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Abstract

Recent years have seen an increased uptake of business process management
technology in industries. This has resulted in organizations trying to man-
age large collections of business process models. One of the challenges facing
these organizations concerns the retrieval of models from large business pro-
cess model repositories. For example, in some cases new process models may
be derived from existing models, thus finding these models and adapting
them may be more effective and less error-prone than developing them from
scratch. Since process model repositories may be large, query evaluation
may be time consuming. Hence, we investigate the use of indexes to speed
up this evaluation process. To make our approach more applicable, we con-
sider the semantic similarity between labels. Experiments are conducted to
demonstrate that our approach is efficient.
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1. Introduction

Through the application of Business Process Management (BPM) tech-
nology, organizations are in a position to rapidly build information systems
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and to evolve them due to environmental changes, e.g. in legislation or in
market demand. BPM has matured in recent years and has seen significant
uptake in a variety of industries, e.g. health, finance, manufacturing, and
also in government. As a result, in many cases organizations have created
large collections of business process models. For example, there are more
than 6,000 models in Australia Suncorp Group, and there are more than
200,000 models in China CNR Corporation Limited. These models are often
represented as graphs.

Managing large business process model repositories can be challenging.
For example, when new process models are to be created one may wish to
leverage existing process models in order to preserve best practice or simply
to reuse process fragments. Therefore, one needs to have the ability to query
a business process model repository. Due to the potential size of such a
repository, it is important that these queries can be executed in an efficient
manner.

In this paper focus is on the provision of efficient support for querying
business process model repositories. Given a process fragment (the model
query), we are concerned with finding all the process models in the reposi-
tory that contain this fragment as subgraph. The complexity of finding all
subgraph isomorphisms is known to be NP-complete [1]. To overcome this
issue, and in line with graph database techniques [1, 2, 3, 4, 5, 6, 7], we
propose a two-stage approach that reduces the number of models needed to
be checked for subgraph isomorphism. Firstly, we filter the model repository
through the use of indexes and obtain a set of candidate process models. Sec-
ondly, we apply an adaptation of Ullman’s subgraph isomorphism check [§]
in order to refine the set of candidate models, to extract those models con-
taining the model query as subgraph. The advantage of using indexes is that
the subgraph isomorphism check is only performed on a subset of the models
in the repository, which is typically much smaller than the total number of
models in the repository, so the query efficiency is improved.

The choice of which process model features to be indexed, and which log-
ical data structure to be used to store indexes, is determined by the following
requirements:

1. features should be efficiently extracted from a process model (i.e. a
model query or a model in the repository);

2. indexes should be stored efficiently;

3. operations over indexes should be efficient (e.g. it should be possi-



ble to update the index incrementally as the process model repository
changes);

4. it should be possible to use any fragment of a process model as a query
(e.g. an isolated process node).

Accordingly, (i) we use task nodes as feature, as their extraction time is
linear to the number of nodes in a model, their storage size is limited, and
they can be used to look for isolated nodes, and (ii) we store our index in an
inverted index, since this data structure allows efficient operations and can
be updated incrementally.

In order to deal with different formats in a uniform way, we assume busi-
ness processes be modeled as YAWL (Yet Another Workflow Language) mod-
els [9] or mapped from other formalisms into YAWL models. The expressive-
ness of YAWL is high and it offers comprehensive support for the control-flow
patterns documented in [10]. In fact, it has been shown that a wide range
of business process modeling languages used in practice, e.g. BPMN (Busi-
ness Process Modeling Notation), EPCs (Event-driven Process Chain), UML
ADs (Unified Modeling Language Activity Diagrams) and BPEL (Business
Process Execution Language), or at least significant subsets of them, can
be mapped to YAWL models directly or indirectly through Petri nets. For
example, BPMN models can be transformed into YAWL models in [11], and
BPEL models can be transformed into YAWL models in [12]. An alternative
is that we can transform the other languages to Petri nets first and then
transform Petri nets to YAWL models. You can see [13] for an overview of
transformations from various BPM languages to Petri nets.

This work is an extended version of [14]. Our contribution can be sum-
marized as follows.

e To improve query efficiency, we use an index storing the mapping from
process tasks to process models where these tasks occur. This inverted
index works as a filter, we only need to conduct the subgraph isomor-
phism check on the candidate models that pass this filter. The number
of candidate models is always much smaller than the size of the repos-
itory, so the use of this filter can improve the query efficiency. Based
on the findings reported in [14], we only build the index on the paths
of length one here (as paths consist of task sequences, a path of length
one consists of a single task).

e To increase the accuracy of query results, we consider data and resource



aspects in addition to control-flow aspects when checking whether a
model fragment is a subgraph of a candidate model. To deal with
models with data and resource information, we work on YAWL models
instead of Petri nets as in [14].

e To make the approach in [14] more applicable, we consider in this paper
a notion of semantic similarity between labels. Tasks for which the
degree of label similarity is greater than or equal to a given threshold
are considered to be identical.

e We extend our implementation in the BeeHiveZ environment to ac-
count for the proposed extensions and conduct further experiments to
evaluate the performance with data and resources.

The rest of this paper is organized as follows. Section 2 provides an intro-
duction to YAWL and formally defines the semantics of a business process
model query. Section 3 discusses the construction of indexes on the logical
level while Section 4 shows how to query a business process model repository
without label similarity. Section 5 shows how to deal with the semantic sim-
ilarity between labels. Section 6 analyzes the use of our approach through
a number of experiments on both a synthetic data set and a real data set.
Section 7 discusses related work whilst Section 8 concludes this paper.

2. Preliminaries

The workflow language YAWL [9] is a general and powerful language
grounded in the workflow patterns [10] and in Petri nets [15]. YAWL is the
result of an in-depth analysis of control-flow constructs in workflows, and
provides direct support for a number of patterns that are difficult to realize
in Petri nets (e.g. cancellation, multiple instances). The definition of the
syntax of YAWL can be found in [16], while the syntax and the semantics
of the extension of YAWL, i.e. newYAWL, can be found in [17]. We use
a simplified version of the definition of the syntax of YAWL net (YNet) as
presented in [16]. This definition is presented below.

Definition 1 (YNet). A YNet is a tuple (C, T, F, Split, Join, V,V R, VW, R, RO, )
where:

o (C is a set of conditions, v € C' is the input condition, o € C' is the
output condition;



T is the set of tasks, for everyt € T;
FC((C\{o}) xT)U(T x (C\{i}))U(T xT) is the flow relation;
Split : T - {AND, XOR, OR} specifies the split behavior of each task;

Join : T -+ {AND, XOR, OR} specifies the join behavior of each task;

V' is the set of variables processed in the net, for every v € V;

VR :T -» P(Var) specifies the variables read by every task;

o VW : T - P(Var) specifies the variables written by every task;

R is the set of roles used in the net, for every r € R;

e RO : T - P(Role) captures which roles are authorised to execute in-
stances of which tasks;

o [:TUVUR — L 1s the label function where L is the set of labels.

Example 1. Figure 1 shows four example business process models repre-
sented as YNets, where only the control-flow perspective is shown. Data and
resource perspectives are not graphically represented.

In this paper, a query on a business process model repository is a YNet,
and the result is defined as all YNets in the repository that cover that query.
First we need to introduce the notion of a net covering another net.

Definition 2 (YNet Cover). YNet yny, = ( Cy, Ty, Fy, Splity, Joiny, Vi,
V Ry, VWi, Ry, ROy) is covered by YNet yny = ( Cy, Ty, Fy, Splity, Joins,
Vo, VRy, VIWy, Ry, ROs), denoted as yny C yno, iff there exists a one-to-one
function h : C; — Co UT) — Ty U Fy — Fy such that:

1. for all t € Ty: U(t) = l(h(t)) A Split(t) = Split(h(t)) A Join(t) =
Join(h(t)) N VR(t) C VR(h(t)) NVW(t) € VIW(h(t)) N RO(t) C
RO(h(t)), i.e. function h preserves task labels together with the data
read and written and authorised roles;

2. for all (ny,ny) € Fy: h(ni,ny) = (h(n1),h(ng)), i.e. h preserves arc
relations.

Definition 3 (YNet Query). Let R be a YNet model repository and let q be
a YNet query. The result of issuing g over R is Ry ={r € R|qC r}.
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Figure 1: Business process model examples represented as YNets
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Figure 2: An example of a disconnected YNet used as a query

Example 2. If we use YNet q in Figure 2 as a query and consider the four
models in Figure 1 to constitute the Process model repository R, then only
model yns covers q (the semantic similarity between labels is not considered
now), i.e. Ry = {yns}.



3. Index Construction

To improve retrieval efficiency, and in-line with document retrieval sys-
tems [18], we use two inverted indexes, namely, the task index and the label
index. We describe the task index in Section 3.1 and the label index in Sec-
tion 3.2. The task index stores the mapping from process tasks to process
models, and it can be used as a filter. The label index stores the mapping
from words to task labels, and it can be used to retrieve similar labels.

3.1. Task Index

Based on the findings reported in [14], only paths of length one are indexed
(as paths consist of task sequences, a path of length one consists of a single
task). The mapping from tasks to models is stored in the task index. The task
index takes the form of set of pairs (task, model list) where task denotes a
task occurring in some models and model list denotes the set of these models
where this task occurs. Given a model, we first extract all the tasks from
this model. The extraction of tasks from a model takes linear time in terms
of the number of tasks in the model. Then the mapping between the tasks
and the models is set up in the task index.

Example 3. Given the model repository shown in Figure 1, we can obtain
all tasks. Some of these tasks are shown in Table 1. Then a task index can
be created based on this data.

Table 1: A sample of indexed items for tasks in Figure 1

task model list

“Send bill” Yny, Yyno, Yns, Yyng
“Ship goods” Yyni, yna, Yns
“Send goods” Yny

“Contact customer” YNa, YNz, Yny

3.2. Label Index

The label indez is an inverted index that stores the mapping from words
to the labels in which these words appear. The label index takes the form of
set of pairs (word, label list) where word denotes the word appearing in some
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labels and label list denotes the set of these labels where this word appears.
During the label index construction, we first extract all words from the labels
and then convert them to lower case. Subsequently, we remove all stop words
such as conjunctions and articles, and stem all remaining words (e.g. “trans-
porting”, “transported” and “transports” all become “transport”). When a
new model is added to the repository, all the task labels can be extracted,
and then the label index can be updated.

Example 4. Given the model repository shown in Figure 1, we can obtain
all labels. Some of these labels are shown in Table 2. Then a label index can
be created based on this data.

Table 2: A sample of indexed items for labels in Figure 1

word label list label id label

“Send”  Iy,l3 I “Send goods”
“Ship” ly Iy “Ship goods”
“goods” Iy, I3 “Send bill”

“bill” l3 ly “Contact customer”

4. Query Processing without Label Similarity

YNet query processing is divided into two stages, namely, a filtering stage
and a refinement stage. The first stage of query processing only acts as a
filter. The reason is that we only use the task index in this stage, and context
information is not taken into account, e.g. the fact that a choice may exist
between two subsequent tasks in a model is lost as well as the order of the
tasks with respect to the query. In order to further refine the set of process
models so that it corresponds to an exact result, a match operation needs to
be performed in the second stage.

The procedure for query processing is described in Algorithm 1. Line 1
extracts all tasks from the YNet acting as the query. Lines 2-5 work as a
filter and a set of candidate models is obtained, which achieves the first stage
of query processing. For each extracted task, Line 3 obtains the set of models
containing that task using the task inder. In Line 5 the intersection of the
resulting candidate sets is computed so as to retain only those candidate

8



models that contain all the extracted tasks. In Lines 6-8 each candidate
model is checked in order to determine whether it exactly covers the query,
thus implementing the second stage of query processing. In Line 7, the
function CBMTest, explained later, is applied to take the context of these
tasks into account.

Algorithm 1: YNetQuery
input : q: the YNet query
output: a set of YNets covering q

// filtering stage
tasks < taskExtraction(q);
foreach task in tasks do

list < taskIndexQuery (task);
L add list to lists;

N N e

5 R < Intersection(lists);
// refinement stage
6 foreach c € R do
7 if CBMTest(q, ¢) fails then
8 L L delete ¢ from R;

9 return R;

Function CBMTest implements the YNet cover check according to Defini-
tion 2. It is an adaptation of Ullman’s graph isomorphism algorithm [8] to
YNets. In [19] an overview of graph matching algorithms is provided and
it is stated that “Ullman’s algorithm is widely known and, despite its age,
it is still widely used and is probably the most popular graph matching al-
gorithm”. That is why in our approach Ullman’s algorithm is chosen and
adapted to YNets.

In CBMTest, task ¢ can be mapped to task ' if and only if £ and ¢’ share
the same label and the type of join (split) is same, the data read (written)
by ¢ is a subset of the data read (written) by ¢’, and the set of roles linked to
t is a subset of the roles linked to t’. Condition ¢ can be mapped to condition
¢ if and only if there is a one-to-one mapping between the input tasks of ¢
and ¢ and also between the output tasks of ¢ and ¢/. CBMTest tries to find a
one-to-one mapping between the nodes of the YNet query and the candidate
YNet being investigated. All arcs in the YNet query must be preserved in
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the candidate YNet. If this is impossible, the candidate YNet is removed
from the result set.

Example 5. Consider q in Figure 2 as a YNet query. Consider yns in
Figure 1 as a candidate YNet. Tasks t1, ty and t3 in q can be mapped to ts,
ty and ts in yng respectively. But the two arcs in q cannot be preserved in
yng. Hence q cannot be covered by yns. On the other hand, consider yns in
Figure 1 as a candidate YNet. In that case, t1, ty and t3 in q can be mapped
to ts, ty and ts in yny respectively, while the two arcs in q can be preserved.
So yny covers q.

Example 6. Consider the model repository R = {yny,yns,yns,yns} as
shown wn Figure 1. We use YNet q in Figure 2 as a YNet query. First,
we extract all tasks from q. This yields three tasks, t1 = “Send bill”,
td = “Contact customer” and t3 = “Ship goods”. Then we can query the
repository using the task index to obtain the models containing the corre-
sponding tasks, t1.list = {ynq,yno, yns, yny}, ta.list = {yns, yns,yns} and
td.list={yni,yna,yns}. These sets correspond to those shown in Table 1.
After taking the intersection of these sets, we get the candidate model set
R = {yna, yns}. Now, the first stage of query processing is completed. To
get the final result, we must determine which candidate models contain the
model query as a subgraph. This yields R, = {yna}.

5. Dealing with Semantic Similarity between Labels

Business analysts may choose different names for identical tasks in process
models. In order to recognize that different labels essentially represent the
same task we consider a similarity notion for labels. Labels that have a degree
of semantic similarity greater than or equal to a certain specified threshold
are considered to be equal, hence two tasks having sufficiently similar labels
are considered equal for the purpose of retrieval.

The following requirements are imposed on the use of a similarity notion
for labels as part of the approach for querying:

1. it should be up to the user to decide whether or not to use the notion
of label similarity during query process;

2. the user should be able to specify their preferred similarity threshold
during query process;

3. the efficiency of query with label similarity should be as high as possible.
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In order to fulfill these requirements, (i) we leave the construction of the
task index unchanged. There is no dependence on whether the similarity
notion is used or not, and therefore the task index does not need to be
reconstructed; (ii) queries can take a similarity threshold into account. (iii)
we construct a label index® to speed up the retrieval of similar labels and
this index is not affected by the similarity threshold;

5.1. Semantic Similarity between Labels

Let W () be the number of words that can be extracted from the label [
and let SCW (ly,l3) be the number of words in /; that appear in I or have
synonyms in ls. The similarity between labels /1 and [; can be calculated as
Equation 1 (inspired by Dice’s coefficient [20]):

2 X SCW(ll, lg)
W) +W(ly)

sim(ll, lg) = (1)
Example 7. Let [y = “Send goods” and ly = “Ship goods™. These labels
can be found in Table 2. From both labels we obtain two words. As the words
“send” and “ship” are considered synonyms, we obtain the following degree

of similarity: sim(ly,ly) = % -1

Before the degree of similarity is computed, words are converted to lower
case, stop words (e.g. “the” and “a”) are removed and then words are stemmed.
Naturally, Equation 1 can be replaced with another label similarity measure
as long as this measure is based on the words used in the labels and not e.g.
the characters.

5.2. Query Ezxpansion

In order to take label similarity into account we need to make changes to
the filtering stage and the refinement stage.

During the filtering stage, for every task in the query, we first obtain the
task label, then obtain all labels in the repository that are similar to these
labels. These retrieved labels are then used for retrieval purpose. Algorithm 1
is updated to Algorithm 2. Line 3 obtains all the similar labels according
to a specific task. When we query on the label index, first, all words are

30nly task labels are stored, the labels of variables and roles are considered in the
subgraph isomorphism check.
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extracted from the task label used for querying and these words are treated
the same way as during label index construction. Then these words are
augmented with their synonyms and this extended collection of words is
used for label retrieval. Labels that are sufficiently similar according to the
specified threshold become a part of the output collection. After Lines 4-5
are finished, we obtain a list of models where the given task or the similar
tasks occur. Here, we can see that the label similarity has effect on the query
efficiency, because it affects the size of candidate models.

Algorithm 2: YNetQuery
input : q: the YNet query
output: R: a set of YNets cover q

tasks <— taskExtraction(q);
foreach task in tasks do
similarTasks «— labellndexQuery(task);
foreach similarTask in similarTasks do
L list < taskIndexQuery (similarTask);

add list to lists;

[ N VN

(=]

3

R < Intersection(lists);

8 foreach c € R do
9 if CBMTest(q, ¢) fails then
10 L delete ¢ from R;

11 return R;

During the refinement stage label similarity is used in Function CBMTest
by considering tasks t and ¢’ as equal if and only if the degree of similarity of
their labels is greater than or equal to the specified threshold. We deal with
the data names and role names in the same way when we check whether ¢
and t' are a match.

Example 8. Let us consider Example 6 again but now in the context of label
similarity. Assume that the threshold for label similarity is set at 0.9. In
that case the task t3 = “Ship goods” is expanded to the tasks “Ship goods”
and “Send goods”. ti.list is updated to t3.list = {yni,yng,yns,yns}, which
gives us Ry = {yna, yns,yns} as the set of candidate models. During the
refinement stage, tz in q can be mapped to ty in yny because the similarity
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of their labels is greater than the specified threshold, while t; and ty in q can
be mapped to ty and t3 in yny respectively. Finally, apart from yns, yng now
also appears in the final result, that is, Ry = {yna, yna4}.

6. Tool Support and Evaluation

In order to evaluate our approach, we implemented it in our system named
BeehiveZ*. BeehiveZ is a Java application, which makes use of the MySQL
RDBMS to store process models as data type TEXT. The task index and
the label index both are managed by Apache Lucene [21]. We decided to
use Lucene as it is a search engine specifically designed for efficient text
searches. Alternatively, we could have implemented the inverted indexes by
using a two-column table on a RDBMS. The YAWL library was used for the
representation of YNets. The ProM [22] library was used for display of Y Nets.
To retrieve synonyms quickly, we stored a hash map of WordNet synonyms
in main memory, occupying about 10MB. The use of label similarity and the
specification of the threshold can be configured in BeehiveZ.

We conducted a number of experiments, both on a synthetic data set
and on a real data set consisting of SAP Reference Models to determine the
efficiency of our approach presented in the previous sections. To this end
a computer with Intel(R) Core(TM)2 Duo CPU E8400 @3.00GHz and 3GB
memory was used. This computer ran Windows XP Professional SP3 and
JDKG6, the memory of JVM was configured as 1GB.

6.1. Experiments on A Synthetic Data Set

All synthetic models were generated automatically using an algorithm
that produces a collection of YNets randomly. The rules used in our gener-
ator come from [23]. Those rules were used for generating the control-flow
perspective, we generate the variables that are read and written by tasks and
the roles that are associated with tasks were generated in a random man-
ner. Because all the labels in this data set are randomly generated character
strings, we disabled label similarity during the query processing.

To evaluate the efficiency of our approach, we conducted some experi-
ments. In these experiments 10 models were generated to act as queries and
more than 600,000 models were generated to populate the business process

4BeehiveZ can be downloaded from http://sourceforge.net/projects/beehivez/
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model repository. The 10 queries were evaluated each time after the addition
of a certain number of freshly generated process models. Table 3 shows the
characteristics of the various queries ¢;, 1 < ¢ < 10. Specifically, for reposi-
tory R, there were 600,210 YNets, the number of tasks in the various models
ranged from 1 to 50°, the number of conditions from 2 to 60, the number of
arcs from 2 to 316, and there were at most 242,234 differently labeled tasks
out of 15,605,435 tasks in total.

Table 3: Characteristics of model queries

Number of tasks Number of conditions Number of arcs

g 1 2 2
qg 6 8 16
gz 11 9 24
qs 16 13 35
g5 21 25 60
g 26 28 71
qr 31 24 68
gz 36 36 106
q9 41 31 130
qd10 46 39 116

We define Ry as the candidate set of answers resulting from ¢ applied to
the repository R using the index, while R{; denotes the final set of answers.
Furthermore, we define T as the index traversal time, 77,0 as the disk I/O
time required to fetch each candidate YNet from disk, and 7, as the time
required to compute whether there is an exact match.

The query response time when an index is used can be computed using
Equation 2.

T, =T+ |Rg| x Trjo + |Rg| x T,. (2)

Equation 3 provides the query response time when no index is used.

T, =|R| x Tj0 + |R| x T, (3)

®According to TPMG proposed in [24], models should be decomposed if they have more
than 50 elements. So we generated models with the maximum number of tasks as 50, the
number of conditions and arcs in a model is not configurable.
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Figure 3: Performance of indexes

As |Rg| is often much smaller than |R|, the use of the task index can save
a significant amount of time, as shown in Figure 3(a). The more models
there are in the repository, the greater the amount of time that can be saved
through the use of our approach. Since for every query, the change of query
time is similar, we use the average query time here.

Figure 3(b) shows the average query time when the task index is used. We
can see that when more models are added to the repository, query evaluation
becomes more time-consuming, though the time taken can still be considered
acceptable.

Figure 3(c) shows the accumulated time required for index construction
from scratch. Whenever a new model is added to the repository, the index
does not need to be reconstructed but can simply be modified . Therefore
the time required for index construction is acceptable. The storage size of
indexes (including the task index and the label indez) is shown in Figure 3(d).
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The storage space for the indexes is about 1% of the storage space required
for the models.

Now, we can draw a conclusion that our approach can improve the query
efficiency significantly at little cost.

6.2. Experiments on SAP Reference Models

The SAP reference models are represented as EPCs and only contain
control-flow information. They were first transformed into YNets using
ProM[22]®. This resulted in 591 YNets as 13 SAP reference models could
not be mapped to YNets using ProM and these models were omitted from
consideration. Some of the resulting models have more than one input condi-
tions and /or have more than one output conditions in the model obtained by
ProM. We merged these input (output) conditions into one in order to comply
with the syntax of YAWL. Moreover, these models only contain control-flow
elements. The number of tasks in the various models ranged from 1 to 53,
the number of conditions from 2 to 66, the number of arcs from 2 to 145,
and there were at most 1,494 differently labeled tasks out of 4,439 tasks in
total. On this data set experiments were conducted with different similarity
thresholds. First all models were added to the repository and the task index
and the label index were built. Then every model was used as a query on
the repository.

Table 4: The sizes of sets resulting from the use of different label similarity thresholds

disabled 0.5 0.6 0.7 0.8 0.9 1.0

Min 1 1 1 1 1 1 1
Max 8 23 22 12 12 8 8
Average 1.58 273 202 17 171 1.62  1.62
St. Dev. 1.34 444 218 152 149 135 1.35

From Table 4 we can see that the size of the resulting sets increases when
the label similarity is enabled, and decreases when the similarity threshold
is higher. The query times also changed with the different label similarity
thresholds. The results can be found in Table 5.

SWe first transformed the EPCs to Petri nets, and then transformed the Petri nets to
YAWL models.
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Table 5: Query time (ms) with different label similarity thresholds
disabled 0.5 0.6 0.7 0.8 0.9 1.0

* * * * * * *

Min 0 0 0 0 0 0 0
Max 94 1981 1944 1203 1194 1194 1190
Average 5.87 74.65 63.14 55.99 55.25 53.12 52.99

St. Dev. 10.51 133.37 128.32 90.57 89.97 88.56 88.36

* Tt cost less than 1 millisecond.

From Tables 4 and 5, we can come to the conclusion that with the intro-
duction of label similarity more models tend to be found, and that the sizes
of the resulting sets of models decrease when the label similarity threshold

increases. The query times change the same way, but they are still accept-
able.

7. Related Work

Our work is inspired by the filtering and verification approach used in
graph indexing algorithms. Given a graph database and a graph query, these
algorithms are used to improve the efficiency of finding all graphs in the
database that contain the graph query as a subgraph, by discarding the mod-
els that do not have to be checked for subgraph isomorphism. Different graph
indexing algorithms use different graph features as indexes. For example, the
GraphGrep [1] is an index on paths, the gIndex [2] is an index on frequent
and discriminative subgraphs, the TreePi [3] is an index on frequent subtrees,
and the FG-Index [4] is an index on subgraphs. In [6] frequent tree struc-
tures and a small number of discriminative subgraphs are used as indexing
features. In [7], a summary of sub-structures is first built and then an index
is constructed on them, while in [5], all connected induced subgraphs stored
in the database are first enumerated and then organized in an index. In [25],
a Closure-tree index is built on subgraphs. All these approaches work on ab-
stract graphs with one type of node, while our approach operates on YAWL
models which has two types of nodes. Additionally, in [2, 3, 4, 6] focus is
on frequent sub-structures and thus they cannot efficiently deal with queries
consisting of isolated nodes or infrequent sub-structures, and the major lim-
itation of the Closure-tree index [25] is the high cost of the filtering phase
due to the expensive structure comparison and the maximal matching algo-
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rithm. Hence, these approaches are not suitable for querying process model
repositories, where each task may have a different label (thus reducing the
frequency of common substructures) and queries may be made up of isolated
tasks only. Moreover, extraction of sub-structures is more time-consuming
and the storage space required increases. Another common drawback of these
graph indexing algorithms is that the index is constructed using statistics on
frequent features which are usually computed off-line, thus indexes cannot
be easily updated when a new model is inserted into the graph database.
Our approach on the other hand allows us to update the current indexes
whenever a new model is added to the repository.

Our work has also commonalities with query languages for process models.
For example, the Business Process Query Language (BPQL) [26] is a query
language integrated with a process definition language, which allows one to
query a process model or its running cases for the purpose of specifying
flexibility requirements. BPMN-Q [27] is a visual query language which can
be used for querying a repository of BPMN models. The query itself is
expressed as a BPMN model where wildcard nodes and arcs can be used
to articulate the query. Another visual query language is BPMN VQL [28],
whose objective is to allow designers to identify, document and maintain
crosscutting concerns. A textual query interface to search for process models
or fragments within a repository is proposed in [29], with the aim to assist
designers in creating new process models. Finally, in [30] the authors consider
a repository of process variants and use reduction techniques to determine
the match of variants against a given query. As opposed to our approach,
all these approaches do not focus on query efficiency, and do not consider
data and resources involved in a process. For this reason, our approach is
complementary to them.

To our knowledge, the only work that uses indexing techniques to search
for matching process models is [31]. However, here models are represented
as annotated finite state automata whereas we use more expressive YAWL
models. Moreover, while there is support for a filtering stage, there is no re-
finement stage, thus reducing the accuracy of the result. The label similarity
and the data and resource aspects of a process are also not considered.

8. Conclusion and Future Work

This paper focuses on an efficient method for business process model
retrieval. To this end, we borrow the concept of index from the field of graph
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databases, and use it to speed up query evaluation on large business process
model repositories. According to graph database techniques, we follow a two-
stage approach for query evaluation. In the first stage (filtering), we obtain
an approximate result through the use of indexes. This consists of the set of
all process models containing all the tasks in the model query. In the second
stage (verification), we refine this set by using an adaptation of Ullman’s
subgraph isomorphism algorithm, in order to discard those models that do
not contain the model query as a subgraph. To make the query results more
accurate, we consider the data and resource perspectives together with the
control-flow perspective when we check whether a result model contains the
model query as a subgraph. To make our approach more generally applicable,
we provide support for label similarity. We conducted extensive experiments
to demonstrate that the use of these indexes speeds up queries in a significant
manner.

An avenue for future work is to apply indexing techniques to improve the
efficiency of searching for similar process models. Here the aim is to find all
process models in a repository that have a degree of similarity to (but do not
necessarily contain) a given model [32].
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