

This is the author version published as:

This is the accepted version of this article. To be published as :
This is the author’s version published as:

Catalogue from Homo Faber 2007

QUT Digital Repository:
http://eprints.qut.edu.au/

Alshammari, Bandar and Fidge, Colin J. and Corney, Diane (2010)
Assessing the impact of refactoring on securitycritical object
oriented designs. In: The 17th Asia Pacific Software Engineering
Conference : Software for Improving Quality of Life, 30 November ‐ 3
December 2010, Hilton Hotel, Sydney.

Copyright 2010 IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10901597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Assessing The Impact of Refactoring on
Security-Critical Object-Oriented Designs

Bandar Alshammari1, Colin Fidge2 and Diane Corney3

Faculty of Science and Technology
Queensland University of Technology

Brisbane, Australia.
Email: 1 b.alshammari@student.qut.edu.au 2 c.fidge@qut.edu.au 3 d.corney@qut.edu.au

Abstract—Refactoring focuses on improving the reusability,
maintainability and performance of programs. However, the
impact of refactoring on the security of a given program has
received little attention. In this work, we focus on the design
of object-oriented applications and use metrics to assess the
impact of a number of standard refactoring rules on their
security by evaluating the metrics before and after refactoring.
This assessment tells us which refactoring steps can increase
the security level of a given program from the point of view
of potential information flow, allowing application designers to
improve their system’s security at an early stage.

Index Terms—Object-orientation; Security; Metrics; Refactor-
ing

I. INTRODUCTION

Although there have been many studies into secure coding
techniques [1] [2], a more efficient strategy is to assess
program security at design time. We have previously proposed
a set of metrics which allow designers to compare the security
of various alternative designs for a given object-oriented
program [3] [4], by quantifying potential information flow
from ‘classified’ data values.

Refactoring rules [5] are a well-established way of re-
structuring an object-oriented system without changing its
functional behaviour, but the effect of refactoring on program
security is less clear. Here we use our software security metrics
to assess the impact of a number of standard refactoring
steps on program security. This is done by first measuring the
security of a given program’s design using the metrics [3] [4]
and then measuring the security of other refactored designs of
the same program.

II. RELATED WORK AND RESEARCH PROBLEM

Refactoring is defined as “a change made to the internal
structure of a program to make it easy to understand and
cheap to modify without changing its observable behavior” [5].
Using refactoring to enhance a program’s security has been
considered in a number of studies. Maruyama and Tokoda [6]
investigated how certain changes could affect the security
characteristics of a given program with regard to access
modifiers. Their work shows which refactoring rules could
change a class’s accessibility level and therefore change its
security level. Other work by Maruyama aims to improve the

overall security of a given program’s code by identifying its
code vulnerabilities and defining a set of secure refactoring
rules [7]. Furthermore, Smith and Thober have identified a
refactoring approach for critical systems [8]. This approach
aims to refactor a program’s code into two modules; a high-
security and a low-security one. However, these previous
approaches don’t quantify the impact of changes on the overall
security level of a given program. Furthermore, they require
full source code implementations of the programs, which is
inevitably less efficient than finding problems at design time.

Instead, in this paper we measure the impact of a set
of refactoring steps on the security of a given program’s
design using our security design metrics [3] [4]. These met-
rics measure annotated UML class diagrams for a given or
planned program. The UML class diagrams are annotated
using UMLsec’s annotations to identify confidential data [9]
and SPARK’s annotations to express the information flow
relations between attributes, methods and classes [10].

III. SUMMARY OF SECURITY DESIGN METRICS

This section briefly summarises the security design metrics
which we have used previously to compare the security level of
program designs [3] [4] as an adjunct to other well-established
metrics for assessing design or program complexity [11]. The
metrics measure security from the perspective of information
flow based on the security design principles of “reducing the
size of the attack surface” [12] and “least privilege” [13] [14],
using security annotations introduced by the designer. The
metrics used in this paper are shown in Table I. Each is a
ratio in the range 0 to 1, with lower values considered more
secure. Absolute metrics such as the number of critical classes,
classified methods and classified attributes are also helpful but
are not covered in this paper.

The data encapsulation-based metrics (CIDA, CCDA and
COA) assess the accessibility of classified attributes and
methods [3]. Classified attributes are those with a UMLsec
“secrecy” label and classified methods are those that interact
with at least one such attribute, directly or indirectly, as re-
vealed by SPARK “derives value from attribute” annotations.
The cohesion-based metrics measure the potential flow of
classified attributes’ values to accessor and mutator methods,
penalising designs with a large amount of classified flow [3].

Table I
SECURITY METRICS DEFINITIONS

Metric Description Definition

CIDA The number of classified instance public attributes CIPA to the number
of classified attributes CA in a design. CIDA(D) = |CIPA|

|CA|

CCDA The number of classified class public attributes CCPA to the number
of classified attributes CA in a design. CCDA(D) = |CCPA|

|CA|

COA The number of classified public methods CPM to the number of
classified methods CM in a design. COA(D) = |CPM|

|CM|

CMAI
The number of mutators which may interact with classified attributes
α (CAi) to the possible maximum number of mutators MM which
could interact with classified attributes CA in a design.

CMAI(D) =
∑
|CA|
i=1 α(CAi)

|MM|×|CA|

CAAI
The number of accessors which may interact with classified attributes
β (CAi) to the possible maximum number of accessors AM which
could interact with classified attributes CA in a design.

CAAI(D) =
∑
|CA|
i=1 β (CAi)

|AM|×|CA|

CAIW
The number of all methods which may interact with classified at-
tributes γ (CAi) to the number of all methods which could have access
to all attributes δ

(
A j

)
in a design.

CAIW (D) =
∑
|CA|
i=1 γ(CAi)

∑
|A|
j=1 δ(A j)

CMW The number of classified methods CM to the total number of methods
M in a design. CMW (D) = |CM|

|M|

CCC
The number of classes’ links with classified attributes ε (CAi) to the
number of possible links of all classes C with classified attributes CA
in a design.

CCC(D) =
∑
|CA|
i=1 ε(CAi)

(|C|−1)×|CA|

CPCC The number of critical composed-part classes CP to the total number
of critical classes CC in a design. CPCC(D) = 1−

(
|CP|
|CC|

)
CCE The number of the non-finalised critical classes ECC to the total

number of critical classes CC in a design. CCE(D) = |ECC|
|CC|

CME The number of non-finalised classified methods ECM to the number
of classified methods CM in a design. CME(D) = |ECM|

|CM|

CSP The number of critical superclasses CSC to the number of critical
classes CC in an inheritance hierarchy. CSP(H) = |CSC|

|CC|

CSI
The sum of classes which may inherit from each critical superclass
ε (CSCk) to the number of possible inheritances from all classes C to
all critical classes CC in an inheritance hierarchy.

CSI(H) =
∑
|CSC|
k=1 ε(CSCk)

(|C|−1)×|CC|

CMI The number of classified methods which can be inherited MI to the
number of classified methods CM in an inheritance hierarchy. CMI(H) = |MI|

|CM|

CAI The number of classified attributes which can be inherited AI to the
number of classified attributes CA in an inheritance hierarchy. CAI(H) = |AI|

|CA|

CDP The number of critical classes CC to the number of classes C in a
design. CDP(D) = |CC|

|C|

The coupling-based metric (CCC) measures interactions be-
tween classes and classified attributes, rewarding designs that
minimise such interactions [4], because it is known that strong
coupling makes security attacks easier [15]. The composition-
based metric (CPCC) penalises designs with “critical” classes
higher in the class hierarchy, where they can be accessed by a
large number of subclasses [4]. A class is considered “critical”
if it contains a classified attribute or an attribute which derives
its value from a classified one. The extensibility-based metrics
(CCE and CME) reward designs with fewer opportunities for
extending critical classes or classified methods since these
are points at which an attacker can access classified data
without affecting the system’s observable behaviour [16]. The
inheritance-based metrics (CSP, CSI, CMI and CAI) reward
designs with fewer opportunities for inheriting from critical
superclasses, since these allow subclasses to gain privileges
over classified data [4]. Finally, the design size-based metric
(CDP) rewards designs with a lower proportion of critical
classes [4]. In situations where the design does not have the
relevant constructs or features, which would produce a zero
denominator in a metric, the whole metric is treated as zero.

IV. ASSESSMENT OF REFACTORING RULES

This section identifies the refactoring rules which we have
determined may have an impact on the security of a given
program. It also explains how these standard refactoring rules
may affect the security design metrics defined in Section III.

A. Identifying Security-Critical Design Refactoring Rules

Table II lists standard refactoring rules [5] [17] which
are applicable at the design stage and which may affect the
security level of an object-oriented design. We distinguish their
effect on classified and non-classified features as shown in
Table III, and have studied their impact on confidential data
accessibility and hence the overall security of that program. All
of these rules may have an impact on the size of the design’s
‘attack surface’ [12] and ‘least privilege’ [13] [14].

B. Assessing Security-Critical Design Refactoring Rules

In this section we analyse how the refactoring rules shown
in Table III may affect the security design metrics defined in
Section III.

For example, refactoring rules Encapsulate Classified Field
and Hide Classified Method can improve security with regard
to the Data Encapsulation-based metrics in two cases. One is

Table II
DESIGN REFACTORING RULES

Refactoring
Rule Effect

Encapsulate
Field

Changes the access modifier of public fields to
private.

Inline Field Combines two fields or more into one if they are
always used together.

Extract Field Creates a new field from an existing one if its
information can be used separately.

Pull Up
Field

If two subclasses have the same field then this rule
moves this field to their superclass.

Push Down
Field

If a field is used by only some subclasses then this
rule moves this field to those subclasses.

Move Field Moves a field to another class.
Hide
Method

Makes public methods private if not used by
another class.

Inline
Method

Combines two methods if they are always used
together.

Extract
Method Creates a new method from an existing one.

Finalise
Method

Declares a method as “final” to prevent it from
being extended.

Pull Up
Method

If two subclasses have the same method then this
rule moves the method to their superclass.

Push Down
Method

If a method is used by only some subclasses classes
then this rule moves the method to those subclasses.

Move
Method Moves a method to another class.

Inline Class Combines two classes if they are always used
together.

Extract
Class Creates a new class from an existing one.

Finalise
Class

Declares a class as “final” to prevent it from being
extended.

Extract
Superclass

If two subclasses have similar features, this rule
creates a superclass and moves these features into
it.

Extract
Subclass

If two superclasses have similar features, this rule
creates a subclass and moves these features into it.

if public classified fields have been encapsulated to be private
using the Encapsulate Classified Field refactoring rule. This
will make the program more secure in terms of the CIDA
and CCDA metrics. Furthermore, when refactoring rule Hide
Classified Method is applied to public classified methods to
make them private, this will reduce the COA metric, making
the program more secure in this regard.

Refactoring rules Inline Classified Field, Inline Classi-
fied Method, Extract Non-Classified Field and Extract Non-
Classified Method could maintain or improve the security
of the program with regard to the Cohesion-based security
metrics (CMAI, CAAI, CAIW and CMW) in many cases.
Using the Inline Classified Field and Inline Classified Method
rules to inline classified attributes and classified methods will
reduce the overall number of classified attributes and classified
methods, and thus make the program more secure. Further-
more, using the Extract Non-Classified Field and Extract Non-
Classified Method rules to separate non-classified attributes
and methods from classified ones will decrease the proportion
of classified attributes and methods, also making the program
more secure.

Refactoring rules Extract Non-Critical Class, Extract Super-

class, Extract Subclass and Move Classified Field can improve
security with regard to the Coupling-based security metrics.
Extract Non-Critical Class can be used to extract a non-
critical class from an existing critical one, which increases
the proportion of non-critical classes in the design and makes
the critical ones simpler. The Move Classified Field rule can
be used to move a classified field to a critical class which
interacts with it. This will reduce the number of links with
classified fields and thus reduce the CCC metric. Reducing
this metric can also be achieved by introducing inheritance to
related classes which use similar classified fields, which can
be done by either Extract Critical Superclass or Extract Non-
Critical Superclass and Extract Critical Subclass or Extract
Non-Critical Subclass. This will change the coupling with
classified attributes to be through inheritance which reduces
this metric and makes the program more secure in this regard.

Refactoring rules Extract Composed-Part Critical Class,
Move Classified Field and Move Classified Method can also
make programs more secure in terms of Compositional-
ity. They should be used in a particular way, to extract a
composed-part critical class (i.e. an inner class of the outer
class) using the Extract Composed-Part Critical Class rule.
Then, the next step is to move the new class’s related classified
attributes and methods from the outer class using the Move
Classified Field and Move Classified Method rules. This will
increase the proportion of composed-part critical classes to the
total number of critical classes, thus making the program more
secure in terms of the CPCC metric.

The Extract Non-Critical Class, Move Non-Classified Field
and Move Non-Classified Method rules can lower the pro-
portion of critical classes to make programs more secure
with regard to the Design Size metric (CDP), by extracting
a non-critical class from an existing critical one. This will
involve using the Move Non-Classified Field and Move Non-
Classified Method rules to move the non-classified attributes
and methods into the new class. Furthermore, refactoring
rules Inline Critical Class, Move Classified Field and Move
Classified Method can lower the proportion of critical classes
to make programs more secure with regard to the Design
Size metric (CDP), by combining two critical classes into one
critical class. This will cause the relevant classified attributes
and methods to be moved to their critical class using the Move
Classified Field and Move Classified Method rules.

The Finalise Critical Class and Finalise Classified Method
refactoring rules can make programs achieve a higher level
of security in terms of Extensibility. Finalise Critical Class
can be used to make critical classes ‘final’ to prevent other
classes from extending them. This will increase the number
of non-extendable critical classes, and thus reduces the CCE
metric. The CME metric can be reduced by finalising classified
methods, using the Finalise Classified Method rule.

A number of refactoring rules could allow subclasses to
acquire more privileges over classified data, and decrease
privileges of superclasses over such data, making programs
more secure with regard to the Inheritance-based metrics.
These rules include Extract Non-Critical Superclass, Extract

Table III
SECURITY-CRITICAL DESIGN REFACTORING RULES

Security Refactoring Rule Identifier Effect
Encapsulate Classified Field RNCF Changes the access modifier of classified public fields to private.
Encapsulate Non-Classified Field RNNF Changes the access modifier of non-classifed public fields to private.

Inline Classified Field RICF Combines two classified fields or more into one classified field if they are
always used together.

Inline Non-Classified Field RINF Combines two classified and non-classified fields or more into one classified
field if they are always used together.

Extract Classified Field RECF Creates a new classified field from an existing classified field if its
information can be used separately.

Extract Non-Classified Field RENF Creates a new non-classified field from an existing classified or non-classified
field if its information can be used separately.

Pull Up Classified Field RPUCF If two subclasses have the same classified field then this rule moves this field
to their superclass.

Pull Up Non-Classified Field RPUNF If two subclasses have the same non-classified field then this rule moves this
field to their superclass.

Push Down Classified Field RPDCF If a classified field is used by only some subclasses then this rule moves this
field to those subclasses.

Push Down Non-Classified Field RPDNF If a non-classified field is used by only some subclasses then this rule moves
this field to those subclasses.

Move Classified Field RMCF Moves a classified field to a critical class.
Move Non-Classified Field RMNF Moves a non-classified field to a critical class.
Hide Classified Method RHCM Makes classified public methods private if not used by another class.
Hide Non-Classified Method RHNM Makes non-classified public methods private if not used by another class.

Inline Classified Method RICM Combines two classified methods or more into one classified method if they
are always used together.

Inline Non-Classified Method RINM Combines two classified and non-classified methods or more into one
classified method if they are always used together.

Extract Classified Method RECM Creates a new classified method from an existing classified method if its
information can be used separately.

Extract Non-Classified Method RENM Creates a new non-classified method from an existing classified or
non-classified method if its information can be used separately.

Finalise Classified Method RFCM Declares a classified method as “final” to prevent it from being extended.
Finalise Non-Classified Method RFNM Declares a non-classified method as “final” to prevent it from being extended.

Pull Up Classified Method RPUCM If two subclasses have the same classified method then this rule moves this
method to their superclass.

Pull Up Non-Classified Method RPUNM If two subclasses have the same non-classified method then this rule moves
this method to their superclass.

Push Down Classified Method RPDCM If a classified method is used by only some subclasses then this rule moves
this method to those subclasses.

Push Down Non-Classified
Method RPDNM If a non-classified method is used by only some subclasses then this rule

moves this method to those subclasses.
Move Classified Method RMCM Moves a classified method to a critical class.
Move Non-Classified Method RMNM Moves a non-classified method to a critical class.

Inline Critical Class RICC Combines two critical classes or more into one critical class if they are
always used together.

Inline Non-Critical Class RINC Combines two critical and non-critical classes or more into one critical class
if they are always used together.

Extract Critical Class RECC Creates a new critical class from an existing critical one.
Extract Composed-Part Critical
Class RECPCC Creates a new composed-part critical class from an existing critical class.

Extract Non-Critical Class RENC Creates a new non-critical class from an existing critical one.
Finalise Critical Class RFCC Declares a critical class as “final” to prevent it from being extended.
Finalise Non-Critical Class RFNC Declares a non-critical class as “final” to prevent it from being extended.

Extract Critical Superclass RECSP If two critical subclasses have similar classified features, this rule creates a
critical superclass and moves these features into it.

Extract Non-Critical Superclass RENSP If two critical subclasses have similar non-classified features, this rule creates
a non-critical superclass and moves these features into it.

Extract Critical Subclass RECSB If two critical superclasses have similar classified features, this rule creates a
critical subclass and moves these features into it.

Extract Non-Critical Subclass RENSB If two critical superclasses have similar non-classified features, this rule
creates a non-critical subclass and moves these features into it.

Branch
+ branchID : String
+ branchName : String
+ SetBranch(_bID : String ; _bName : String) : Void
[derives branchID, branchName from_bID, _bName]
+ GetBranch() : String
[derives GetBranch() from branchID, branchName]

Address
+ street : String
+ city : String
+ State : String
+ SetStreet(_street : String) : Void
[derives street from _street]
+ GetStreet() : String
[derives GetStreet() from street]
+ SetCity(_city : String) : Void
[derives city from _city]
+ GetCity() : String
[derives GetCity() from city]
+ SetState(_state : String) : Void
[derives state from _state]
+ GetState() : String
[derives GetState() from state]

«Critical»
Telephone

+ «secrecy» telephoneNo : String
+ SetTelephoneNo(_phoneNo : String) : Void
[derives telephoneNo from _phoneNo]
+ GetTelephoneNo() : String
[derives GetTelephoneNo() from telephoneNo]

«Critical»
Staff

+ branch : Branch
+ fName : String
+ «secrecy» lName : String
+ «secrecy» telephone : Telephone
+address : Address
+ SetBranch(_branch : Branch) : Void
[derives branch from _branch]
+ GetBranch() : Branch
[derives GetBranch() from branch]
+ SetStaffFname(_fName : String) : Void
[derives fName from _fName]
+ GetStaffFname() : String
[derives GetStaffFname() from fName]
+ SetStaffLname(_lName : String) : Void
[derives lName from _lName]
+ GetStaffLname() : String
[derives GetStaffLname() from lName]
+ SetTelephone(_telephone : Telephone) : Void
[derives telephone from _telephone]
+ GetTelephone() : Telephone
[derives GetTelephone from telephone]
+ VerifyPassword() : Boolean
[derives VerifyPassword() from staffName, areaCode, extensionNo]
+ SetAddress(_address : String) : Void
[derives address from _address]
+ GetAddress() : String
[derives GetAddress() from address]

«Critical»
CustomerAccount

+ branch : Branch
+ accountName : String
+ accountType : String
+ «secrecy» interestRate : Double
+ «secrecy» creditCard : CreditCard
+ SetBranch(_branch : Branch) : Void
[derives branch from _branch]
+ GetBranch() : Branch
[derives GetBranch() from branch]
+ SetAcccount(_accName : String ; _accType : String) : Void
[derives accountName, accountType from _acctName, _accType]
+ GetAccount() : String
[derives GetAccountName from accountName, AccountType]
+ SetInterestRate(_interestRate : Double) : Void
[derives interestRate from _interestRate]
+ GetInterestRate() : Double
[derives GetInterestRate() from interestRate]
+ SetCredit(_creditCard : CreditCard) : Void
[derives creditCard from _creditCard]
+ GetCredit() : CreditCard
[derives GetCredit() from creditCard]

«Critical»
CreditCard

+ «secrecy» creditCardNo: Double
+ «secrecy» creditCardExpiry : String
+ SetCredit(_cNo : Double ; _cExp : String) : Void
[derives creditCardNo, creditCardExpiry from _cNo, _cExp]
+ GetCredit() : String
[derives GetCredit() from creditCardNo, creditCardExpiry]
+ VerifyCredit(_cardNo : Double ; _cardExpiry : String) : Boolean
[derives VerifyCredit() from creditCardNo, creditCardExpiry]

Figure 1. Bank Account Hierarchy 1

Critical Subclass, Pull Up Non-Classified Field, Pull Up Non-
Classified Method, Push Down Classified Field and Push
Down Classified Method. This can be achieved through ex-
tracting a non-critical superclass for similar non-classified fea-
tures, and then extracting critical subclasses for their classified
data using the Extract Non-Critical Superclass and Extract
Critical Subclass rules. This will reduce the number of critical
superclasses in a design, and hence reduce the CSP metric.
Moreover, it will reduce the number of critical superclasses
that could be inherited, which reduces the CSI metric. Using
the Pull Up Non-Classified Field and Pull Up Non-Classified
Method rules to move non-classified attributes and methods
to the non-critical superclasses in addition to using the Push
Down Classified Field and Push Down Classified Method
rules to move classified attributes and methods to the critical
subclasses will reduce the number of classified attributes and
classified methods which could be inherited. This will thus
reduce the CAI and CMI metrics.

Of course the most secure design is one which has a
lower value with regard to all of these security metrics.
Unfortunately, we usually face a trade off because reducing
one metric often results in increasing another.

V. CASE STUDY

The following case study illustrates how applying the refac-
toring rules shown in Table III impacts the security of a design

in a way measurable by our metrics in Table I, as predicted
in Section IV. In order for this assessment to take place, a
complete annotated UML class diagram is required. It must
include UMLsec and SPARK annotations in addition to the
standard elements of a class diagram in order to identify
classified data items and their uses.

A. Original Annotated Design

The class diagram in Figure 1 has been annotated using
UMLsec’s and SPARK’s annotations. The Bank Account
system class diagram is responsible for storing information
about customer accounts and bank staff who belong to a
certain branch. The Branch class contains the branch ID and
name. In class Customer Account, a bank account can be
either a savings or a credit account which is determined by
the Account Type attribute. The value of a Savings account’s
interest rate is different from a Credit account’s but it is a class
(static) attribute since its value is shared for all objects of the
initialised class. It is underlined in Figure 1 to be consistent
with the UML class diagram rules. The Customer Account
class also stores attributes of both the savings and credit
accounts. The Credit Card class stores the account’s credit
card number and expiry date. We assume that the account’s
interest rate, credit card number and expiry date attributes are
sensitive and are meant to be kept secret.

«Critical»
Staff

+ branch : Branch
+ <secrecy» staffName : String
+ «secrecy» telephone : Telephone
+ address : String
+ SetBranch(_branch : Branch) : Void
+ GetBranch() : Branch
+ SetStaffName(_fName : String ; _lName) : Void
+ GetStaffName() : String
+ SetTelephone(_telephone : Telephone) : Void
+ GetTelephone() : Telephone
+ VerifyPassword() : Boolean
+ SetAddress(_address : String) : Void
+ GetAddress() : String

«Critical»
CustomerAccount

+ branch : Branch
+ accountName : String
+ accountType : String
+ «secrecy» interestRate : Double
+ «secrecy» creditCard : CreditCard
+ SetBranch(_branch : Branch) : Void
+ GetBranch() : Branch
+ SetAcccount(_accName : String ; _accType : String) : Void
+ GetAccount() : String
+ SetInterestRate(_interestRate : Double) : Void
+ GetInterestRate() : Double
+ SetCredit(_creditCard : CreditCard) : Void
+ GetCredit() : CreditCard

«Critical»
CreditCard

+ «secrecy» creditCardNo: Double
+ «secrecy» creditCardExpiry : String
+ SetCredit(_cNo : Double ; _cExp : String) : Void
+ GetCredit() : String
+ VerifyCredit(_cardNo : Double ; _cardExpiry : String) : Boolean

Branch
+ branchID : String
+ branchName : String
+ SetBranch(_bID : String ; _bName : String) : Void
+ GetBranch() : String

«Critical»
Telephone

+ «secrecy» areaCode : String
+ «secrecy» extensionNo : String
+ SetAreaCode(_areaCode : String) : Void
+ GetAreaCode() : String
+ SetExtensionNo(_extensionNo : String) : Void
+ GetExtensionNo() : String

Figure 2. Bank Account Hierarchy 2

The Staff class is responsible for storing information about
bank staff. This information consists of the branch where the
staff work, the staff member’s name (first and last names)
and address details (i.e. street, city and state) which are
stored in the Address class. The Telephone class is responsible
for storing information about staff member’s area code and
internal phone extension, which is intended for use only
within the organisation and should be kept secret to prevent
direct calls from bank customers (who should call via the
switchboard). Additionally, we assume that the staff member’s
last name also needs to be kept secret since it is used as
a user name for the bank’s computer system. All of these
classes contain operations which are responsible for mutating
and accessing these details once they have been requested. The
various ‘derives . . . from . . . ’ annotations tell us how attributes,
method parameters and return values are related.

B. Refactored Designs

Figures 2 and 3 show two refactored versions of the original
design using some of the refactoring rules in Table III. (The
two additional designs omit the SPARK “derives . . . from . . . ”
annotations for brevity.) The two refactorings aim to make the
original design clearer and more maintainable, respectively,
and are typical of the kinds of changes that a designer might
reasonably contemplate.

For instance, Figure 2 differs from the original design in the
number of classes, which is now five instead of six. This was
done to improve the understandability of the program [11],
using Inline Non-Critical Class to inline the non-critical Ad-
dress class with the critical Staff class. This was followed by

Move Non-Classified Field and Move Non-Classified Method
to move all the relevant non-classified attributes and methods
from the pre-exisiting Address class to the Staff class. How-
ever, these steps make the program less secure with regard to
its Design Size, and thus reduce the CDP metric. These rules
also reduce the proportion of non-critical classes over critical
ones, increasing the CCC metric. The new design has also used
three other refactoring rules which increase the composition
metric (CPCC). Extract Critical Class was used to change
the existing composed-part critical Telephone class into an
independent critical class, and Move Classified Field and Move
Classified Method were used to move the Telephone class’s
classified fields and methods inside it. A number of rules have
also been used which made the design less secure in terms
of the Cohesion-based metrics including Inline Non-Classified
Field, Inline Non-Classified Method, Extract Classified Field
and Extract Classified Method. The Inline Non-Classified Field
rule was used to combine one classified and one non-classified
attribute into one classified attribute, i.e. the first name and
last name from the Staff class have been combined into one
classified staff name attribute. This has resulted in using the
Inline Non-Classified Method to merge previous methods of
the two inlined classified and non-classified attributes into one
classified method. Finally, Extract Classified Field has been
used to extract two classified attributes, i.e. the area code
and extension number, of the one classified attribute telephone
number in the Telephone class. This, of course, has resulted in
using the Extract Classified Method rule to extract classified
methods which mutate and access the new classified attributes

«Critical»
Staff

- branch : Branch
- fName : String
- «secrecy» lName : String
- «secrecy» telephone : Telephone
- address : Address
+ SetBranch(_branch : Branch) : Void
+ GetBranch() : Branch
+ SetStaffFname(_fName : String) : Void
+ GetStaffFname() : String
+ SetStaffLname(_lName : String) : Void
+ GetStaffLname() : String
+ SetTelephone(_telephone : Telephone) : Void
+ GetTelephone() : Telephone
- VerifyPassword() : Boolean
+ SetAddress(_address : Address) : Void
+ GetAddress() : Address

«Critical»
Credit

- «secrecy» interestRate : Double
- «secrecy» creditCardNo: Double
- «secrecy» creditCardExpiry : String
+ «Final» SetInterestRate(_rate : Double) : Void
+ «Final» GetInterestRate() : Double
+ SetCredit(_cNo : Double ; _cExp : String) : Void
+ GetCredit() : String
- VerifyCredit(_cNo : Double ; _cExp : String) : Boolean

CustomerAccount
- branch : Branch
- accountName : String
+ SetBranch(_branch : Branch) : Void
+ GetBranch() : Branch
+ SetAcccount(_accName : String) : Void
+ GetAccount() : String

«Critical» «Final»
Savings

- «secrecy» interestRate : Double
+ SetInterestRate(_rate : Double) : Void
+ GetInterestRate() : Double

Address
- street : String
- city : String
- State : String
+ SetStreet(_street : String) : Void
+ GetStreet() : String
+ SetCity(_city : String) : Void
+ GetCity() : String
+ SetState(_state : String) : Void
+ GetState() : String

Branch
- branchID : String
- branchName : String
+ SetBranch(_bID : String ; _bName : String) : Void
+ GetBranch() : String

«Critical» «Final»
Telephone

- «secrecy» telephoneNo : String
+ SetTelephoneNo(_phoneNo : String) : Void
+ GetTelephoneNo() : String

Figure 3. Bank Account Hierarchy 3

of the Telephone area code and extension number. In summary,
therefore, we expect our metrics to show that this new design
is less secure than the original one.

Another refactored design is shown in Figure 3. It has been
refactored from the original design in Figure 1 but it has used
inheritance for the CustomerAccount and CreditCard classes
for extendability and effectiveness reasons [11]. This has re-
sulted in creating three classes: CustomerAccount, Savings and
Credit. The Extract Non-Critical Superclass rule was used to
extract a non-critical superclass with the shared non-classified
attributes and methods for both of the new subclasses: Savings
and Credit. Since these two classes have different classified
attributes and methods, this has resulted in extracting them
as critical subclasses using the Extract Critical Subclass rule.
These two refactoring rules reduce the inheritance metrics
of CSP and CSI. This has caused the shared non-classified
attributes and methods to be pulled up to their non-critical
superclass using the Pull Up Non-Classified Field and Pull
Up Non-Classified Method rules. Similarly, different classified
attributes and methods for both classes have been pushed down
to their relevant subclasses via the Push Down Classified Field
and Push Down Classified Method rules. These rules, however,
reduce the inheritance metrics of CMI and CAI. Furthermore,
the new design has managed to reduce the proportion of
public classified instance and class attributes and also public
classified methods by using the Encapsulate Classified Field
and Hide Classified Method rules. Such rules reduce the
Data Encapsulation metrics CIDA, CCDA and COA. This has
resulted in making the public classified instance and class
attributes in all classes private. This has also changed the
modifier access of two classified methods to be private (i.e.
VerifyCredit in the CreditCard class and VerifyPassword in the

Staff class since they were only used within their own class).
The design has used Finalise Critical Class to make the critical
classes of Telephone and Savings final to prevent these classes
from being extended by adversaries. Similarly, it has also
used Finalise Classified Method to make classified methods
SetInterestRate and GetInterestRate in the Credit class final.
These rules make the design more secure in terms of the
Extensibility (CCE and CME) metrics. Overall, therefore, we
expect these steps to result in the most secure design of all.

C. Security Metrics Results

Tables IV and V show the results of applying the security
metrics introduced in Section III to the three designs shown
in Figures 1, 2 and 3.

Given that lower values of each metric are considered more
secure, it can be seen that the results of these different designs
vary with regard to their security level for many of the metrics.
In general, the more refactoring rules that were used to refactor
a given design according to the defined cases in Section IV-B,
the more design-level security metrics are affected. Overall,
Account 3 shows the most secure design with regard to all
of the metrics. By contrast, Account 2 shows the least secure
design in terms of these metrics.

In comparison, Account 1 is more secure than Account 2
in most of the security-relevant metrics including the Cohe-
sion, Composition, Coupling, and Design Size-based metrics.
Nevertheless, it shows the same results in terms of the Data
Encapsulation, Extensibility and Inheritance-based metrics,
because none of the changes affect the accessibility of clas-
sified attributes and methods, the position of critical classes
in the hierarchy or the extensibility of classes. In this case,
therefore, our refactoring steps made the design’s security

Table IV
RESULTS FOR INDIVIDUAL CLASS SECURITY METRICS

Design CIDA CCDA COA CMAI CAAI CAIW CMW
Account 1 0 0 0.857 0.067 0.092 0.450 0.437
Account 2 1 1 1 0.083 0.107 0.588 0.615
Account 3 0 0 0.857 0.067 0.092 0.444 0.437

Table V
RESULTS FOR MULTI-CLASS SECURITY METRICS

Design CPCC CCC CCE CME CSP CSI CMI CAI CDP
Account 1 0.75 0.057 1 1 0 0 0 0 0.67
Account 2 1 0.062 1 1 0 0 0 0 0.80
Account 3 0.75 0.024 0.60 0.43 0 0 0 0 0.57

measurably worse.
Furthermore, the security refactoring rules applied to Ac-

count 3 have improved the security level of other metrics
including the Coupling and Design Size-based ones. Account 3
differs from Account 1 by changing the access of all classified
attributes and a number of classified methods to be private. It
has also declared a number of critical classes and classified
methods as “final” to prevent their extension. Additionally, it
has used inheritance in such a way that there exists neither
critical superclasses nor classified attributes or methods which
could be inherited.

D. Security-Critical Design Refactoring Rules Assessment

Based on the previous case study, we have identified choices
of refactoring rules which could make the security of a given
design either more secure, less secure or maintain the security
of a given design as shown in Table VI. This list shows all
of the security-critical refactoring rules in Table III and their
expected impact on security for each of the security metrics
identified in Table I. Their impact is shown with regard to
each security metric in four different ways: “↑” means may
increase that security metric, “↓” means may decrease that
security metric, “l” means may increase or decrease that
security metric and “−” means has no impact on that metric.
The final column of the table indicates how the refactoring
rules affect the security of a design based on a sum of
the previous columns. This assessment must be interpreted
with some caution, however, since it places no particular
weight on each of the metrics. Whether or not all the metrics
should be viewed as equally valuable depends very much
on the particular designer’s goals and motivations. Table VI
shows that there are twenty refactoring rules which make
security better, twelve rules which make security worse and
the remaining four rules have no impact on security overall.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have assessed how refactoring steps can
influence the security of a given object-oriented design as
measured by a set of security metrics. The results show
that refactoring rules can improve the overall security of a
given program in a quantifiable way when used to restrict the
accessibility of classified data. In particular, our assessment

has shown that there are twenty different refactoring rules
which can improve the overall security of a given design.

Future work will include: defining a set of refactoring
rules specifically designed to improve security properties, by
ensuring that their application always improves or maintains
particular security metrics; development of a tool for auto-
matically calculating the metrics and summarising them in an
easy-to-understand form; and gaining practical experience with
applying the metrics in order to identify the most useful or
helpful ones.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their helpful
comments. Alshammari gratefully acknowledges the Ministry
of Higher Education in Saudi Arabia for sponsoring his PhD
studies. Fidge and Corney’s contribution to this research was
funded in part by the Australian Research Council and the De-
fence Signals Directorate through ARC-LP grant LP0776344.

REFERENCES

[1] G. McGraw, Software Security: Building Security In. Upper Saddle
River, NJ: Addison-Wesley, 2006.

[2] M. Howard and D. LeBlanc, Writing Secure Code. Redmond, Wash.:
Microsoft Press, 2002.

[3] B. Alshammari, C. J. Fidge, and D. Corney, “Security metrics for
object-oriented class designs,” in Proceedings of the Ninth International
Conference on Quality Software (QSIC 2009), (Jeju, Korea), pp. 11–20,
IEEE Computer Society, 2009.

[4] B. Alshammari, C. J. Fidge, and D. Corney, “Security metrics for
object-oriented designs,” in Proceedings of the Twenty-First Australian
Software Engineering Conference (ASWEC 2010), Auckland, 6–9 April
(J. Noble and C. J. Fidge, eds.), (California, USA), pp. 55–64, IEEE
Computer Society, 2010.

[5] M. Fowler, Refactoring: Improving The Design of Existing Code. Read-
ing, MA: Addison-Wesley, 1999.

[6] K. Maruyama and K. Tokoda, “Security-aware refactoring alerting its
impact on code vulnerabilities,” in Proceedings of the 15th Asia-Pacific
Software Engineering Conference (APSEC 2008), IEEE Computer So-
ciety, 2008. 1488052 445-452.

[7] K. Maruyama, “Secure refactoring - improving the security level of
existing code,” in Proceedings of the Second International Conference
on Software and Data Technologies (ICSOFT 2007), (Barcelona, Spain),
pp. 222–229, 2007.

[8] S. F. Smith and M. Thober, “Refactoring programs to secure infor-
mation flows,” in Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security, (Ontario, Canada), ACM, 2006.
1134758 75-84.

[9] J. Jürjens, Secure systems development with UML. Berlin, Germany:
Springer, 2005.

Ta
bl

e
V

I
S

E
C

U
R

IT
Y

-C
R

IT
IC

A
L

D
E

S
IG

N
R

E
FA

C
T

O
R

IN
G

R
U

L
E

S
A

S
S

E
S

S
M

E
N

T

R
ul

e
C

ID
A

C
C

D
A

C
O

A
C

M
A

I
C

A
A

I
C

A
IW

C
M

W
C

C
C

C
PC

C
C

C
E

C
M

E
C

SP
C

SI
C

M
I

C
A

I
C

D
P

To
ta

l
R

N
C

F
↓

↓
−

−
−

−
−

↓
−

−
−

−
−

−
−

−
↓

R
N

N
F

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
R

IC
F

−
−

−
↓

↓
↓

↓
−

−
−

−
−

−
−

−
−

↓
R

IN
F

−
−

−
↑

↑
↑

↑
−

−
−

−
−

−
−

−
−

↑
R

E
C

F
−

−
−

↑
↑

↑
↑

−
−

−
−

−
−

−
−

−
↑

R
E

N
F

−
−

−
↓

↓
↓

↓
−

−
−

−
−

−
−

−
−

↓
R

PU
C

F
−

−
−

−
−

↑
−

↑
−

−
−

↑
↑

−
↑

↑
↑

R
PU

N
F

−
−

−
−

−
↓

−
↓

−
−

−
↓

↓
−

↓
−

↓
R

PD
C

F
−

−
−

−
−

↓
−

↓
−

−
−

↓
↓

−
↓

↓
↓

R
PD

N
F

−
−

−
−

−
↑

−
−

−
−

−
↑

↑
−

↑
−

↑
R

M
C

F
−

−
−

↓
↓

↓
↓

↓
↓

−
−

−
−

−
−

↓
↓

R
M

N
F

−
−

−
↑

↑
↑

↑
↑

−
−

−
−

−
−

−
↓

↑
R

H
C

M
−

−
↓

−
−

−
−

↓
−

−
−

−
−

−
−

−
↓

R
H

N
M

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
R

IC
M

−
−

−
↓

↓
↓

↓
↓

−
−

−
−

−
−

−
−

↓
R

IN
M

−
−

−
↑

↑
↑

↑
↑

−
−

−
−

−
−

−
−

↑
R

E
C

M
−

−
−

↑
↑

↑
↑

−
−

−
−

−
−

−
−

−
↑

R
E

N
M

−
−

−
↓

↓
↓

↓
↓

−
−

−
−

−
−

−
−

↓
R

FC
M

−
−

−
−

−
−

−
−

−
−

↓
−

−
−

−
−

↓
R

FN
M

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
R

PU
C

M
−

−
−

−
−

↑
−

↑
−

−
−

↑
↑

↑
−

↑
↑

R
PU

N
M

−
−

−
−

−
↓

−
↓

−
−

−
↓

↓
↓

−
−

↓
R

PD
C

M
−

−
−

−
−

↓
−

↓
−

−
−

↓
↓

↓
−

↓
↓

R
PD

N
M

−
−

−
−

−
↑

−
↑

−
−

−
↑

↑
↑

−
−

↑
R

M
C

M
−

−
−

↓
↓

↓
↓

↓
↓

−
−

−
−

−
−

↓
↓

R
M

N
M

−
−

−
↑

↑
↑

↑
↑

−
−

−
−

−
−

−
↓

↑
R

IC
C

−
−

−
↓

↓
↓

↓
l

↓
−

−
−

−
−

−
↓

↓
R

IN
C

−
−

−
↑

↑
↑

↑
↓

−
−

−
−

−
−

−
↑

↑
R

E
C

C
−

−
−

−
−

−
−

l
↑

−
−

−
−

−
−

↑
↑

R
E

C
PC

C
−

−
−

−
−

−
−

↓
↓

−
−

−
−

−
−

↑
↓

R
E

N
C

−
−

−
↓

↓
↓

↓
↓

−
−

−
−

−
−

−
↓

↓
R

FC
C

−
−

−
−

−
−

−
−

−
↓

−
−

−
−

−
−

↓
R

FN
C

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
R

E
C

SP
−

−
−

−
−

−
−

↓
−

−
−

↑
↑

−
−

↑
↑

R
E

N
SP

−
−

−
−

−
−

−
↓

−
−

−
↓

↓
−

−
↓

↓
R

E
C

SB
−

−
−

−
−

−
−

↓
−

−
−

↓
↓

−
−

↑
↓

R
E

N
SB

−
−

−
−

−
−

−
↓

−
−

−
−

−
−

−
↓

↓

[10] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. London, Great Britain: Addison-Wesley, 2003.

[11] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, pp. 4–17, 2002.

[12] M. Howard, “Attack surface: Mitigate security risks by minimizing the
code you expose to untrusted users,” Microsoft MSDN Magazine, vol. 11,
2004.

[13] J. H. Saltzer and M. D. Schroeder, “The protection of information in
operating systems,” in Proceedings of the IEEE, vol. 63, pp. 1278–1308,
1975.

[14] M. Bishop, Computer Security: Art and Science. Boston: Addison-
Wesley, 2003.

[15] M. Y. Liu and I. Traore, “Empirical relation between coupling and
attackability in software systems: a case study on DOS,” in Proceedings
of the 2006 Workshop on Programming Languages and Analysis for
Security, Ottawa, (Ottawa, Ontario, Canada), pp. 57–64, ACM, 2006.

[16] G. McGraw and E. Felten, Securing Java: Getting Down to Business
with Mobile Code. New York: Wiley Computer Pub., second ed., 1999.

[17] M. Fowler et al., “Refactoring home page.” Retrieved July 9, 2010.

