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Abstract 

 

The driving task requires sustained attention during prolonged periods, and can be performed in highly 

predictable or repetitive environments. Such conditions could create hypovigilance and impair 

performance towards critical events. Identifying such impairment in monotonous conditions has been a 

major subject of research, but no research to date has attempted to predict it in real-time. This pilot study 

aims to show that performance decrements due to monotonous tasks can be predicted through 

mathematical modelling taking into account sensation seeking levels. A short vigilance task sensitive to 

short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess 

participants‟ performance.  The framework for prediction developed on this task could be extended to a 

monotonous driving task. A Hidden Markov Model (HMM) is proposed to predict participants‟ lapses in 

alertness. Driver‟s vigilance evolution is modelled as a hidden state and is correlated to a surrogate 

measure: the participant‟s reactions time. This experiment shows that the monotony of the task can lead to 

an important decline in performance in less than five minutes. This impairment can be predicted four 

minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical 

models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented 

model could result in the development of an in-vehicle device that detects driver hypovigilance in 

advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent 

road crashes. 
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Introduction 

 

Drowsiness at the wheel has been identified globally as a major cause of road crashes. Inattention and 

fatigue are reported as contributing factors in 6% and 5% of fatal crashes respectively in Australia 

between 1992 and 2006 (1). It is difficult to reliably measure the influence of such contributing factors so 

that such estimates are likely to be underestimated. This is supported by the survey conducted by McCartt 

et al. (2) where 55% of 1000 drivers had reported to have driven while drowsy and 23% had fallen asleep 

while driving without having a crash. 

 

Boredom, fatigue, monotony, sleep deprivation are factors that induce sleepiness and drowsiness. It 

results in decreased attention, impaired information processing ability and impairs decision-making 

capability. These factors increase crash risk due to driver inability to react to emergency-type situations. 

Most research on vigilance-related impairments focuses on sleep-deprived participants. However there is 

evidence from crash data and from simulated driving studies that vigilance decrement could occur during 

daytime especially on monotonous roads (3). Driver hypovigilance is often attributed to fatigue but can 

emerge independently of time on task and is more frequent in monotonous road environments where task 

demand and stimulus variability are low and moderates sustained attention (3, 4). Also, the profile of 

drivers has an effect on the likelihood to be involved in a crash due to hypovigilance; extraverts and high 

sensation seekers are at a higher risk (3). 

 

Driver‟s self-assessment questionnaires have been used to evaluate their vigilance state. Such a subjective 

approach is not applicable on monotonous roads (5) suggesting the need for an objective mathematical 

model to predict vigilance decrement during driving. The most reliable assessment of vigilance is 

obtained by electroencephalography (EEG) (6). However such a device is too obtrusive to be deployed in 
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vehicles. Driving performance is impaired during vigilance decrement and surrogate measures from the 

driver, the car and the environment can be used to assess such impairment. This paper presents a pilot 

study designed to assess the feasibility of predicting performance decrement during a monotonous task. A 

low task demand, lab-based vigilance task is used to isolate and simulate impairments due to monotony in 

a vigilance task. A theoretically sound measure of sustained attention called Sustained Attention to 

Response Task (SART) is used in a controlled lab-based vigilance task experiment. The SART is a 

computer-assisted paradigm where participants are asked to respond to non-targets and not respond to 

targets (7). Our aim is to predict decline in performance during a short, monotonous vigilance task using 

surrogate measures (reaction times). Such prediction also takes into account inter-individual differences 

through sensation seeking levels. 

 

Background 

 

Monotony, vigilance and performance 

 

Vigilance is defined as the ability to sustain attention to a task for a period of time (8). Vigilance 

fluctuates and is an issue in terms of road safety when decreasing. This particularly applies to 

monotonous environments where driving is largely reduced to a visual vigilance task (lane keeping task). 

Vigilance tasks are the paradigm used to study sustained attention and its vigilance decrement. Vigilance 

is can be classified to define whether an individual is able to perform a task with the expected 

performance. Duta et al. (9) developed such a classification from the classification of the sleep-wake 

continuum obtained with an EEG (10): 

 

 Alert: corresponds to responsive participant, capable of performing a task with full to acceptable 

performance. 

 Hypovigilant: corresponds to the participant no longer able to perform a task at an acceptable 

level of performance. 

 Sleeping participant. 

 Unknown. 

 

Often, vigilance level is assessed automatically by an algorithm through the estimated performance (from 

0 to 1) to a vigilance task (particularly with Neural Networks). In this case, results from the model can be 

used to classify the vigilance level by using the following method (9): 

 

 Alert: 0.7-1 

 Intermediate: 0.3-0.7 

 Hypovigilant: 0-0.3. 

 

Hypovigilance can be assessed through psychomotor tests (for instance by reaction time tests), since a 

reduction of performance in such tests is interpreted as a sign of decrease in vigilance (11). A loss of 

performance usually implies that the individual suffers from a decreased ability to maintain vigilance. 

Such psychomotor tests are expected to perform particularly well as an index of vigilance in monotonous 

contexts. When the task is monotonous, responses are automated leading to short reaction times and poor 

performance (12); and such responses are direct consequences of a decline in vigilance. This is supported 

by the fact that performance during a sustained attention task is correlated to changes in the EEG power 

spectrum at several frequencies (relatively variable between subjects but stable within subjects) (13). 

 

Factors that have an effect on vigilance can be divided into two categories: (i) endogenous and (ii) 

exogenous factors. Endogenous factors are associated with long-term fluctuation of alertness which 

emanate from within the organism, whereas exogenous factors are linked to the task itself or the 

interaction between the driver and the outside environment. Among the endogenous factors are both 

physical and mental fatigue, sleep deprivation as well as task duration. Personality dimension (age, 

gender, mood and particularly sensation seeking level), time of day (circadian rhythms), caffeine and 

other stimulants and cognitive task demands are also endogenous factors (11). Exogenous factors include 

complexity and monotony of the task, environmental factors such as noise, ambient temperature, 

frequency and variation of stimulation (10). This is particularly the case when driving on a highly 

predictable highway where, because of lack of stimuli (or repetitive ones), the driver pays less attention to 
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the road situation (14). These numerous factors result in a complex and strongly interrelated phenomena 

regulating vigilance. The impacts of the different factors leading to changes in vigilance performance are 

not of the same order. Stressors such as heat, noise and circadian effects are of low impact on the 

performance compared to fatigue, monotony and/or boredom (15).  

 

Each individual has their personal optimal level of stimulation and arousal required to perform well. This 

can be measured through the Sensation-Seeking Scale. A sensation seeker is a person who needs varied, 

novel and complex sensations and experiences to maintain alertness. They require greater arousal than 

non-sensation seekers to perform well (16). The profile of drivers more likely to be involved in fatigue-

related crashes was determined in a simulator experiment (3). In this experiment, the impact of the 

driver's personality on decline in vigilance was studied. Sensation-seeking drivers are able to take 

physical and social risks to achieve varied, complex sensations and experiences. This factor can be more 

or less developed but leads to risk taking driving and negative reactions to monotonous driving. High 

sensation seekers experience vigilance decrement faster than any other group (17).  

 

In this experiment an adaptation of the vigilance task SART is used where participants are asked to 

respond to non-targets and not respond to targets. In such an experiment the vigilance as assessed by 

performance has been shown to depend on the level of monotony and is correlated to reaction times (RTs) 

(18, 19). The SART was chosen since performance during this continuous task correlates significantly 

with everyday life attention failures (20). The authors are aware of the research debate related to the 

validity of the SART as a vigilance proxy (21). However, this study takes the assumption that the SART 

induces hypovigilance. Such vigilance task is used in this paper to show the feasibility to forecast 

vigilance decrement using surrogate measures.  This study uses reaction times and errors measurements 

obtained from a SART experiment to validate a framework which predicts vigilance decrement before it 

occurs. Such framework can be extended to a monotonous driving task using EEG measurements as 

vigilance level reference and various surrogate measures from in-vehicle sensors (19, 22). Larue et al. 

(23) have shown on a driving simulator experiment that speed, lateral position of the vehicle and 

physiological measurements - such as heart rate variability, blink frequency and electrodermal activity - 

are potential surrogate measures of driving performance impairment during monotonous driving. 

 

Mathematical model for prediction  

 

Vigilance decrement can manifest quite early on (24) and change quite abruptly during monotonous 

vigilance tasks. This can be well described by discrete modelling. Performance, defined as the accuracy 

of target detection, is categorised as presented before. We aim to predict this performance through 

surrogate variables that are correlated to the ability to sustain attention. Research has shown that such 

performance models must be able to deal with inter-individual differences to be implemented reliably in 

operational settings. Bayesian forecasting is widely used to overcome this limitation. Indeed such models 

can handle these differences even when prediction is applied to individuals not studied beforehand (25). 

Among Bayesian models, Hidden Markov Models (HMMs) have been used to model numbers of real-life 

problems, such as driver manoeuvre recognition (26). Larue et al. (19) have also shown that Bayesian 

models provide better estimates of performance from surrogate measures during the SART as compared 

to neural networks and Generalised Linear Mixed Models. HMMs combine independence assumptions 

making the model numerically computable with field knowledge that vigilance decrement is the cause of 

reaction time variations (27).  

 

A Hidden Markov Model is designed to model a sequence of T observations data (at time t=1,2,…T)  

which is the consequence of an unobserved (hidden) variable (28). Here the unobserved variable is the 

vigilance level Vigt at time t. This variable is the cause of other random variables, the surrogate measure 

RTt at time t in this study as suggested by previous research done by Larue and colleagues (19). These 

variables must have the following conditional independence properties for each time t (29): 

 

 given Vigt-1, the sequences {Vigt:T, RTt:T} and {Vig1:t-2,  RT1:t-1} are independent, where the 

notation Aa:b=(30) is used (Markov property of order one) 

 given Vigt, RTt is independent of the sequence {Vig-t, RT-t}, where the notation  

A-t={A1,…, At-1,At+1,…, AT} is used. 
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In the case of a HMM with discrete states and discrete observations sequences, the model is completely 

characterised in terms of (28, 31): 

 

 number of states in the model, say N. Here the random variable Vigt takes its values in the set 

S={alert, intermediate, hypovigilant} so that N=3. 

 number of distinct observation symbols per state. Here it is the reaction times values once 

categorised. 

 transition probability matrix giving the probability to go from the state Si at time t to the state Sj 

at time t+1. 

 observation symbol probability distribution. 

 initial state distribution. 

 

The training of the HMM is done through Bayesian learning from the given hidden and observation 

sequences. If the hidden state is not available during training, the Baum-Welch algorithm (adaptation of 

the EM-algorithm applied to HMM training) can be used. Then the model can be used for prediction (see 

Figure 1). The Viterbi algorithm is used to infer the value of the vigilance state given the reaction times 

(28). This algorithm determines the states sequence, respecting the transition probabilities, that is the most 

likely to occur with the model used. Then predicting the next vigilance state can be done using the 

transition probability matrix. 

 
Figure 1: Prediction methodology with HMMs 

 

Methods 

 

Participants 

 

Forty students of the Queensland University of Technology (QUT), 8 males and 32 females (mean age = 

22.6 years, SD = 9.2), volunteered to participate in this study. All subjects provided written consent for 

this study, which was approved by the QUT ethics committee. Students undertaking the first year 

psychology subject received course credit for their participation. 

 

Experimental design 

 

Two five minutes adaptations of a continuous sustained attention task (SART) (7) were run on an IBM 

compatible computer using E-Prime. The conditions varied in terms of task monotony, with two different 

settings for target appearance: (i) probability 0.11 (low target probability) and (ii) probability 0.5 (high 

target probability). The first one creates a monotonous condition where a response can be predicted and 

leads to automatic responses. The second one, with a markedly higher stimulation, is a non-monotonous 

condition and results in a non-automatic response mode, associated with a lower response predictability 

(4). 

 

Experimental conditions 

 

This experiment was designed by Michael and Meuter (4). 225 single digits (ranging from 1 to 9, height 

of 29 mm) were displayed randomly for 250 ms in the middle of a computer screen. An inter-stimulus 

interval of 1150 ms was used with a mask (height 29 mm) consisted of an “X”. The chosen target 

stimulus was the display of number 3. When a stimulus different from the target stimulus was displayed, 

the participant was asked to press the spacebar as fast as possible, and when the target number was 

displayed, action required was to withhold the response (that is to say not press the spacebar). 
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Procedure 

 

Participants were tested individually in a quiet room, between 9am and 3pm, in a session lasting 

approximately 45 minutes. They were randomly assigned in two groups, each of which performed five 

short vigilance tasks, as follows. Each participant performed a monotonous then a non-monotonous task, 

followed by one of various types of monotonous tasks (this task formed part of a larger study and will not 

be further described here). Finally, there was a repetition of the monotonous and non-monotonous tasks, 

participants of the second group performing this sequence in a counterbalanced order with time. Prior to 

each condition, participants received written instructions on the computer screen. The instructions asked 

them to respond as quickly as possible to all stimuli, and this with the highest accuracy possible. On 

completion, participants filled out short questionnaires: the Sensation Seeking Scale - Form V (SSS), the 

General Health Questionnaire (GH-28) to screen and eliminate participants for psychiatric morbidity 

(found to impair performance using the SART) and a general background questionnaire (control sleep 

pattern and caffeine consumption). 

 

Data analysis   

 

The software Matlab version 7.4.0.287 was used to analyse data. Responses to target are used to assess 

vigilance fluctuations. They are converted into error rates in fixed time windows (also referred to as 

performance measure in this paper), defined as the fraction of targets not detected by the subject (i.e. 

lapses) within a fixed window.  Due to the small number of targets in the monotonous setting, a window 

size of 45 stimuli (targets and non-targets) was chosen to obtain an average number of five targets in the 

window in the monotonous setting. This window size corresponds to approximately one minute. The 

window size was chosen to be the same for the non-monotonous task. Pearson's linear correlation 

coefficient between the reaction times (resp. performance) of two consecutive time windows is computed 

to test wether assumptions required during HMM modelling are reasonable. Performance is then divided 

into states as described in the „Vigilance‟ sub-section. The predictor reaction time is computed as the 

mean response time to non-targets. Reaction times are normalised per participant and then categorised. 

 

The sensation seeking level of the participant is categorised into one of the following classes: low (less 

than one standard deviation (S.D.) in the available participants sample), normal (within one S.D.) or high 

(greater than one S.D.) (16). 

 

Six different HMMs are fitted to take into account the impact of the monotony of the task (monotonous or 

not) and the sensation seeking scale (low, medium and high level). Vigilance states and reaction times are 

known when the model is trained. That way, computing the joint distribution is only a matter of counting 

the different transitions from the different performance states and the probability of observation of the 

different reaction times for each vigilance state (Bayesian learning) (32).  

 

A stratified 10-fold cross-validation is performed to assess the robustness of the modelling. In this 

technique data are divided into 10 folds. The model is trained on 9 and tested on the remaining one. This 

is repeated so that each fold is used as a test sample (33). A stratified cross-validation was used to avoid 

putting high and low sensation seekers in the same fold. 

 

The most probable performance state sequence at time t using the reaction times data until time t is 

computed with the Viterbi algorithm. This gives the probable vigilance state at this time. Future vigilance 

states are then inferred up to four minutes in advance using the transition probability matrix. The model's 

accuracy is evaluated through the capacity to detect hypovigilance occurrences reliably. Therefore 

sensitivity and specificity are reported. Sensitivity measures the proportion of actual hypovigilance states 

which are correctly identified as such while specificity measures the proportion of non-hypovigilant states 

which are correctly detected. Their mean is also provided. 

 

Results 

 

The correlation between two consecutive performance measures (rate of accurate target detection in a 

time window) was 70.0  while the correlation between the mean reaction time of two consecutive 

time windows was 18.0 . This shows that vigilance evolution is progressive and depends on the 



  

 6 

 

previous state. Particularly, there is no need to use a Markov property of order higher than one. Such 

observation was not true in the case of reaction times. Reaction times are not equivalent to the 

performance level though they depend on it (a reaction time value does not correspond to a specific 

vigilance state). This supports the choice of HMMs, their assumptions being compatible with the data.  

 

The non-monotonous setting of the SART did not create hypovigilance, with only two occurrences 

appearing when considering all the participants. On the other hand the monotonous setting resulted in a 

total of 104 occurrences of hypovigilance when considering all the participants (out of 200 

measurements). Therefore there was no need to detect hypovigilance on the non-monotonous setting, and 

only results on the monotonous setting were further analysed. Reaction times (continuous values) were 

categorised in order to be used in the HMM. Various numbers of categories were investigated in order to 

optimise the model‟s accuracy. For each number of categories N, the range of reaction times values was 

divided into N intervals of fixed width
N

RTRT
width minmax

. Best results in terms of prediction 

were obtained for 19 categories. The values of the transition probabilities for the corresponding HMM are 

shown in Table 1 for each level of sensation seeking. In this monotonous setting, only low sensation 

seeking participants may stay in the alert state. On the other hand each participant – independently of 

their sensation seeking level - is highly likely (66% for medium sensation seekers) to stay in the 

hypovigilance state once they reach it. This is also apparent from Figure 2 which provides a graphical 

representation of the transition probabilities between the different vigilance state from time t to time 

1t . This figure provides information on the likely vigilance state at the next time step knowing the 

current vigilance state. The width of the different arrows is proportional to the probability of a transition. 

Figure 2-a shows these transitions for the non-monotonous setting for medium and high sensation 

seekers. Probability transitions used to make this diagram for the non-monotonous setting are not 

provided in this paper but can be found in Larue et al. (19)‟s paper. Figure 2-b presents such transitions 

for the monotonous setting for medium and high sensation seekers. 

 

 

Table 1: HMM transition probabilities (in percentage) for the monotonous setting 

 

        
Figure 2: Transition between vigilance states for the (a) non-monotonous setting and (b) monotonous 

setting (arrows‟ width is used to highlight the likelihood of transition) 

 

The trained HMM has been used to make predictions using reaction times until time t up to four minutes 

in advance (as presented in Figure 1). The accuracy of these predictions is reported in Table 2. The 

prediction of vigilance at time t has a mean value of 80.0% (73.1% and 86.9% for the sensitivity and 

(a) (b) 
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specificity respectively). This mean increases as prediction steps increase up to four minutes (t+4) 

reaching 88.0% (100% and 75.9% for the sensitivity and specificity respectively). This increase is due to 

an increase in sensitivity (while specificity decreases) and results from the high likelihood to finish the 

experiment in the hypovigilant state. 

 

Table 2: Predictions accuracy (in percentage) for the monotonous setting for different time steps (up to 4 

minutes in advance) 

  
 
Discussion 

 

The state of low performance to targets is observed half of the time in the monotonous setting and almost 

never in the non-monotonous scenario. Therefore this short vigilance task shows that the monotonous 

setting of the task can lead to hypovigilance while such vigilance impairment is not observed in the non-

monotonous setting. Furthermore, once the hypovigilance state is reached, it is very difficult to go back to 

better performance (as can be seen by the low transition probabilities on Table 3 and Figure 2). Sensation 

seeking level changes the way participants cope with the monotonous setting. High and medium sensation 

seekers are not able to maintain high vigilance whereas low sensation seekers can. Also high and medium 

sensation seekers tend to have an immediate and fast decrease in vigilance, going from an alert state to the 

hypovigilant one directly with 39% and 26% probability respectively. By contrast vigilance decrement for 

low sensation seekers is less abrupt and goes through the intermediate vigilance level (7% probability to 

go straight from the alert state to the hypovigilant state). These results on sensation seeking level‟s impact 

on vigilance decrement are in line with previous research conducted on a driving simulator by Thiffault & 

Bergeron (3) where steering wheel movements were used as a measure of driving performance.  

 

The vigilance decrement can be accurately detected and predicted up to four minutes in advance through 

surrogate measures (here reaction times) using HMMs with a mean around 80%. Although the increase in 

the accuracy as the prediction step increases is counterintuitive, it can be explained in this experiment. 

Independently of the sensation seeking level, participants are highly likely to finish the experiment in the 

hypovigilant state when the setting is monotonous. Therefore, it is easier to predict the vigilance state 

closer to the end of the experiment, which results in better predictions.  

 

Limitations 

 

Models were trained according to the Sensation Seeking Scale level, so that a population modelling 

approach has been used in this study. Adapting models to each participant should improve these results. 

Also, the sample of participants is heavily biased by age, gender and possibly intellectual capacity 

compared to the wider population due to the sampling population being university students. Nevertheless, 

generalisation of the results found in this pilot study seems reasonable due to the simplicity of the task 

involved. 

 

Conclusion 

 

We show on a short vigilance task that monotony can quickly lead to critical vigilance impairment. Such 

impairment depends importantly on the sensation seeking level of the participant and is detected through 

task performance. In view of predicting hypovigilance during driving, this vigilance decrement has to be 

detected through surrogate measures. Indeed, the most reliable and most often used method to assess 

vigilance is electroencephalography, which cannot be implemented in a real car. This experiment shows 
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that the vigilance decrement can be predicted using reaction times as surrogate measures with 80% to 

86% accuracy and up to four minutes in advance. Such results support the idea to use HMMs to predict 

hypovigilance during driving, using surrogate measures. Different measures, such as lane-keeping, where 

steering wheel movements or eye-tracking performance, have been shown in the literature to be altered 

when the driver vigilance is impaired. Such further research could be implemented in an in-vehicle device 

to predict driver vigilance decrement and therefore prevent crashes. 
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vehicles. Driving performance is impaired during vigilance decrement and surrogate measures from the 

driver, the car and the environment can be used to assess such impairment. This paper presents a pilot 

study designed to assess the feasibility of predicting performance decrement during a monotonous task. A 

low task demand, lab-based vigilance task is used to isolate and simulate impairments due to monotony in 

a vigilance task. A theoretically sound measure of sustained attention called Sustained Attention to 

Response Task (SART) is used in a controlled lab-based vigilance task experiment. The SART is a 

computer-assisted paradigm where participants are asked to respond to non-targets and not respond to 

targets (7). Our aim is to predict decline in performance during a short, monotonous vigilance task using 

surrogate measures (reaction times). Such prediction also takes into account inter-individual differences 

through sensation seeking levels. 

 

Background 

 

Monotony, vigilance and performance 

 

Vigilance is defined as the ability to sustain attention to a task for a period of time (8). Vigilance 

fluctuates and is an issue in terms of road safety when decreasing. This particularly applies to 

monotonous environments where driving is largely reduced to a visual vigilance task (lane keeping task). 

Vigilance tasks are the paradigm used to study sustained attention and its vigilance decrement. Vigilance 

is can be classified to define whether an individual is able to perform a task with the expected 

performance. Duta et al. (9) developed such a classification from the classification of the sleep-wake 

continuum obtained with an EEG (10): 

 

 Alert: corresponds to responsive participant, capable of performing a task with full to acceptable 

performance. 

 Hypovigilant: corresponds to the participant no longer able to perform a task at an acceptable 

level of performance. 

 Sleeping participant. 

 Unknown. 

 

Often, vigilance level is assessed automatically by an algorithm through the estimated performance (from 

0 to 1) to a vigilance task (particularly with Neural Networks). In this case, results from the model can be 

used to classify the vigilance level by using the following method (9): 

 

 Alert: 0.7-1 

 Intermediate: 0.3-0.7 

 Hypovigilant: 0-0.3. 

 

Hypovigilance can be assessed through psychomotor tests (for instance by reaction time tests), since a 

reduction of performance in such tests is interpreted as a sign of decrease in vigilance (11). A loss of 

performance usually implies that the individual suffers from a decreased ability to maintain vigilance. 

Such psychomotor tests are expected to perform particularly well as an index of vigilance in monotonous 

contexts. When the task is monotonous, responses are automated leading to short reaction times and poor 

performance (12); and such responses are direct consequences of a decline in vigilance. This is supported 

by the fact that performance during a sustained attention task is correlated to changes in the EEG power 

spectrum at several frequencies (relatively variable between subjects but stable within subjects) (13). 

 

Factors that have an effect on vigilance can be divided into two categories: (i) endogenous and (ii) 

exogenous factors. Endogenous factors are associated with long-term fluctuation of alertness which 

emanate from within the organism, whereas exogenous factors are linked to the task itself or the 

interaction between the driver and the outside environment. Among the endogenous factors are both 

physical and mental fatigue, sleep deprivation as well as task duration. Personality dimension (age, 

gender, mood and particularly sensation seeking level), time of day (circadian rhythms), caffeine and 

other stimulants and cognitive task demands are also endogenous factors (11). Exogenous factors include 

complexity and monotony of the task, environmental factors such as noise, ambient temperature, 

frequency and variation of stimulation (10). This is particularly the case when driving on a highly 

predictable highway where, because of lack of stimuli (or repetitive ones), the driver pays less attention to 
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the road situation (14). These numerous factors result in a complex and strongly interrelated phenomena 

regulating vigilance. The impacts of the different factors leading to changes in vigilance performance are 

not of the same order. Stressors such as heat, noise and circadian effects are of low impact on the 

performance compared to fatigue, monotony and/or boredom (15).  

 

Each individual has their personal optimal level of stimulation and arousal required to perform well. This 

can be measured through the Sensation-Seeking Scale. A sensation seeker is a person who needs varied, 

novel and complex sensations and experiences to maintain alertness. They require greater arousal than 

non-sensation seekers to perform well (16). The profile of drivers more likely to be involved in fatigue-

related crashes was determined in a simulator experiment (3). In this experiment, the impact of the 

driver's personality on decline in vigilance was studied. Sensation-seeking drivers are able to take 

physical and social risks to achieve varied, complex sensations and experiences. This factor can be more 

or less developed but leads to risk taking driving and negative reactions to monotonous driving. High 

sensation seekers experience vigilance decrement faster than any other group (17).  

 

In this experiment an adaptation of the vigilance task SART is used where participants are asked to 

respond to non-targets and not respond to targets. In such an experiment the vigilance as assessed by 

performance has been shown to depend on the level of monotony and is correlated to reaction times (RTs) 

(18, 19). The SART was chosen since performance during this continuous task correlates significantly 

with everyday life attention failures (20). The authors are aware of the research debate related to the 

validity of the SART as a vigilance proxy (21). However, this study takes the assumption that the SART 

induces hypovigilance. Such vigilance task is used in this paper to show the feasibility to forecast 

vigilance decrement using surrogate measures.  This study uses reaction times and errors measurements 

obtained from a SART experiment to validate a framework which predicts vigilance decrement before it 

occurs. Such framework can be extended to a monotonous driving task using EEG measurements as 

vigilance level reference and various surrogate measures from in-vehicle sensors (19, 22). Larue et al. 

(23) have shown on a driving simulator experiment that speed, lateral position of the vehicle and 

physiological measurements - such as heart rate variability, blink frequency and electrodermal activity - 

are potential surrogate measures of driving performance impairment during monotonous driving. 

 

Mathematical model for prediction  

 

Vigilance decrement can manifest quite early on (24) and change quite abruptly during monotonous 

vigilance tasks. This can be well described by discrete modelling. Performance, defined as the accuracy 

of target detection, is categorised as presented before. We aim to predict this performance through 

surrogate variables that are correlated to the ability to sustain attention. Research has shown that such 

performance models must be able to deal with inter-individual differences to be implemented reliably in 

operational settings. Bayesian forecasting is widely used to overcome this limitation. Indeed such models 

can handle these differences even when prediction is applied to individuals not studied beforehand (25). 

Among Bayesian models, Hidden Markov Models (HMMs) have been used to model numbers of real-life 

problems, such as driver manoeuvre recognition (26). Larue et al. (19) have also shown that Bayesian 

models provide better estimates of performance from surrogate measures during the SART as compared 

to neural networks and Generalised Linear Mixed Models. HMMs combine independence assumptions 

making the model numerically computable with field knowledge that vigilance decrement is the cause of 

reaction time variations (27).  

 

A Hidden Markov Model is designed to model a sequence of T observations data (at time t=1,2,…T)  

which is the consequence of an unobserved (hidden) variable (28). Here the unobserved variable is the 

vigilance level Vigt at time t. This variable is the cause of other random variables, the surrogate measure 

RTt at time t in this study as suggested by previous research done by Larue and colleagues (19). These 

variables must have the following conditional independence properties for each time t (29): 

 

 given Vigt-1, the sequences {Vigt:T, RTt:T} and {Vig1:t-2,  RT1:t-1} are independent, where the 

notation Aa:b=(30) is used (Markov property of order one) 

 given Vigt, RTt is independent of the sequence {Vig-t, RT-t}, where the notation  

A-t={A1,…, At-1,At+1,…, AT} is used. 
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In the case of a HMM with discrete states and discrete observations sequences, the model is completely 

characterised in terms of (28, 31): 

 

 number of states in the model, say N. Here the random variable Vigt takes its values in the set 

S={alert, intermediate, hypovigilant} so that N=3. 

 number of distinct observation symbols per state. Here it is the reaction times values once 

categorised. 

 transition probability matrix giving the probability to go from the state Si at time t to the state Sj 

at time t+1. 

 observation symbol probability distribution. 

 initial state distribution. 

 

The training of the HMM is done through Bayesian learning from the given hidden and observation 

sequences. If the hidden state is not available during training, the Baum-Welch algorithm (adaptation of 

the EM-algorithm applied to HMM training) can be used. Then the model can be used for prediction (see 

Figure 1). The Viterbi algorithm is used to infer the value of the vigilance state given the reaction times 

(28). This algorithm determines the states sequence, respecting the transition probabilities, that is the most 

likely to occur with the model used. Then predicting the next vigilance state can be done using the 

transition probability matrix. 

 
Figure 1: Prediction methodology with HMMs 

 

Methods 

 

Participants 

 

Forty students of the Queensland University of Technology (QUT), 8 males and 32 females (mean age = 

22.6 years, SD = 9.2), volunteered to participate in this study. All subjects provided written consent for 

this study, which was approved by the QUT ethics committee. Students undertaking the first year 

psychology subject received course credit for their participation. 

 

Experimental design 

 

Two five minutes adaptations of a continuous sustained attention task (SART) (7) were run on an IBM 

compatible computer using E-Prime. The conditions varied in terms of task monotony, with two different 

settings for target appearance: (i) probability 0.11 (low target probability) and (ii) probability 0.5 (high 

target probability). The first one creates a monotonous condition where a response can be predicted and 

leads to automatic responses. The second one, with a markedly higher stimulation, is a non-monotonous 

condition and results in a non-automatic response mode, associated with a lower response predictability 

(4). 

 

Experimental conditions 

 

This experiment was designed by Michael and Meuter (4). 225 single digits (ranging from 1 to 9, height 

of 29 mm) were displayed randomly for 250 ms in the middle of a computer screen. An inter-stimulus 

interval of 1150 ms was used with a mask (height 29 mm) consisted of an “X”. The chosen target 

stimulus was the display of number 3. When a stimulus different from the target stimulus was displayed, 

the participant was asked to press the spacebar as fast as possible, and when the target number was 

displayed, action required was to withhold the response (that is to say not press the spacebar). 
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Procedure 

 

Participants were tested individually in a quiet room, between 9am and 3pm, in a session lasting 

approximately 45 minutes. They were randomly assigned in two groups, each of which performed five 

short vigilance tasks, as follows. Each participant performed a monotonous then a non-monotonous task, 

followed by one of various types of monotonous tasks (this task formed part of a larger study and will not 

be further described here). Finally, there was a repetition of the monotonous and non-monotonous tasks, 

participants of the second group performing this sequence in a counterbalanced order with time. Prior to 

each condition, participants received written instructions on the computer screen. The instructions asked 

them to respond as quickly as possible to all stimuli, and this with the highest accuracy possible. On 

completion, participants filled out short questionnaires: the Sensation Seeking Scale - Form V (SSS), the 

General Health Questionnaire (GH-28) to screen and eliminate participants for psychiatric morbidity 

(found to impair performance using the SART) and a general background questionnaire (control sleep 

pattern and caffeine consumption). 

 

Data analysis   

 

The software Matlab version 7.4.0.287 was used to analyse data. Responses to target are used to assess 

vigilance fluctuations. They are converted into error rates in fixed time windows (also referred to as 

performance measure in this paper), defined as the fraction of targets not detected by the subject (i.e. 

lapses) within a fixed window.  Due to the small number of targets in the monotonous setting, a window 

size of 45 stimuli (targets and non-targets) was chosen to obtain an average number of five targets in the 

window in the monotonous setting. This window size corresponds to approximately one minute. The 

window size was chosen to be the same for the non-monotonous task. Pearson's linear correlation 

coefficient between the reaction times (resp. performance) of two consecutive time windows is computed 

to test wether assumptions required during HMM modelling are reasonable. Performance is then divided 

into states as described in the „Vigilance‟ sub-section. The predictor reaction time is computed as the 

mean response time to non-targets. Reaction times are normalised per participant and then categorised. 

 

The sensation seeking level of the participant is categorised into one of the following classes: low (less 

than one standard deviation (S.D.) in the available participants sample), normal (within one S.D.) or high 

(greater than one S.D.) (16). 

 

Six different HMMs are fitted to take into account the impact of the monotony of the task (monotonous or 

not) and the sensation seeking scale (low, medium and high level). Vigilance states and reaction times are 

known when the model is trained. That way, computing the joint distribution is only a matter of counting 

the different transitions from the different performance states and the probability of observation of the 

different reaction times for each vigilance state (Bayesian learning) (32).  

 

A stratified 10-fold cross-validation is performed to assess the robustness of the modelling. In this 

technique data are divided into 10 folds. The model is trained on 9 and tested on the remaining one. This 

is repeated so that each fold is used as a test sample (33). A stratified cross-validation was used to avoid 

putting high and low sensation seekers in the same fold. 

 

The most probable performance state sequence at time t using the reaction times data until time t is 

computed with the Viterbi algorithm. This gives the probable vigilance state at this time. Future vigilance 

states are then inferred up to four minutes in advance using the transition probability matrix. The model's 

accuracy is evaluated through the capacity to detect hypovigilance occurrences reliably. Therefore 

sensitivity and specificity are reported. Sensitivity measures the proportion of actual hypovigilance states 

which are correctly identified as such while specificity measures the proportion of non-hypovigilant states 

which are correctly detected. Their mean is also provided. 

 

Results 

 

The correlation between two consecutive performance measures (rate of accurate target detection in a 

time window) was 70.0  while the correlation between the mean reaction time of two consecutive 

time windows was 18.0 . This shows that vigilance evolution is progressive and depends on the 
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previous state. Particularly, there is no need to use a Markov property of order higher than one. Such 

observation was not true in the case of reaction times. Reaction times are not equivalent to the 

performance level though they depend on it (a reaction time value does not correspond to a specific 

vigilance state). This supports the choice of HMMs, their assumptions being compatible with the data.  

 

The non-monotonous setting of the SART did not create hypovigilance, with only two occurrences 

appearing when considering all the participants. On the other hand the monotonous setting resulted in a 

total of 104 occurrences of hypovigilance when considering all the participants (out of 200 

measurements). Therefore there was no need to detect hypovigilance on the non-monotonous setting, and 

only results on the monotonous setting were further analysed. Reaction times (continuous values) were 

categorised in order to be used in the HMM. Various numbers of categories were investigated in order to 

optimise the model‟s accuracy. For each number of categories N, the range of reaction times values was 

divided into N intervals of fixed width
N

RTRT
width minmax

. Best results in terms of prediction 

were obtained for 19 categories. The values of the transition probabilities for the corresponding HMM are 

shown in Table 1 for each level of sensation seeking. In this monotonous setting, only low sensation 

seeking participants may stay in the alert state. On the other hand each participant – independently of 

their sensation seeking level - is highly likely (66% for medium sensation seekers) to stay in the 

hypovigilance state once they reach it. This is also apparent from Figure 2 which provides a graphical 

representation of the transition probabilities between the different vigilance state from time t to time 

1t . This figure provides information on the likely vigilance state at the next time step knowing the 

current vigilance state. The width of the different arrows is proportional to the probability of a transition. 

Figure 2-a shows these transitions for the non-monotonous setting for medium and high sensation 

seekers. Probability transitions used to make this diagram for the non-monotonous setting are not 

provided in this paper but can be found in Larue et al. (19)‟s paper. Figure 2-b presents such transitions 

for the monotonous setting for medium and high sensation seekers. 

 

 

Table 1: HMM transition probabilities (in percentage) for the monotonous setting 

 

        
Figure 2: Transition between vigilance states for the (a) non-monotonous setting and (b) monotonous 

setting (arrows‟ width is used to highlight the likelihood of transition) 

 

The trained HMM has been used to make predictions using reaction times until time t up to four minutes 

in advance (as presented in Figure 1). The accuracy of these predictions is reported in Table 2. The 

prediction of vigilance at time t has a mean value of 80.0% (73.1% and 86.9% for the sensitivity and 

(a) (b) 
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specificity respectively). This mean increases as prediction steps increase up to four minutes (t+4) 

reaching 88.0% (100% and 75.9% for the sensitivity and specificity respectively). This increase is due to 

an increase in sensitivity (while specificity decreases) and results from the high likelihood to finish the 

experiment in the hypovigilant state. 

 

Table 2: Predictions accuracy (in percentage) for the monotonous setting for different time steps (up to 4 

minutes in advance) 

  
 
Discussion 

 

The state of low performance to targets is observed half of the time in the monotonous setting and almost 

never in the non-monotonous scenario. Therefore this short vigilance task shows that the monotonous 

setting of the task can lead to hypovigilance while such vigilance impairment is not observed in the non-

monotonous setting. Furthermore, once the hypovigilance state is reached, it is very difficult to go back to 

better performance (as can be seen by the low transition probabilities on Table 3 and Figure 2). Sensation 

seeking level changes the way participants cope with the monotonous setting. High and medium sensation 

seekers are not able to maintain high vigilance whereas low sensation seekers can. Also high and medium 

sensation seekers tend to have an immediate and fast decrease in vigilance, going from an alert state to the 

hypovigilant one directly with 39% and 26% probability respectively. By contrast vigilance decrement for 

low sensation seekers is less abrupt and goes through the intermediate vigilance level (7% probability to 

go straight from the alert state to the hypovigilant state). These results on sensation seeking level‟s impact 

on vigilance decrement are in line with previous research conducted on a driving simulator by Thiffault & 

Bergeron (3) where steering wheel movements were used as a measure of driving performance.  

 

The vigilance decrement can be accurately detected and predicted up to four minutes in advance through 

surrogate measures (here reaction times) using HMMs with a mean around 80%. Although the increase in 

the accuracy as the prediction step increases is counterintuitive, it can be explained in this experiment. 

Independently of the sensation seeking level, participants are highly likely to finish the experiment in the 

hypovigilant state when the setting is monotonous. Therefore, it is easier to predict the vigilance state 

closer to the end of the experiment, which results in better predictions.  

 

Limitations 

 

Models were trained according to the Sensation Seeking Scale level, so that a population modelling 

approach has been used in this study. Adapting models to each participant should improve these results. 

Also, the sample of participants is heavily biased by age, gender and possibly intellectual capacity 

compared to the wider population due to the sampling population being university students. Nevertheless, 

generalisation of the results found in this pilot study seems reasonable due to the simplicity of the task 

involved. 

 

Conclusion 

 

We show on a short vigilance task that monotony can quickly lead to critical vigilance impairment. Such 

impairment depends importantly on the sensation seeking level of the participant and is detected through 

task performance. In view of predicting hypovigilance during driving, this vigilance decrement has to be 

detected through surrogate measures. Indeed, the most reliable and most often used method to assess 

vigilance is electroencephalography, which cannot be implemented in a real car. This experiment shows 
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that the vigilance decrement can be predicted using reaction times as surrogate measures with 80% to 

86% accuracy and up to four minutes in advance. Such results support the idea to use HMMs to predict 

hypovigilance during driving, using surrogate measures. Different measures, such as lane-keeping, where 

steering wheel movements or eye-tracking performance, have been shown in the literature to be altered 

when the driver vigilance is impaired. Such further research could be implemented in an in-vehicle device 

to predict driver vigilance decrement and therefore prevent crashes. 
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