

Developing Spatial Infrastructures for the Q.U.T. Samford Ecological Research Facility*

Mr Robert Webb

Lecturer and Spatial Science Subject Coordinator,

Faculty of Built Environment & Engineering, Queensland University of Technology

2009 Winner: Asia-Pacific Spatial Excellence Award – Education & Professional Development

* Peer Reviewed Conference Paper

Outline of Presentation

Introduction

Historical Background to the Land Development of SERF Spatial Information Development of Survey Control Infrastructure Ortho-Photography Spatial Information Layer 100metre Confluence Point Infrastructure **Engaging Students in Real-World Learning**

Introduction

Samford Ecological Research Facility (SERF) is NOW managed by QUT: Institute for Sustainable Resources **Camp Mountain land purchased by the Marks family** in 1877 Dr Elizabeth Nesta Marks (Patricia) used the property until shortly before her death in 2002. Under the provision of her will, instructed the executors of her estate to identify a suitable beneficiary for this land who would use the property for "ecological purposes".

Existing Property Boundary Framework

Historical Background to the Land

Extract from S3149 (1864) County of Stanley, Parish of Samford

Historical Background to the Land

Extract from S3149 County of Stanley, Parish of Samford

2007 Qld Heritage Survey Boundary- SLAB HUT: Lease A on SP208910 in lot 42 on S3149

Use specifically For Educational and Research Purposes Only

2008 road frontage re-survey: lots 1-4, SP214119

 ✓ Material Change of Use
 (MCU) development application approved by Pine Rivers Shire
 Council (PRSC) now part of amalgamated Moreton Bay
 Regional Council (MBRC).
 ✓ property zoning was changed
 from 'Rural Residential' to
 'Educational Purposes'

Development of SERF Spatial Information

Operation Spatial Infrastructure, in the context of this conference paper, refers to **U** the physical survey monumentation, **U**the associated precision positioning information, • and the creation of new spatial information layers (creation of new knowledge) at a site-specific and focused scale. **2** Client Requests **QUT** Institute of Sustainable Resources **QUT** Facilities Management group

Development of Survey Control Infrastructure

Multi-purpose and site-specific primary survey control network designed considering real-world constraints imposed by terrain characteristics.
 Alpha-numeric descriptor: QUT999X
 Connections to surrounding PSM Survey Control Network (GPS ONLY) supported by comparisons with AUSPOS

Ground Control Points and other measurement surveys propagate from this primary survey control network.

Development of Survey Control Infrastructure

Ortho-Photography Spatial Information Layer

Ortho-Photography Spatial Information Layer

✓Experimental targeting pre-photography

ECOLOGY report- Tree species

Site Based Management Plan

SERF Site Based Management Plan

SAMFORD ECOLOGICAL RESEARCH FACILITY SITE BASED MANAGEMENT PLAN

CONTENTS

ACRONYMS
1.0 INTRODUCTION
1.1 AIM AND OBJECTIVES OF THE SBMP
2.0 ABOUT SERF
2.1 THE SERF PROPERTY 5 2.1.1 Site Description and Location 5
2.1.2 Instantial Dackground
2.2 THE SERF FACTURY 9 2.2.1 Guiding Principles 9 2.2.3 SERF Governance Structure 9
2.2.3 SERF as a Research Facility
3.0 REVIEW OF LEGISLATIVE REQUIREMENTS
3.1 FEDERAL ORDINANCES
3.4.1 Material Change of Use Development Approval Conditions
4.0 SITE BASED MANAGEMENT ACTION PLAN
5.0 CONCEPT MASTER PLAN

TABLES

Table 1: Structure and Content of SBMP	.4
Table 2: Federal Ordinances Relevant to SERF	12
Table 3: State Ordinances Relevant to SERF	.13
Table 4: PRSC Overlays that affect the SERF property	17

APPENDICES

- APPENDIX A Broad Ecological Assessment for SERF. APPENDIX B – SERF Governance Terms of Reference (SERF Management Committee, Research and Education Committee, Reference Group). APPENDIX C Marco D Particle (Section 2000).
- APPENDIX C Moreton Bay Regional Council (MBRC) Summary of Conditions of Approval. APPENDIX D – Action Plan Methodology.

100metre Confluence Point Infrastructure

✓ Aim to place a Survey monument (Galv.
Star Picket) at the Map Grid of Australia even 100metre confluence points.
✓ Researchers only needed to check their relationship relative to a couple of known 100 metre grid points.

Engaging Students in Real-World Learning

✓ Number of Student projects

✓ Learning Experiences in Real-World Environments

Engaging Students in Real-World Learning

✓ 3rd-year Civil & Environmental Engineers

✓ 3rd-year Surveying students

 ✓ Project involved a hydrological assessment based on a detailed catchment analysis leading to the design of a new culvert structure

✓ Supported by small T&L grant.

Conclusions

- Paper has achieved central aim to provide description of activities developing site-specific spatial information layers for the QUT SERF.
 - ✓ Survey control infrastructure
 - ✓ 100meter confluence grid infrastructure
 - ✓ Ortho-rectified spatial information layer.
- Researchers and student learning experiences will be enhanced by the creation of these foundation spatial information layers for multiple purposes.

Developing Spatial Infrastructures for the Q.U.T. Samford Ecological Research Facility*

Mr Robert Webb

Lecturer and Spatial Science Subject Coordinator, Faculty of Built Environment & Engineering, Queensland University of Technology 2009 Winner: Asia-Pacific Spatial Excellence Award – Education & Professional Development

* Peer Reviewed Conference Paper

Developing Spatial Infrastructure for the QUT- SERF Mr. Robert WEBB

luestions: