization phase
is partitioned into four 32-bit words (K_4, K_5, K_2, K_1) and the i-th round
constant is denoted by CK;. If the input words to the first four consecutive
functions T of the key scheduling algorithm are in the set @7/, then the first
four subkeys consist of merely linear combinations of the master keyﬂ. This event
is illustrated as follows. If (K_3® K_o® K_1 ® CKj) € Ops, then

Ko=K_,® [(K_3 K oK 1@ CKQ) <K ]0]
! Note that the initialization phase does not have any cryptographic significance.

Therefore, if we know the value of the resulting key after this phase, then we also
know the value of the master key.
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Similarly, if (Kfz K 10 Ky® CKl) S @T/; then

Ki=K 3& [(K_z PK 1K _4& [(K_3 PK oK 16 CK()) <K jo] (5]
CKl) <¢ .71]

Furthermore, if (K_1 & Ko ® K1 ® CK3) € Op/, then

Ko=K 28[(K.19K 4@ [(Ks®K 2 K_1®CKj) K jo] ®
K,g &) [(K,Q (&>) K,1 b K,4 (&) [(K,3 (&) K,Q D Kfl ) CKo) << ]0] D
CK,) < j1] ® OK3) < ja).

Finally, if (KQ PK1 Ky ® CKg) € Op/, then

Ki=K 10[(K_40[(K 3K 20K 16 CKy) K jo| b
Kso[(K:sdK 10K 40[(K 3K 20 K_ 1 ®CKp) K jo] ®
CK)) < j1] @

Koo[(KioK ,0[(K3dK 2@ K 1 ®CKy) <K jo] @
K3d[(K:sdK 10K 40[(K 30K 20 K 1 ®CKp) K jo] ®
CK1) K j1] ® CKs) K j2] @ CK3) < j3).

The above linear equations are valid for specific values of j; € {0,1,...,31}.
This event occurs with probability (59/232)* a2 271945 and thus, there are ap-
proximately 223® values of the master key which cause such an event to happen.

4.2 Implications for the Encryption Algorithm

As noted in Section B.1] there are 59 distinct words X; contained in the set Or.
If the input words to the first four consecutive functions T of the encryption
algorithm are in the set ©7, then the output block after four rounds consist of
merely linear combinations of the plaintext block and subkeys. In general, this
event is similar to that described in Section 4.1l Let us demonstrate the specific
case in which only fixed points occur in the first four consecutive rounds. Let Or
denote a subset of @7 containing the 11 fixed points for T' (Refer to Section [B.1]).
This event is shown as follows for the plaintext block P = (Xp, X1, X3, X3) and

subkeys Ky, K1, Ko and K3. If (X1 @ X2 ® X35 ® Ko) € Or then
X4=Xo® X1 ® X2 ® X3 K.
Similarly, if (Xo @ X359 X4 @ K,) € O, then
X5 = Xo® Ko @ K. (2)
Furthermore, if (X5 & X4 & X5 ® K») € O, then

Xe=X1 @ K1 @ K. (3)
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Finally, if (X4 ® X5 ® X6 @ K3) € Or, then
Xr=Xo00 Ko @ Ks. (4)

Clearly, for the specific case of fixed points, the linear relationships above are
much simpler than the general case because some words X; and subkeys K;
cancel. This specific event occurs with probability (11/232)* ~ 271142 and thus,
there are approximately 238 values of the plaintext block that cause such an
event to happen for the full SMS4. In the general case, there are 223-® values of
the plaintext block that cause the four-round linearity to happen.

4.3 Further Implications for Both the Key Scheduling and the
Encryption Algorithms

The points discussed in Sections [£.1] and have further security implications
for SMS4. In the (admittedly rare) event that both the key scheduling and
the encryption algorithms behave linearly for the first four rounds, the output
block after four rounds of SMS4 is composed of merely linear combinations of
the plaintext block and subkeys. The subkeys, in turn, are composed of linear
combinations of the master key. Theoretically, if both of these events occur at
the same time, then the number of effective rounds for SMS4 is reduced by four,
from 32 to 28.

The above discussions only consider the case for which the linearity occurs
in the key scheduling and the encryption algorithms in the first four consecutive
rounds. Note that it may be possible for the linearity to occur in any four of the
32 rounds of SMS4. Furthermore, for certain particular combinations of plaintext
block and master key, the linearity might possibly exist in more than four rounds.
In this case, the number of effective rounds for SMS4 can be further reduced.

4.4 Susceptibility to Algebraic Attack

The algebraic attack [5] introduced by Courtois and Pieprzyk consists of building
a system of binary equations that link the plaintext block, subkeys and ciphertext
block. The binary equations describing an S-box that uses a finite field inversion,
such as the AES and SMS4, are quadratic whereas the remaining equations are
linear. The system is then solved to obtain the key bits. One of the obstacles in
solving the system of equations for ciphers such as the AES and SMS4 is the
existence of quadratic equations. The claimed advantage of this attack is that it
only needs very few number of plaintext and ciphertext pairs.

As discussed in Sections [4.1] and [4.3] there exist a few exceptional cases
in which the non-linear functions 7" and T’ are linear in the first four rounds
of SMS4. Under these conditions, the binary equations describing the first four
rounds are also entirely linear. Therefore, there is no need to describe the S-boxes
in these rounds as systems of quadratic equations [12]. Since the occurrence of
this event is statistical in nature, we may need more plaintext and ciphertext
pairs compared to a conventional algebraic attack. However, the removal of some
quadratic equations might help in reducing the complexity of solving the equa-
tion system.
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4.5 Susceptibility to Advanced Variants of the Slide Attack

The slide attack was introduced by Biryukov and Wagner [3/4]. Given two differ-
ent plaintexts, the attack permits the sliding of the two encryptions by a certain
number of rounds. This is due to the similarity that exists between the structure
of the two encryptions. The attack also allows the sliding of encryption with
decryption [4].

We have shown in Section that there are eight input words for which
the functions 7' and T’ produce the same output words. This similarity might
provide an avenue for advanced variants of the slide attack. However, it is an
open problem to determine whether it is useful to slide the encryption algorithm
with the key scheduling algorithm if both algorithms are nearly identical, as is
the case for SMS4.

4.6 Subkeys and Related-Keys

As discussed in Section[£.]] we conjecture that all possible 32-bit subkey values of
the first four rounds of SMS4 are equally likely to occur. This allows us to explore
the relationship between subkeys in these rounds and subkeys in the subsequent
rounds. One possible relationship is described as follows. If the first four 32-bit
round subkeys are identical (that is K; = K for i = 0,1, 2,3 where K denotes
an arbitrary 32-bit value), then a total of 232 (out of 212%) master keys have the
fOHOWng fOI‘IIlS K,1 = K@T’(K@ OKg) K,Q = K@T/(K,1 D OKQ) ng =
K@T’(K,QGBK,l@K@C’Kl) and K_4 = K@T’(K s®@K_o®K_1®CKy).
If this event and the event discussed in Section [£.2] occur at the same time, then
the subkeys that exist in Equations Pl Bl and @ will cancel and the subkeys in the
first four rounds will have no effect on the intermediate words X5, Xg and X5.

Similarly, if the subkeys in the first four rounds are identical, then the subkeys
in rounds four (K4) and five (K5) have the following form:

Ki=KoT(KOKoK®CKy) =KoT (K®CKy)

Suppose that Ky = K, which implies that Ky = K = K @ T'(K & CK,) and
T'(K®CK,) = 0. Slnce CK4 is a known fixed round constant, only one value of
K can satisfy this equation, that is K = CK4®71717171 = 1060FF4. Therefore,
for all 232 master keys that have the form K; = K for i € {0,1,...,4}, only one
master key satisfies the relationship K3 = K. The remaining 232 — 1 master keys
have the relationship K3 # K,. Stated differently, if we are given a sequence of
subkeys containing five identical words K; = K for i € {0,1,...,4}, and K; #
1060FF4, then we know that the subkeys are not the first four subkeys derived
from the SMS4 key scheduling algorithm. These kinds of relationships can be
further investigated beyond the first four rounds by taking into consideration
the relationship between the round constants. The algorithm to derive these
constants is already given in Section 2.2l In a key recovery attack, if the attacker
knows the relationship of the words in the master key beforehand, then guesses
that are impossible can be skipped. This reduces the key space that the attacker
needs to guess.
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The previous single-key discussion may be extended to the related-key model.
Related-key attacks [I/I1] allow the attacker to choose the relationship between
two different master keys but not the actual value of the keys. The relationship
is chosen such that the round subkeys of the first master key are related in some
way to the round subkeys of the second master key. Then, several (known or
chosen) plaintexts are encrypted using these related master keys to obtain the
corresponding ciphertexts. The ciphertexts are then used to recover both master
keys. This is an area for further investigation.

5 A Differential Attack on Modified SMS4

This section presents a differential attack [2] on a modified variant of SMS4,
created by replacing the linear transformation L in the encryption algorithm with
L’. This basically means that we are attacking the key scheduling algorithm, if
it was used for encryption. We demonstrate that a differential attack is possible
on a 27-round version of this variant.

5.1 23-Round Characteristic

We use a 5-round self-iterating differential characteristic based on previous dif-
ferential attacks on SMS4 [TO/I8T9]. The characteristics used in these attacks
have six active S-boxes: three in the fourth round and three in the fifth. Based
on the entries of the input-output pattern distribution of L’ given in Table 2]
we know that there exist a number of differential paths where only two S-boxes
are active in one round. An example of such a path is the entry W{3][3].

Let a = (g, a1, iz, ar3) denote a 32-bit difference formed from the concatena-
tion of four 8-bit differences «;. The 5-round self-iterating characteristic satisfies

0 5 0in the first, second and third rounds; and « L, & in the fourth and
fifth rounds. This characteristic is given as follows: (o, a, ., 0) = (v, 0, 0, @) —
(o,0,a,0) = (0,0, 0, ) = (v, 0, 0, ) = (@, @y @, 0).

By exhaustive search, we found six values of o that satisfy the above 5-round
self-iterating characteristic such that only two bytes of o are nonzero (i.e. two
bytes are active). The values are 0000900C, 00C900C9, 00900C00, 0CO00090,

900C0000 and C900C900. The probability that «a Ly & for each of these values
is 2714, The probability for the 5-round self-iterating characteristics is therefore
(2714)2 = 2728, This characteristic can be concatenated four and a half times to
produce a 23-round differential characteristic with total probability (272%)% =
27112 given below.

(a, o, cx, 0) 220 (o, 0) 2By ), 0) 2BRounds,

(a0, ,0) 22 (0,0, 0) 252 (0,0, 0,0)
In comparison, the best 5-round differential characteristic on the original SMS4
has probability 273® and can only be concatenated up to three and a half times
(to construct a 18-round differential characteristic) with total probability 2-114
[1g].
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5.2 27-Round Key Recovery Attack

The previous 23-round differential characteristic can be used in a 27-round key
recovery attack on the modified variant of SMS4. Since the attack is heavily
based on previous differential attacks [TO[I8/T9], we only briefly describe the
attack.

Choose a = (00,00,90,0C) and let A be the set of all output differences of
T’ where only 2 S-boxes are active. For each S-box, there is only 127 possible
output differences. Therefore, the set contains 127 - 2 ~ 2% possible values.

Let P and P* denote a plaintext pair and let C' and C* denote the cor-
responding ciphertext pair after 27 rounds, where P = (Xy, X1, X2, X3), P* =
(X, X5, X5, X35), C = (Xa7, Xas, Xag, X30) and C* = (X3, Xig, Xa9, X35). The
attack proceeds as follows.

1. Generate m - (216)% = m - 248 plaintext blocks where bytes 2, 3, 6, 7, 10 and
11 are set to all possible values whereas the remaining bytes are fixed. These
propose m - 248/2 = m - 247 plaintext pairs (P, P*) having the difference
(o, , 0, 0).

2. Encrypt the plaintexts using 27 rounds of the modified SMS4.

3. Filter the ciphertexts so that we only choose (Xa7 ® X3;) € A. This filtering
causes about m - 247 - 278 = m - 239 pairs to remain.

4. Let v ; = s(X; i@ X1, 8 X420 Ki—1,;)0s(X] ;0 X[ ;00X o @Ki15)
and 9; ; = LI(XH_g,j ©® Xi*+3,j ©® aj).

5. For each round ¢ = 27,26, 25, do the following
(a) For each byte j =0,1,2,3, do the following

i. For each byte guess K;_1,; =0,1,...,FF, do the following
A. Calculate v; ; and §; ;.
B. If ;; = 0; 4, then store K; 1 ; as a possible correct candidate
key byte.
ii. After all values have been guessed for this byte, wrong pairs are
expected to be discarded by a factor of 278.

6. After Step (5), we have guessed 12 bytes of key material and about m - 239 -
(278)12 = m - 2757 pairs are expected to remain.

7. For round ¢ = 24, do the following
(a) For each byte guess K239 = 0,1,...,FF, calculate vo4,0 and daq,0. If

V24,0 = 0240, then store Ks3 ¢ as a possible correct candidate key byte.
(b) After all values have been guessed for this byte, wrong pairs are expected
to be discarded by a factor of 278.

8. After Step (7), about m-2757-(278) = m-275° pairs are expected to remain.
If m = 258 then for a wrong key guess, the expected number of remaining
ciphertext pairs is approximately 268.2765 = 23 = 8. However, for a right key
guess, the expected number of remaining ciphertext pairs is approximately
268 . 248 . 27112 _ 24 = 16.

9. If the guesses for Ks30, Kos4, K25 and Ko suggest more than 16 remaining
ciphertext pairs, then the guesses are candidates for correct subkeys.
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The data complexity of this 27-round attack is 268 . 248 = 2116 chosen
plaintexts. The time complexity of the attack is dominated by Steps (5) and
(7). At the beginning of Step (5), there are about 258 . 239 pairs of texts.
We guess 12 bytes of key material and for each guess, wrong pairs are dis-
carded by a factor of 278, At the beginning of Step (7), there are roughly
208 . 2757 pairs of texts and we only guess one byte of key material. Adding
these two complexities together, we obtained the time complexity of approxi-
mately (3,1, 28-208.239.9-8k) 4 98.968.9-57 & 9115 encryptions. In contrast,
the best existing cryptanalysis on the original SMS4 is a differential attack on
22 rounds with a data complexity of 2'17 chosen plaintexts and time complexity
of 21123 22_round encryptions [18].

5.3 Comments on the Security of SMS4

As mentioned at the beginning of Section [B the attack described above is the
same as attacking the key scheduling algorithm, as if it was used for encryption.
We use the original components of the SMS4 and did not modify the function
of these components. The key scheduling algorithm might therefore be exploited
in related-key differential attacks.

In the light of our discussion in Section 3] there is a small possibility that
the first four rounds of SMS4 is deprived of non-linearity. Under these conditions,
the number of effective rounds for SMS4 is theoretically reduced by four, from
32 to 28. In this section, we have demonstrated an attack against 27 rounds of a
slightly modified variant of SMS4. This is only one round short of the effective 28
rounds. Note that the four-round linearity event discussed in Section [L3] refers
to the event in which the function T' was used in the encryption, instead of T’,
as is the case here. However, if T’ was used in the encryption, the probability of
this event to occur for T”, in the general case, is the same as if T' was used in
the encryption. This is because the number of input words in the set @ is the
same as the set Op.

Recall that the best attack on the original SMS4 is on 22-rounds [18], which
is six rounds short of the effective 28 rounds. However, note that the security
margin is reduced from 32 to 28 rounds only if the linearity in the first four rounds
can be detected and utilized in an attack. A method to detect this remains an
open problem.

6 Summary and Conclusion

This paper presents several new observations on both the encryption and the key
scheduling algorithms of the SMS4 block cipher. We have shown the existence of
fixed points and of simple linear relationships between the bits of the input and
output words for each component of the round functions for some input words.
Furthermore, we show that the branch number of the linear transformation in
the key scheduling algorithm is less than optimal.
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The major security implication of these observations is that the round func-
tion is not always non-linear. Due to this linearity, for some combinations of
plaintext block and master key, the number of effective rounds of SMS4 is the-
oretically reduced by four, from 32 to 28. We also briefly explored the suscepti-
bility of SMS4 against algebraic and advanced variants of the slide attacks.

Finally, we demonstrated that if the linear transformation L of the encryption
algorithm is replaced with the linear transformation L’ of the key scheduling
algorithm, then this variant of SMS4 is weaker than the original SMS4 with
regard to differential cryptanalysis. We show this by attacking four more rounds
than the best existing differential attack on SMS4. This is possible due to the
sub-optimal branch number of L’. This property of L’ might be an indication of
further weakness that can be exploited in an attack. We strongly believe that
this variant is also weaker than SMS4 against other differential-type attacks.

Given the number of expected fixed points, it is unlikely that the compo-
nents in the round functions are generated randomly, that is, they were selected
specifically. However, the criteria for selecting the components are not known.
The findings made in this paper raise serious questions on the security provided
by SMS4, and might provide clues on the existence of a flaw in the design of the
cipher.
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Appendix

Table 3. Values of X; (in the set ©g) and j such that S(X;) = X; <« j.

OAOAOAOA 1,9,17,25 21210A0A 1 ABB4ABDE 16
OAOAOA21 1 21210A21 1 ABDEABB4 16
OAOA210A 1 2121210A 1 B4ABDEAB 16
0AOA2121 1 21212121 1,9, 17, 25 B4B4DEDE 16
0A210A0A 1 245C245C 2,18 B4DEB4DE 8, 24
0A210A21 1, 17 245C2626 2 B4DEDEB4 16
0A21210A 1 26245C26 2 D0O56D056 5, 21
0A212121 1 2626245C 2 DEABB4AB 16
0BOBOBOB 6, 14, 22, 30 26262626 2, 10, 18, 26 DEB4B4DE 16
210A0A0A 1 56D056D0 5, 21 DEB4DEB4 8, 24
210A0A21 1 5C245C24 2,18 DEDEB4B4 16
210A210A 1, 17 5C262624 2 E7TE7ETE7 4, 12, 20, 28

210A2121 1 ABABABAB 0, 8, 16, 24 FAFAFAFA 5, 13, 21, 29
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Table 4. Values of X; (in the set Or) and j such that T(X;) = X; <« j.

X; j X; j X; j
02740274 2,18 4F13E4B4 2 BBO6C4A3 26
03940394 1,17 58434DF7 26 BE6CBE6C 15, 31
06C4A3BB 26 5CDE9B16 14 C4A3BB06 26
OAOAOAOA 3,11, 19, 27 62D367B9 0 C6AD3AE2 0
0BOBOBOB 0, 8, 16, 24  67B962D3 0 C7ETCTET 13, 29
1079D3A1 31 6CBE6CBE 15, 31 D367B962 0
13E4B44F 2 74027402 2,18 D3A11079 31
165CDE9B 14 79D3A110 31 DE9B165C 14
16AF4D4B 15 973E973E 0, 16 EOE1F7E3 9
1A2A1A24A 1,17 94039403 1,17 E1F7E3EQ 9
21212121 3,11, 19, 27 9B165CDE 14 E2C6AD3A 0
22E59CB6 31 9CB622E5 31 E3EOE1F7 9
26262626 4, 12, 20, 28 A11079D3 31 E4B44F13 2
2A1A2A1A 1,17 A3BBO6C4 26 E59CB622 31
3AE2C6AD 0 ABABABAB 2, 10, 18, 26 E7CTE7C7 13, 29
3E973E97 0,16 AD3AE2C6 0 E7ETETE7 6, 14, 22, 30
434DF758 26 AF4D4B16 15 F758434D 26
4B16AF4D 15 B44F13E4 2 F7E3EOE1 9
4D4B16AF 15 B622E59C 31 FAFAFAFA 7, 15, 23, 31
4DF75843 26 B962D367 0

Table 5. Values of X; (in the set ©7/) and j such that T'(X;) = X; < j.

X; j X; j X; j
02020202 4, 12, 20, 28 5228B69C 6 AG6BAG6B 10, 26
06C206C2 1,17 52505250 4,20 AAAO27D5 23
087BO87B 4,20 5522DB49 27 BOBOBOBO 3, 11, 19, 27
10B78569 2 58F758F7 8, 24 B69C5228 6
12121212 6, 14, 22, 30 5A5A5ASA 2, 10, 18, 26 B7856910 2
12161216 7, 23 61F161F1 14, 30 BSBSB8B8 2, 10, 18, 26
16121612 7, 23 64C164C1 9, 25 BAC74FDD 27
1B341B34 5, 21 6910B785 2 C164C164 9, 25
1D411D41 2,18 6BAGGBAG 10, 26 €206C206 1,17
22DB4955 27 74747474 3,11, 19, 27 C74FDDBA 27
25149842 1 7B087BOS 4,20 CBA1CBA1 14, 30
27D5AAAQ 23 856910B7 2 D5AAA027 23
28B69C52 6 94949494 6, 14, 22, 30 D69IADE9A 12, 28
32323232 3,11, 19, 27 98A225A4 1 DB495522 27
341B341B 5, 21 9AD69AD6E 12, 28 DDBAC74F 27
411D411D 2,18 9C5228B6 6 DFDFDFDF 3, 11, 19, 27
495522DB 27 A027D5AA 23 E1E1E1E1 7, 15, 23, 31
4F4F4FAF 5,13, 21,29 A1CBA1CB 14, 30 F161F161 14, 30
4FDDBACT 27 A2251498 1 F758F758 8,24

50525052 4, 20 A498A225 1
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