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Abstract

This paper proposes a train movement model

with fixed runtime that can be employed to find

feasible control strategies for a single train along

an inter-city railway line. The objective of the

model is to minimize arrival delays at each

station along railway lines. However, train

movement is a typical nonlinear problem for

complex running environments and different

requirements. A heuristic algorithm is developed

to solve the problem in this paper and the

simulation results show that the train could

overcome the disturbance from train delay and

coordinates the operation strategies to sure

punctual arrival of trains at the destination. The

developed algorithm can also be used to evaluate

the running reliability of trains in scheduled

timetables.

Keywords

Fixed runtime, traction calculation, computer

simulation

I. Introduction

The train movement calculation is to

compute a train's running trajectory under

various conditions according to train traction

calculation theory (Ho 1998, Mao 2000), and

multi-train simulator is developed to analyze the

disturbances between two consecutive trains

(Liu 2005). Computer simulation of train

performance has been widely used for the design

and operation of railway systems (Goodman,

1998). Genetic algorithm was used to search

coasting points for train movement (Chang, 1997;

Wong, 2004). Wong (2007) presented a dynamic

programming approach to control dwell times

and runtimes for train operation adjustment and

the results showed that run-time control was

more effective than dwell-time control from the

viewpoint of energy saving. A fuzzy control

model was presented to determine an

economical running pattern for the compromise

between trip time and energy consumption

(Hwang, 1998) and genetic algorithm was used

to solve the problem (Bocharnikov, 2007). A

predictive fuzzy control approach was presented

to adjust the train dwell time and the results

showed that it was an effective method to

maintain the service quality (Chang, 1996). The

fuzzy controllers in automatic train operation

were presented using the differential evolution

algorithm (Chang, 2000).

A railway timetable is a deterministic plan

and the trains should arrive at or depart from a

station at specified time. However, real-time

train operations are suffered from stochastic

disturbances. Thus, on-line calculation is needed

to achieve fixed runtime under actual running

environment. It can be used to optimize the

driving strategies and acquire energy consuming

within different fixed runtime, and it can also

reflect the ability to absorb stochastic

disturbances of a scheduled train in a timetable.

Meanwhile, it also can be used to evaluate level

of service for a passenger train in dedicated

passenger lines.

This paper discussed the method to achieve

running trajectory under fixed runtime where

traction characteristic, weight and railway

infrastructure was considered. Computational

results showed that the algorithm is feasible and

the algorithm proposed here can also serve the

simulation in timetable.

II. The fixed runtime problem

The train movement is subject to the

scheduled timetable, line geometries, rolling
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(4)

stocks and traction weight, and these are static

restrictions. Meanwhile, the train's running

environment is dynamic, and the train may be

influenced by temporary speed restrictions

caused by device conflicts or the leading train. In

the other hand, if there are many boarding or

alighting passengers at a station, the dwell time

may be extended and the train will have to adjust

its target speed to a higher level in order to arrive

next stations on time. The operation strategies

should also be changed according to the

specified runtime when the running environment

changes.

The notations used in the context are

defined as follows:

C, the set of the handles of the rolling

stock.

C= {--lJ,--lJ+~ .. .,0,~ .. .,r- ~ r} ,bE N, r E N

b and r denote the highest braking and traction

handle, respectively.

T, the total travel time specified in

timetable, and the unit is seconds.

n, the total running steps of the train.

tj , the travel time in step i, and the unit is

second.
cj ' the handle in step i, cj E C .

a j , the acceleration in step i, and the unit

is km / h·seconds.
Sj' the travel distance in step i ,and the

unit is meter.
Vi' the speed in step i, and the unit is

km/h.
v~ , the restricted speed in step i, and the

unit is km/h.
~+, the minimum duration time before the

handle is increased, and the unit is seconds.
~-, the minimum duration time before the

handle is decreased, and the unit is seconds.
k, the switch times of the handles during

the total travel process, kEN.

c;, the chosen handle, 1~ I ~ k,c; E C .

t (c; ), the actual duration time of handle

c/' 1~ I ~ k, c; E C .

S = {I, ... ,s} , the set of stations, and 1and

S denote the first and last station, respectively.

~a , T! denote the scheduled arrive and

depart time specified in timetable, respectively.
jES

t; , t~ denote the actual arrive and depart

time, respectively. j E S

The fixed runtime model

min ~); - 1';0I
j=l

(2)

(3)

If C~+l > c~, then t(C~+l) ~ ~+

If C~+l < c~, then t (C~+l ) ~ I;;­

The following formula (2) shows that it is not
permitted for running speed vj to exceed the

current speed restriction v~ . There are two types

of speed restriction, one is caused by line
geometries and railway infrastructure, such as
curves, grades and switches, and the other is
caused by the leading train because a certain
distance should be kept between two consecutive
trains for safety, and v~ is the minimum of

these two speed restrictions. The formula (3)
shows the influence on passengers comfort
caused by the acceleration. The above and below
formula show the maximum of the acceleration
and its changing rate, respectively. The preferred
value ({J is 0.8 when accelerating and 1.0 when

decelerating, and the preferred value of

£ = 0.75 m/S3 for passenger trains. Meanwhile,

the handles are not allowed to switch frequently
considering the maintenance of rolling stocks,
and (4) expresses the restricted condition. If the

handle c~ is increased to C~+l at a time, then

the duration time should not be less than T+
c

before it is decreased to c~ at the following

switching time; and if the handle c~ was

decreased from C~+l at a time, then the duration

time should not be less than ~- before it is

increased to c~ at the following switching time,

and the preferred value of ~+ and ~- is 60

seconds and 30 seconds, respectively.
If the train is scheduled to stop at station

j E S, and d j denotes the stop error at station



There are two factors which have effect on

(5)

(9)

the driving strategies of trains, the restricted
speeds and the target speed. There are static and
dynamic restricted speeds and the latter is forced
to the train randomly, and then the complexity of
the problem is increased. The target speed
denotes the expected speed, and it means that the
train would get good running performance if it
could run with the speed at any time; however, it
is difficult to control trains to run with the target
speed. The target speed is decided by the
scheduled travel time, actual travel time and
whether train stops at the anterior station or not.
Let Ij , j E S denotes the distance between

station j and j + 1, and Let t and t'. denote
) J

the current running distance and time. If the train
was schedule to pass the anterior station, the

target speed vT can be expressed by formula (9).

In above formula, the numerator denotes
the remaining distance and denominator the
available travel time. It is noticeable that the

target speed vT just denotes the expected speed,
and the actual speed it can reach is not allowed
to exceed the speed restriction. If the train is
scheduled to stop at the anterior station, the train
would delay owing to stop supplement times if it
still adopted the target speed expressed in
formula (9). Thus, the target speed should be
increased a little under this condition, and the
target speed can be expressed by formula (10):

1.-(
vT

a) d J ,(l + fJ), j E S, 0 < fJ < 1 (10 )
0+1 -tj -tj

In the above formula, the parameter fJ
denotes an increased ratio, and the value of fJ
is determined by the current status of trains. The
value of fJ is less than 1.0 in general; it can be

determined by one dimension search method,
and we can choose the iteration step from 0.01 to
0.05.
Let Pj represent the scheduled trip between

station j and j +1. Let Pj.b denotes the

activity at start-station, and there are two kinds
of the activity, start and pass, expressed by
bl and b2 respectively. Let Pj,e denotes the

activity at end-station, and there are also two
kinds of the activity, pass and stop, expressed by
el and e2 respectively. A scheduled train in a

timetable is composed of several plan units. The
optimization process is based on these plan units,
and the running time of the finished plan units
have effect on the following plan units. The flow

(8)

(7)

1 2
S. I = V .•~t+-a.•(t.)

1+ 1 2 1 1

The dwell times specified in timetable is
generally composed by two parts: the minimum
dwell times and its supplements, and the actual
dwell times may be reduced to depart on time
when a train arrives lately. If a train is scheduled
to stop at station j E S, wj denotes the minimum

dwell times, ~d - T; > wj generally

and ~d - ~a - wj denotes the dwell supplement

times. Trains are not allowed to depart before the

specified time, and then tJ can be expressed

with formula (6):

t~ = {T/' ~a ~ t; ~ ~d - wj

J a a d (6)
t j +Wj ' t j > ~ -Wj

The train movement equations can be

expressed by formula (7):

III. Algorithm

j . Stop error is the distance between train head

position and the target stop position when the
train is stopped, and the head of the train is not
allowed to overpass the stop sign, so the train
should stop precisely and a is here used to
denote the stop error. The preferred value of a
is 10cm for subway trains equipped with screen
doors.

There are two decision variables: c;
andt(c;) , the adopted handles and its duration

time. The actual travel time of the train is
expressed by t: - t; ,and we can figure out the

k

following expression t: -tId = L t(c;). If the
1=1

set of c; is denoted by <I> , and then cj E cI> •

The simulation time step decides on the
calculation precision and efficiency, and the
recommended value for low speed trains is 1 to 5
seconds and high speed trains 0.1 to 1 seconds.
In addition, in order to ensure the stop precision,
short step time should be adopted in the process
of stopping. The fixed runtime problem is a
combination optimization problem and the
feasible solutions are infinite. A heuristic
algorithm is developed to solve the problem here
and the satisfactory results of running trajectory
are obtained.



ofthe algorithm is expressed as follows:

Step 0: initialize the network and the static speed
restrictions of trains, and set j =1 ;

Step 1: compute the target speed vT in the plan
unit p j , and then go to Step 2;

Step 2: if Pj,b is equal to hI' startup the train,

otherwise go to Step 3;
Step 3: compute the proper handle according

the vT
, and then update the train's position, speed

and travel time; go to Step 4;
Step 4: if Pj,e is equal to e2 , go to Step 5,

otherwise go to Step 3;
Step 5: whether the train entered the stop
verification area, and perform the stop
verification procedure if true, otherwise go to
Step 6;

Step 6: whether Pj is over, and go to Step 7 if

true, otherwise go to Step 3;
Step 7: whether all the plan units is over , go to

Step 8 if true; Otherwise, update j = j +1, and

then go to Step 2;
Step 8: Calculation is finished.

The travel route and stop target position of
the train should be defined in step O.The stop
verification area in step 5 is used to compute the
braking position to ensure the stop precision.
The area could be located between the position
in which the train can stop close to the homing
signal if it executed braking control at the
present time to the homing signal for the sake of
safety and fast convergence.

IV. Cases study

A 117 kilometer inter-city railway line with
five stations and four sections is selected in the
case study. The four sections are denoted by A,
B, C and D, and the distance are 21.23km,
24.35km, 37.67km and 33.65km, respectively.
The static speed restriction in sections is
300km/h and 80km/h in sidings. Figure 1 shows
the layout of the railway line and stations. The
train is composed of high speed rolling stocks
and the total weight is 578 tones, and the
maximum traction acceleration can be calculated
according to the traction curves and total weight
of the train. Figure 2 shows the maximum
traction acceleration and resistance deceleration
curves of the train, and the maximum traction
acceleration is 0.7 m/s2

•

Fig.l Layout of the inter-city railway line.

The mInImum running times in each
section are determinate after the line geometries
and train parameters are specified. So, the
time-optimal running results should be
calculated in advance, and the time-optimal
mode means the fastest running trajectory from
origination to destination. The scheduled
running times we arranged here for each section
should be more than the minimum running
times.

!"Is/s

'J';;
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Fig.2 Maximum traction acceleration and

resistance deceleration of the train.

We defined two modes to calculate
time-optimal runtime results:

Mode 1: nonstop
\fj = 1, ... ,s-2,Pj,e = eI;ps-Le = e2 ;

Mode 2: With stops
\fj = 1, ... ,s-I,Pj .e = e2 •

Table 1 Time-optimal running results oftwo

modes

Mode 1 Mode 2

Section Runtime
Energy

Runtime
Energy

(KWH) (KWH)

A 6'58" 617.87 7'43" 739.41

B 5'28" 461.39 8'17" 782.92

C 8'9" 666.18 11 '15" 1036.85

D 8'6" 520.1 10'22" 970.97

Total 28'41" 2265.54 37'37" 3530.15

The running times and the energy
consuming in Mode 2 are increased by 31.14%
and 43.18% than those in Mode 1, respectively.
Fig 3 and Fig 4 show the speed and time curves
in two modes, respectively.



Fig.3 Speed and time curves in Mode 1.

Fig.4 Speed and time curves in Mode 2.

Fig 5 and Fig 6 show the traction and
braking forces in Model 1 and Model 2
respectively. The traction when the train started
from still is great and the train applied the brake
for four times in Mode 2, so the energy
consuming in Mode 2 was more than that in
Model.

Fig. 5 Traction and braking forces in Mode 1.

Fig. 6 Traction and braking forces in Mode 2.

According to the results in two modes, we
increased the running time in Mode 2 by 10%,
and then got case 1. Case 1 can be used to
analysze the running results when the scheduled
running time was enough. We designed case 2

on a case when the dynamic speed restrictions
was add to case 1, and the speed restrictions area
was located at ten kilometers in section B and
the restricted speed was 120 km/h. Case 2 can be
used to analysis the strategies of train operation
adjustment in order to arrive at the destination
on time when the train service was disrupted by
the occasional restricted speeds.

Table 2 Simulation results of case 1
Sec- Sche- Actual Delay Energy
tion duled (secs) (KWH)

A 8' 8' +3 774.03
30" 33"

B 9' 9' 0 839.37
10" 10"

C 12' 12' +2 1047.69
30" 32"

D 11 ' 11 ' +2 1029.65
30" 32"

Total 41' 41'46" +7 3690.74
40"

Table 2 shows the simulation results of case
1. The delay and stop error in each station didn't
exceed 5 seconds and 100 mm, respectively. The
running trajectory was smooth, and it can be
seen from Fig 7. In addition, the trip time and
energy were increased by 7 minutes and 4.55%
compared to Mode 1, respectively.

Fig.7 Speed and time curves in Case 1.

Table 3 Simulation results of case 2
Sec- Sche- Actual Delay Energy
tion duled (secs) (KWH)

A 8' 8' +3 774.03
30" 33"

B 9' 10' +61 483.69
10" 11"

C 12' 11 ' -48 1034.42
30" 42"

D 11 ' 11 ' -9 996.26
30" 21 "

Total 41' 41 ' +7 3288.4
40" 46"

Table 3 shows the simulation results of case



2. The actual running time in section B was 61
seconds more than the scheduled running time,
and it resulted in the arrival delay. The delay was
decreased by 48 seconds and 9 seconds in
section C and D, respectively. Thus, the arrival
delay was only 7 seconds in destination. In
addition, the stop error in each station didn't
exceed 100mm and the running trajectory can be
seen from Fig 8.

Fig.8 Speed and time curves in Case 2.

Compared to Case 1, the energy in total trip
was decreased by 10.9% in Case 2. For section B,
the energy in Case 2 was only 57.63% of that in
Case 1. The main reason was that there was the
temporary restricted speed in Section B, and the
train applied coasting and decreased the traction
in order not to exceed the restricted speed, thus
the energy was saved. Fig 9 and 10 show the
traction and braking forces in Case 1 and Case 2,
respectively.

Fig. 9 Traction and braking forces in Case 1.

Fig. 10 Traction and braking forces in Case 2.

V. Conclusion

The train movement problem with fixed
runtime was modeled. The aim of this model is
to minimize the arrival delay of the train and a
heuristic algorithm was presented to solve the
problem. We designed two cases to illustrate the
problem. In Case 1, the scheduled running time
was increased by 10% of time-optimal Model,

and the simulation results showed that the
energy was increased by 4.55% than that in
time-optimal Mode, and the arrival delay and
stop error in each station didn't exceed 5 seconds
and 100 mm, respectively. In Case 2, the
condition of the temporary restricted speed in
section B was added, and the simulation results
showed that an arrival delay of 61 seconds
occurred in station 3, then the train made up the
delay in the following two sections and the
arrival delay was only 7 seconds in destination.
The total trip energy was decreased by 10.9% on
account of the coasting strategy in section B. In
addition, a railway timetable is a detenninistic
plan, however, the actual train operations is
subject to stochastic disturbance. So, the
algorithm presented here can be used to analysis
the running reliability in punctuality of a
scheduled train in a timetable.
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