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Abstract  

Recently discovered intrinsically photosensitive melanopsin retinal ganglion cells 

contribute to the constriction, recovery and the post-illumination component of the pupil 

light reflex and provide the primary environmental light input to the suprachiasmatic 

nucleus for photoentrainment of the circadian rhythm. This review summarises recent 

progress in understanding intrinsically photosensitive ganglion cell histology and 

physiological properties in context of their contribution to the pupillary and circadian 

functions, and introduces a clinical framework for using the pupil light reflex to evaluate 

inner retina (intrinsically photosensitive melanopsin ganglion cell) and outer retina (rod and 

cone photoreceptor) function in the detection of retinal eye disease. 
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Introduction  

The discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs)1 and their 

unique photopigment melanopsin2 significantly altered the classical view of only four light 

sensitive retinal photoreceptors. Substantial progress has since been made regarding the 

histological distributions and functional properties of intrinsically photosensitive ganglion 

cells in non-primate and primate eyes. It is established that ipRGCs provide the primary 

environmental light input to the suprachiasmatic nucleus (SCN) for photoentrainment of the 

circadian rhythm.3,4 They also contribute to the constriction, recovery and the post-

illumination pupilloconstriction component of the pupil light reflex,5,6 but their role in 

image forming vision is unclear. The temporal properties of ipRGCs are distinct from rod 

and cone photoreceptors; the light response of ipRGCs has a slow onset and sustained 

depolarization that is maintained for up to 30 seconds after light offset.7 This post-

illumination sustained depolarization can be observed in the pupil reflex after light offset as 

an unique indicator of ipRGC function5,8 and has been termed the post-illumination pupil 

response (PIPR), also called the sustained pupil response.8 In the first part of this review, 

we consider the anatomical distribution and electrophysiological properties of intrinsically 

photosensitive ganglion cells and compare them with cone and rod photoreceptors. We then 

examine the role of ipRGC signalling in the circadian rhythm and the pupil light reflex. In 

the final section, a clinical framework is introduced to demonstrate how the ipRGC 

contribution to the pupil light reflex can be used to differentiate between inner and outer 

retinal processing. 
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Intrinsically photosensitive retinal ganglion cell (ipRGC) histology and 

electrophysiology 

Melanopsin is the fifth human retinal photopigment, with the three cone opsins and the 

single rod opsin comprising the other four. It was detected in the retinal ganglion cell layer 

(GCL) of mice and primates2 after its first discovery in the dermal melanophores of frogs.9 

Several studies have confirmed melanopsin as a retinal photopigment, in both mammals 

and humans.7,10-12 Retinal ganglion cells encode visual light input as a function of position, 

wavelength and time and project to the visual cortex via the lateral geniculate nucleus 

(LGN),13 as well as projecting to the olivary pretectal nucleus (OPN) and suprachiasmatic 

nucleus (SCN).14,15 Ganglion cells have been classified by soma, dendritic field size and 

density13 into an estimated 20 specialized cell sub-types.16 Of these ipRGCs comprise 0.2% 

of the ~1.5 million retinal ganglion cells in the human retina.7 

 

Intrinsically photosensitive ganglion cell dendrites branch infrequently along the inner and 

outermost edges of the inner plexiform layer (IPL) (Figure 1A) to create an overlapping 

photoreceptive mesh.7,17 Although few in number (~3000), ipRGCs have the longest 

dendrites and largest fields of all known ganglion cells, with diameters of 350 - 1200 µm 

increasing with retinal eccentricity,7 as compared to midget (~4 - 180 µm),18 small bi-

stratified (~30 - 400 µm)19 and parasol (~20 - 400 µm)18  ganglion cells. Retinal ganglion 

cell are absent in the fovea with dendrites encircling the foveal pit.7 Like other known 

ganglion cell types 60 % of ipRGCs have their cell bodies in the ganglion cell layer (GCL) 

of the inner retina, however 40 % of ipRGC bodies are located in the inner nuclear layer 
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(INL)7 (Figure 1A). A comparison of the anatomy and distribution of ipRGC, rod and cone 

photoreceptors is given in Table 1.  

 

Insert Figure 1A & 1B here 

Insert Table 1 here 

 

Intrinsically photosensitive ganglion cells are classified into two subtypes according to 

stratification layer (Figure 1A). The inner subtype (ipRGCi) has cell bodies in the GCL and 

stratifies in the extreme inner IPL (stratum 5), whereas the outer subtype (ipRGCo) has cell 

bodies in both the GCL and INL and stratifies in the extreme outer IPL (stratum 1).7,17 The 

ratio of inner to outer stratifying cells is between 1:1.1 and 1:1.5 in primates.7,21 Although 

bi-stratifying photosensitive ganglion cells have been identified in mice, ipRGCs are 

primarily monostratified in the primate retina.17,21,31,32  

 

In addition to their intrinsic response, ipRGCs receive rod and cone input. Figure 1B shows 

the synapses of inner and outer stratifying ipRGCs with rod and cone pathways. Inner cells 

(ipRGCi) contact DB6 bipolar cells in stratum 5 17,21 and transmit signals from L, M and S 

cones.33,34 Rod input, which transmits to cones via gap-junctions,35,36 may also pass via the 

DB6 bipolar of the cone pathway.  Inner cells have also been shown to synapse with 

amacrine cells17,37,38 and rod bipolar cells in rats38.  
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Outer cells (ipRGCo) co-stratify with dopaminergic amacrine cells21,37-39 and bipolar cells 

in stratum 1.17 In mammals ipRGCo and dopaminergic amacrine cells also synapse with 

bistratified ON bipolar cells via en passant ribbons.40,41 This ipRGCo ON input in the OFF 

IPL sub layer has not yet been confirmed in primates. These synapses suggest further 

unknown rod and cone pathways to both inner and outer ipRGC. The receptive fields of 

inner and outer stratifying cells overlap, suggesting a difference in roles that is still to be 

determined. 

 

Intrinsically photosensitive ganglion cells (ipRGCs) give rise to 75 – 90 % of projections to 

the suprachiasmatic nucleus (SCN),12,42,43 the location of the circadian biological clock.44 

The majority of SCN projections in mice are from the outer stratifying cell group,45 but this 

difference in subgroup projections has not been demonstrated in primates. If outer and inner 

stratifying cells do project to different brain regions this supports a difference in roles for 

the cell subgroups. In addition to the SCN, ipRGCs project to the olivary pretectal nucleus 

(OPN) of the pretectum, the start of the pupil reflex pathway.7,11,46 Intrinsically 

photosensitive ganglion cells also synapse in the lateral geniculate nucleus (LGN) of the 

thalamus7,11,46 which relays, integrates and projects visual, auditory and somoto-sensory 

information to the cerebral cortex and receives cortical feedback.47 The current known 

ipRGC projections to the SCN, the OPN and the LGN in mice are displayed in Figure 2.  

 

Insert Figure 2 here      
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Rod, cone and ipRGC photopigments are isomerised on light absorption, converting 11-cis 

retinal to all-trans retinal.49-54 Rod and cone photopigments regenerate by binding 11-cis 

retinal via synthesis in the retinal pigment epithelium (RPE) to return to the active state. 

The retinoid processing cycle has been reviewed in detail elsewhere.49 Recent studies show 

that Müller cells also regenerate 11-cis retinal and support the rapid dark adaptation 

required by the cones.55,56 Regeneration of the ipRGC photopigment melanopsin is not 

dependant on the retinoid processing cycle57 and may regenerate by a different mechanism. 

Some invertebrate opsins and the melanopsin of primitive chordates are bistable 

photoisomerases that have an intrinsic light triggered regeneration where the opsin is 

isomerised to all-trans retinal with one photon and regenerated to 11-cis retinal with a 

second photon.58,59 Human melanopsin shares a common ancient origin with these bistable 

invertebrate opsins60 and early evidence suggests it may also function as a 

photoisomerase.50-53 The intrinsic photo-regeneration of melanopsin may be combined with 

further unknown extrinsic processes. Müller cells, capable of regenerating 11-cis retinal, 

are located adjacent to ipRGCs and may be a component of the melanopsin pigment cycling 

mechanism.61 

 

Intrinsically photosensitive ganglion cells display both light and dark adaption, with 

response amplitude and latency varying with prior adaptation level.6,62 Light adaptation 

produces a 0.4 log unit loss of sensitivity with a time constant of ~8 sec, measured using 

the human pupil light reflex.6 Dark adaptation increases the intrinsic sensitivity of rat 

ipRGCs from ~11 log photons.cm-2.s-1 to ~9 log photons.cm-2.s-1 with a time constant of 
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~198 minutes62 and rod input further increases the dynamic range to 

~6 log photons.cm-2.s-1.7  

 

Figure 3 shows the ipRGC spectral sensitivity derived by the authors from the measurement 

of a criterion post-illumination pupil response in two participants (aged 25 and 30). All 

reported data was collected in accordance with the requirements of the QUT Human 

Research Ethics Committee. The stimulus light (7.15° diameter field, 10 sec duration) was 

presented in Maxwellian view to the (cyclopleged) right eye at seven selected narrowband 

wavelength lights between 450 - 568 nm with a range of energy levels 

(13.4 - 14.7 log photons.cm-2.s-1). The consensual pupil light reflex at each wavelength and 

corneal irradiance was recorded for 55 seconds (10 sec pre-stimulus, 10 sec stimulus and 

35 sec post-stimulus). The irradiance values were corrected for deviations from the 

criterion response, the data were normalised and fitted with a Vitamin A1 pigment 

nomogram.63 The peak spectral sensitivity (λmax) was 482 nm, consistent with published 

reports.5,7 Additional details of the experimental pupillography set-up are given in a later 

section describing ipRGC contributions to the pupil light reflex. 

 

Insert Figure 3 here    

 

Rods and cones show transient depolarization in response to light23 and display 

photosensitive bleaching and adaptation under continuous illumination.64 IpRGCs are also 
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intrinsically photosensitive but have a slow onset, sustained depolarization in response to 

light, even when detached from the retina.1,7,11 Figure 4A shows that the intrinsic response 

(no rod or cone input) of a human ipRGC to a 10 second light stimulus (470 nm, 13.3 

log photons.cm-2.s-1) has an initial slow onset, with a latency of 3 - 10 sec, followed by 

sustained depolarization lasting up to 30 seconds after light offset.7 In comparison, the 

response of ipRGCs to rod and cone input, prior to any intrinsic response, is a rapid onset, 

transient depolarization with latencies of ~150 ms and ~30 - 40 ms respectively.7 Both the 

intrinsic response amplitude and time-to-peak of the ipRGC response increase with 

irradiance;1,7 the sustained depolarization (total number of spikes) is linearly proportional to 

the retinal irradiance in the photopic range between 11.5 and 14.7 log photons.cm-2.s-1. 7,65  

 

Insert Figure 4 here       

 

The sustained, linear depolarization of the intrinsic ipRGC response to retinal irradiance, 

combined with a latency 100 times slower than with cone input, is consistent with its 

intrinsic role for mediating long term steady signalling of environmental irradiance.66 

Luxotonic cells in the primate visual cortex discharge in a sustained, linear response to 

illumination.67 Because traditional rod and cone image forming pathways encode contrast, 

ipRGCs may signal this irradiance input and explain a person’s ability to quantify 

brightness in the absence of contrast information (eg. in a Ganzfeld).68 Brightness 

perception is sustained at short wavelengths near the ipRGC spectral peak compared to the 

faster fade-out that occurs with long wavelength light.69  



10 
Markwell, Feigl & Zele. Clinical and Experimental Optometry 2010; 93: 3 137-149.        DOI:10.1111/j.1444-0938.2010.00479.x 

 

 

Intrinsically photosensitive ganglion cells receive input from rods and cones, via synapses 

with amacrine, DB6 and other bipolar cells in the inner plexiform layer (IPL)17,21 and it is 

not yet known if they contribute to image formation. The rod-ipRGC pathway is still to be 

determined but it could involve gap-junctions between rods and cones (Figure 1B).35,36 

Figure 4B shows the rod-mediated sustained ON response of ipRGCs in response to 

scotopic stimulation (6 - 7.6 log photons.cm-2.s-1) in the dark-adapted primate retina.7 The 

ipRGC (L+M) cone ON and S cone OFF mediated responses are shown in Figure 4C. The 

spatially co-extensive S-OFF and (L+M)-ON components contribute to a colour-opponent 

receptive field that does not display the typical surround antagonism common to other 

retinal ganglion cells.7 Intrinsically photosensitive ganglion cells may subserve the S-OFF 

signal, which projects to layer 4A of the primary visual cortex.70  

 

Intrinsically photosensitive retinal ganglion cells and the pupil light reflex (PLR) 

The pupil light reflex (PLR) is the constriction and recovery of the pupil in response to 

light. In addition to attenuating the retinal illumination, a light responsive pupil can vary 

the depth of focus and reduce the visual effects of glare, diffraction and optical 

aberrations.71 A small pupil diameter also reduces photoreceptor bleaching, allowing faster 

dark adaptation.72  
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The pupil light reflex is modulated by the autonomic nervous system which innervates two 

iris muscles; the sphincter pupillae (parasympathetic innervation), a smooth muscle ring 

located around the pupil aperture, and the dilator pupillae (sympathetic innervation), a thin 

muscle sheet lying between the iris stroma and the posterior pigment endothelium, radiating 

from the sphincter muscle to the ciliary body.71 Figure 5 overviews the parasympathetic and 

sympathetic pupil pathways. Retinal input to the olivary pretectal nucleus (OPN) is 

projected to the Edinger-Westphal nucleus (EW) where the parasympathetic pathway 

originates. The parasympathetic signal is transmitted via the third cranial nerve and 

synapses at the ciliary ganglion (CG) before the postsynaptic short ciliary nerve innervates 

the sphincter pupillae muscle.71 The sympathetic pathway originates in the 

intermediolateral columns of the cervical spinal cord (C8-T1) and synapses at the superior 

cervical ganglion (SCG) located at the C2-C3 vertebrae. Post synaptic fibres pass up the 

neck to the orbit and signals are primarily transmitted via the long posterior ciliary nerves 

to the dilator pupillae muscle in the iris. Other sympathetic fibres may also travel along the 

short ciliary nerves.71 Unlike parasympathetic fibres, sympathetic fibres do not synapse at 

the CG.71 

 

Insert Figure 5 here           

 

Pupillary constriction to light occurs when parasympathetic cholinergic stimulation 

contracts the sphincter pupillae muscle.73 At light offset pupil dilation occurs via dual 

pathways; excitation of the α1 adrenergic sympathetic pathway causes dilation of the dilator 



12 
Markwell, Feigl & Zele. Clinical and Experimental Optometry 2010; 93: 3 137-149.        DOI:10.1111/j.1444-0938.2010.00479.x 

 

pupillae and parasympathetic inhibition of the EW relaxes the sphincter pupillae.73 The 

dual parasympathetic and sympathetic autonomic innervation creates a balance (tonus) in 

the steady state pupil. Non-photic stimuli can also induce pupil dilation. Noise, pain, 

surprise, pleasure and stress cause pupil dilation by increasing the sympathetic tone of the 

central autonomic system.72,74,75 Cognitive tasks such as number recall and mental 

arithmetic also cause pupil dilation by cortical inhibition of the parasympathetic pathway at 

the EW.76-78 This dilation increases with the level of demand77-79 and is sustained during 

continuous cognitive tasks.80  

 

Figure 6 shows the rod, cone and ipRGC contributions to the consensual pupil light reflex 

of a healthy, 30 year old observer. The light stimulus was a uniform 7.15° field presented in 

Maxwellian view to the right eye (dilated with 1 % cyclopentolate). The consensual pupil 

light reflex was recorded using an infrared camera (62 frames.sec-1) and derived using 

custom designed Matlab (Mathworks Inc) analysis software (light and dark grey lines in 

Figure 6) and fitted with a simple linear and exponential model (coloured lines in Figure 6). 

Three light stimulus (10 sec) irradiances were used: 10.1 log photons.cm-2.s-1 (rod only; 

Figure 6A), 12.2 log photons.cm-2.s-1 (rod and cone; Figure 6B) and 

14.2 log photons.cm-2.s-1 (above the irradiance required for ipRGCs to produce a half-

maximal pupil constriction at 470 nm in primates and humans;5 Figure 6C). A 488 nm 

stimulus was used to maximise the ipRGC contribution to the PLR and a 610 nm (control) 

stimulus was used to minimise it (see Figure 3). 
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Insert Figure 6 here 

 

The pupil light reflex has four major components; response latency, maximum constriction, 

escape and recovery. The latency of the PLR is the delay in pupil constriction after light 

onset. The pupil rapidly constricts to a minimum diameter which ‘escapes’ to partial 

constriction during a prolonged stimulus of several seconds. At light offset the pupil re-

dilates returning to the initial size. The initial rapid pupil constriction is driven by rod and 

cone input with the latency shortening as light intensity increases up to a minimum latency 

of 230 ms.81,82 The minimum latency is dependent on the temporal dynamics of cones 

(30 - 40 ms), rods (~150 ms), iris muscle, innervation pathway and processing.7,81,82 Under 

a low photopic light level (24.6 cd.m-2) a pupil constriction of 1.6 - 1.9 mm takes 

~0.73 sec.82-84 Intrinsically photosensitive ganglion cells have a latency of 1.78 - 10 sec1,6,7 

and therefore do not have the temporal dynamics to contribute to the initial constriction. 

The maximum pupil constriction varies with stimulus intensity, duration, spectral 

composition, retinal size and location.72,85,86 The sensitivity of rods and cones change with 

stimulus wavelength and illumination,87,88 and the Purkinje shift occurs for both the visual 

system72 and the pupil light reflex89 as light levels change from photopic to scotopic. Cones 

are fewer in number90 but cover a broader spectral range compared to rods.22 Below cone 

threshold, greater initial constriction is produced by a short wavelength compared to a long 

wavelength stimulus of equal intensity91 due to rod sensitivity being higher at shorter 

wavelengths. Pupil escape, the re-dilation to a partially constricted state occurs for light 
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durations longer than 1 - 2 sec, and is produced by a combination of rod, cone and ipRGC 

cell input.6 This partial constriction may be maintained for light durations up to 100 

seconds.6 

 

The ipRGC signal is responsible for the post-illumination pupil response (PIPR) of the 

PLR, the difference between the pupil diameter prior to stimulus onset and after light 

offset.5,8 The PIPR, also referred to as the sustained pupil response, is characterised by 

8 - 10 seconds of re-dilation after light offset before stabilizing at ~1.5 mm less than the 

pre-stimulus pupil diameter, and is maintained for at least 30 seconds (stimulus: 60º, 

470 nm, 13 log photons.cm-2.s-1, 10 sec).8 The post-illumination pupil response depends on 

the intensity and wavelength of the stimulus,5 but the effect of age, race and gender on ipRGC 

function was not determined in a small sample of 37 participants (26-80 yr).8  Further 

investigations are required to determine how age affects ipRGC function. Short wavelength 

light produces the greatest PIPR, with a half-maximal pupilloconstriction of 1.5 mm 

occurring for a 470 nm, 13.6 log photons.cm-2.s-1 stimulus as demonstrated in primates 

under pharmacological blockade of the rod and cone photoreceptors.5 An increased 

irradiance is required to produce an equivalent PIPR at longer wavelengths.5 

 

The post-illumination pupil response for a single observer is demonstrated in Figure 6C 

(blue line, dark grey trace) with a PIPR of 1.12 mm (81 % of pre-stimulus diameter) in 

response to a 7.15º, 488 nm, 14.2 log photons.cm-2.s-1 stimulus. In contrast, a long 

wavelength stimulus of the same irradiance (red line) demonstrates little PIPR, returning to 
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within 0.29 mm (~95.5 %) of the pre-stimulus diameter within 8 - 10 sec after light offset. 

Figure 6B shows that the PIPR is not evident at the lower irradiance 

(12.2 log photons.cm-2.s-1) for either the 488 or 610 nm stimuli. The PIPR observed in 

Figure 6C displays similar temporal properties to the sustained depolarization seen in vitro, 

in the macaque and human retina (Figure 4A).1,7 It has been confirmed in primates that the 

ipRGC signal is responsible for the PIPR after pharmacologically blocking rods and cones 

signals.5  

 

Intrinsically photosensitive retinal ganglion cell contributions to circadian rhythm 

The circadian rhythm is a cycle of biochemical, physiological and behavioural processes 

coordinated by the suprachiasmatic nucleus (SCN) of the anterior hypothalamus.92 The 

SCN regulates the release of melatonin from the pineal gland to regulate the sleep/wake 

cycle.93 The SCN has an intrinsic rhythm of 23.81 - 24.31 hours94-96 and is synchronized to 

the solar day, in a process called photoentrainment, by ipRGC cell input which encodes the 

environmental light levels.3,4 This has been confirmed in mice lacking either rods and 

cones, ipRGCs or all photoreceptive cells.3,4,97-102 Intrinsically photosensitive ganglion cell 

input to the SCN also regulates phase shifting,3,4 where the circadian rhythm is advanced or 

delayed by exposure to light, with the degree of phase shifting dependent on the duration, 

intensity and wavelength of the light.103  
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Visual function and performance shows circadian variation in sensitivity to optimize vision 

for photopic (cone only) and scotopic (rod only) conditions. Visual luminance sensitivity 

increases during the night with the greatest scotopic sensitivity occurring between midnight 

and 2:30 am in normally entrained participants.104,105 The cone-pathway shows faster 

latency (ERG b- and d-wave) in the light phase of the circadian cycle compared to the dark 

phase106,107 and the rod ERG b-wave amplitude decreases early in the light cycle.108,109 Thus 

rod and cone function varies diurnally in response to environmental light; the rhythm of 

ipRGC function is however unknown. The circadian expression of melanopsin mRNA 

peaks near dark onset while immunopositive ipRGC cell numbers peak just before light 

onset in mice entrained by artificial light in an animal house.110-113 The circadian rhythms 

of mRNA and cell numbers are lost in a continuous dark environment demonstrating that 

melanopsin production may be driven either directly by environmental light or involve 

feedback from the SCN.112,113  

 

Although the SCN is the master synchronizer, peripheral tissues such as the retina, heart, 

liver, lungs, pituitary and skeletal muscle, show self-sustained circadian oscillation of clock 

genes and protein expression when isolated from the SCN.114-116 The precise location of the 

retinal oscillator is unknown; clock gene expression has been demonstrated in rod and cone 

photoreceptors and the inner nuclear, inner plexiform and ganglion cells layers, in 

horizontal, bipolar, amacrine and ganglion cells.114,117-119 The retinal oscillator regulates the 

circadian rhythm of several retinal processes and functions independently of the SCN.120 

For example, the retinal clock controls circadian shedding of rod outer segments, which 
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peak 1.5 hours into the light cycle.121-123 The retinal clock also regulates the nightly 

synthesis of melatonin in the outer photoreceptors, the inner nuclear layer and ganglion cell 

layer (reviewed by Iuvone et al., 2005 124) which can also be photoentrained in vitro in 

retinal tissue.125,126 Many other retinal processes such as dopamine synthesis and cone outer 

segment shedding also show a circadian rhythm but it is not yet known if these are also 

regulated by a local retinal clock.127-129 The effects of the central circadian rhythm and the 

local retinal rhythm on ipRGC function is not yet fully understood. Markwell, Feigl, Smith 

and Zele (2010)130 recently demonstrated circadian modulation of the intrinsically 

photosensitive retinal ganglion cell driven post-illumination pupil response. 

 

Intrinsically photosensitive retinal ganglion cell contributions to the PLR in retinal 

disease 

Ganglion cell dysfunction causes progressive loss of vision in ocular diseases such as 

glaucoma, diabetes and optic neuropathy.131 The isolation and testing of subpopulations of 

ganglion cells affected by disease can reveal early dysfunction. According to the reduced 

redundancy hypothesis132 the impaired function of a subpopulation of cells can be detected 

earlier than dysfunction across ganglion cell subpopulations. By developing clinical tests 

which specifically target the response of subpopulations of ganglion cells, earlier detection 

of disease may be possible. Short wavelength automated perimetry (SWAP), flicker 

perimetry and frequency doubling perimetry (FDT) have been developed to bias the 

response to a subpopulation of ganglion cells.133-135  SWAP is designed to isolate the 

response of the small bistratified ganglion cells of the koniocellular pathway,133 which 
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comprise only 1 % of the central and ~ 6 – 10 % of the peripheral retinal ganglion cells.19 

SWAP can improve the detection of glaucomatous ganglion cell dysfunction by 15% 

compared to standard automated perimetry.136 FDT also allows the earlier detection of 

diffuse ganglion cell dysfunction in glaucoma by selectively assessing cortical processes 

which require magnocellular input.134,137,138 The achromatic (white-on-white) and 

peripheral (>5 deg) chromatic (red-on-white) flicker perimetry can detect early losses by 

biasing detection to the magnocellular pathway135,139 which includes about 10% of all 

retinal ganglion cells,18 while central (<5 deg) chromatic (red-on-white) flicker perimetry 

biases detection to the parvocellular pathway.139 Flicker perimetry is more sensitive than 

standard automated perimetry to early foveal defects in ARM135,139 and peripheral defects 

in diabetes.139 

 

The effect of retinal disease on ipRGCs is currently unknown, but ipRGCs sparsely 

populate the retina comprising 0.2 % of total retinal ganglion cells. The post-illumination 

pupil response (PIPR), as a direct measure of ipRGC function, may be a sensitive measure 

of early ganglion cell loss in the inner retina. For inner retinal diseases such as glaucoma 

and diabetes, it is not known if ganglion cell loss is non-selective across ganglion cell 

classes, selective for specific subtypes or variable between individuals with the same 

disease.136,140 Tests of ipRGC function may be useful in understanding the subtypes and 

progression of retinal disease processes.  
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While the PIPR may be developed as a clinical assessment technique for inner retinal 

disease, the pupil light reflex may also be used to assess outer retinal function.91,141 Rods 

and cones both contribute to the initial constriction amplitude of the PLR, but ipRGCs do 

not due to their slow temporal response.6,7 Figure 6 demonstrates the maximum initial pupil 

constriction of a healthy, young (30 yrs) observer to 10 second stimuli of 488 and 610 nm 

for a rod isolated stimulus (below cone threshold) (Figure 6A), a photopic cone stimulus 

(rod saturation) (Figure 6B), and a stimulus greater than that shown to produce half-

maximal ipRGC pupilloconstriction (Figure 6C).5 As a clinical example of the PLR and its 

application in outer retinal disorders, we investigated a patient with retinitis pigmentosa. 

The patient was a 30 year old male with a visual acuity of 6/62 and a ring scotoma at ~15o 

(MD = -7.41 dB) in his right eye (central 22° field, Medmont M700). Figure 7 shows the 

pupil light for 10 second stimuli of 488 and 610 nm that were scotopic (Figure 7A) or 

photopic (Figure 7B). The patient demonstrates impairment of the isolated rod 

photoreceptors in Figure 7A by the reduced amplitude and duration of the initial pupil 

constriction for both 488 and 610 nm stimuli. Figure 7B demonstrates some additional 

impairment to the cone photoreceptors, with the constriction amplitude reduced for the 

610 nm stimulus. Figure 7B also shows a PIPR of ~80 % for a 488 nm, 

14.2 log photons.cm-2.s-1 stimulus (blue line), similar to the ~81 % PIPR of the 30 year old 

control observer for the same stimulus (blue line, Figure 6C) confirming normal ipRGC 

function in this RP patient.  

 

 Insert Figure 7 here 
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The use of the pupil light reflex to differentiate between outer and inner retina impairment 

has recently been suggested.91,141 Where a disease affects multiple retinal layers the pupil 

light reflex could be a useful tool in determining the inner and outer retinal contributions to 

the disease process. Age related maculopathy for example, causes impairment to both the 

inner and outer retinal layers depending on the stage of the disease142 and monocular PLR 

measurements may allow the progression of the disease through the retinal layers to be 

monitored over time.  

 

Future Directions 

The discovery of ipRGC contributions to both the pupil light reflex and circadian rhythm 

has applications in the study of retinal disease, chronobiology and sleep disorders. 

Intrinsically photosensitive ganglion cell projections to the suprachiasmatic nucleus and the 

olivary pretectal nucleus have been defined and open questions remain regarding the 

organisation of the rod- ipRGC pathway, the melanopsin pigment regeneration mechanism 

and the role of ipRGC contributions to the S-cone OFF pathway for colour vision. The 

pupil light reflex is currently used in clinical practice to test the optic nerve pathway. 

Clinical protocols which use the PIPR to detect and monitor early retinal disease are being 

developed. If the PIPR is to assess inner retinal function, the normal ageing effects on the 

response also need to be quantified. The aetiology of many sleep disorders, such as 

advanced sleep phase disorder and delayed sleep phase disorder, are currently unknown143 

and the assessment of ipRGC function using the PIPR may also contribute to understanding 
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the pathogenesis of circadian disorders. A clinical pupil test however, must control factors 

that influence the autonomic nervous system, such as noise, stress, cognitive tasks and 

autonomic drugs.72,74-78,144 Previously, the use of pupillometry has been limited by large 

inter-individual differences in pupil response145 and this needs to be overcome for a clinical 

PLR test to be successful. Research in our laboratory is currently under way to address 

some of these questions and to optimise the clinical parameters to evaluate the ipRGC 

response. In the future, a new clinical protocol may extend the current pupil measurement 

techniques to identify and monitor the progression of retinal eye disease and in determining 

the inner and outer retinal contributions to the progression of pathology.  
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Table 1 
 

Caption

Table 1. Location, distribution and anatomy of primate intrinsically photosensitive retinal 

ganglion cells compared with rod and cone photoreceptors.  
 

 ipRGCs Rods L, M & S Cones 

Location Inner Retina Outer Retina Outer Retina 

Number in Retina ~3000 †  92 million ‡ 4.6 million ‡ 

Peak Cell Density 20 - 25 cells.mm-2 at 2° 

eccentricity † 

176 200 cells.mm-2 at ~21° 

eccentricity ‡ 

199 000 cells.mm-2 at fovea ‡  

(L & M cones) 

2600 cells.mm-2 at 0.6° 

eccentricity †††† (S cones) 

Cells Bodies 40 % INL, 60 % GCL † ONL ONL 

Dendrite Stratification Extreme outer and inner IPL † OPL OPL 

Input Intrinsically photosensitive † 

Rod & Cone input † 

Intrinsically photosensitive Intrinsically photosensitive 

Peak λ Sensitivity 482 nm † 507 nm ¶ 440, 543 and 566 nm §§ 

Photopigment Melanopsin §§§ Rhodopsin ††† Cyanolabe ¶¶¶ 

Chlorolabe & Erythrolabe ‡‡‡ 

Synapses DB6 Bipolar Cells § 

Amacrine Cells § 

Rod-Cone gap junctions †† 

Rod ON Bipolar cells ¶¶ 

Cone midget, parasol & bistratified 
bipolar cells 

Horizontal cells ‡‡ 

Footnote 
† Dacey et al. (2005)7 
‡ Curcio et al. (1990)20 
§ Dacey et al. (2006)21 
¶ Crawford (1949)22 
†† Schneeweis & Schnapf (1995)23 
‡‡ Dacey et al. (1996)24 
§§ Smith & Pokorny (1975)25 
¶¶ Daw et al. (1990)26 
††† Boll (1877)27  
‡‡‡ Rushton (1959)28 
§§§ Provencio et al. (2000)2 
¶¶¶ Marks et al. (1964)29  
†††† Calkins (2001)30  
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Figure 1. Schematic of the primate retinal layers showing location and synapses (chemical 

synapses, filled circles) of inner and outer stratifying ipRGCs in primates. (A) Inner 

stratifying photoreceptive ganglion cell bodies (ipRGCi) are located in the ganglion cell 

layer (GCL) and their dendrites stratify along the extreme inner strata (S5) of the inner 

plexiform layer (IPLi). Outer stratifying photoreceptive ganglion cell bodies (ipRGCo) are 
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located in both the ganglion cell layer (GCL) and the inner nuclear layer (INL) and their 

dendrites stratify along the extreme outer strata (S1) of the inner plexiform layer (IPLo).  

(B) Cone input is transmitted to ipRGCi via DB6 cone bipolar cells (DB6).17,21 Rod input to 

ipRGCi may be transmitted via rod-cone gap-junctions (GJ) and the DB6 bipolar cells of 

the cone pathway; rod input along the rod pathway, via ON rod bipolar (RB), AII amacrine 

cells (AII) and ON cone (Bon) and OFF cone (Boff) bipolars, is yet to be determined in 

primates although synaptic contact has been shown between rod bipolars and ipRGCi  in 

rats.38 Synaptic contact also occurs between ipRGCo and dopaminergic amacrine cells 

(Ad)21,37,38 and bipolar cells (B)17; ipRGCi synapse with unspecified amacrine cells (A). 

17,37,38  Abbreviations: outer segment (OS), outer nuclear layer (ONL), outer plexiform layer 

(OPL) and nerve fibre layer (NFL). 
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Figure 2. Intrinsically photosensitive ganglion cell (ipRGC) projections to brain locations 

and the associated circuits. The ipRGCs and their axons are shown in dark blue and their 

principal targets in red. Intrinsically photosensitive ganglion cells project to the 

suprachiasmatic nucleus (SCN) for entrainment of the biological circadian rhythm. The 

SCN regulates the expression of melatonin from the pineal gland (P), with a sympathetic 

pathway (orange) synapsing at the intermediolateral nucleus (IML) and superior cervical 

ganglion (SCG). Intrinsically photosensitive ganglion cells also project to the olivary 

pretectal nucleus (OPN) contributing to both the sympathetic (not shown) and 

parasympathetic pupil reflex pathways. The parasympathetic pupil pathway (light blue) 

synapses at the Edinger–Westphal nucleus (EW) and the ciliary ganglion (CG) before 

reaching the iris muscles (I). The final target of ipRGC projections are two regions of the 

lateral geniculate nucleus in the thalamus: the ventral division (LGNv) and the 

intergeniculate leaflet (IGL). The LGN processes, integrates and projects to the visual 

cortex for image formation (pathway not shown). Reproduced with permission from 

Berson.48 
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Figure 3. Spectral sensitivity of the human retinal photopigments : S-cone (λmax = 440 nm), 

ipRGC (λmax = 482 nm), Rod (λmax = 507 nm), M-cone (λmax = 543 nm) and L-cone 

(λmax = 566 nm). Cone spectral data from Smith & Pokorny25; Rod spectral data from 

Crawford22; ipRGC spectral data collected in the Visual Science and Medical Retina 

Laboratory, QUT. See text for details. 
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Figure 4. Intracellular voltage recordings of a human ipRGC in vivo. (A) The slow, 

sustained intrinsic photoresponse of the ipRGC in response to a 10 sec, 550 nm, 13.5 log 

photons.cm-2.s-1 light pulse under pharmacological blockade of the rod and cone 

photoreceptors. (B) The rod-mediated response of the ipRGC to a 10 sec, 550 nm, low 

scotopic light pulse of 7.6 log photons.cm-2.s-1. (C) The (L+M) cone ON and S cone OFF 

isolated responses of the ipRGC. Reproduced with permission from Dacey and colleagues.7 
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Figure 5. Anatomical drawing showing the direct and consensual pupillary light reflex 

pathways and the parasympathetic and sympathetic innervation of the iris in primates. See 

text for details. Reproduced with permission from McDougal & Gamlin.71 
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Figure 6. The consensual pupil light reflex (PLR) of a 30 year old female with 6/5 acuity 

and normal ocular health. The average initial pupil diameter is indicated by the horizontal 

black dashed line. Light onset is indicated by the vertical dashed line, duration by the grey 

box. Pupil data represented by the light and grey lines and pupil model data by blue and red 
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lines. Pupil light reflex components shown: Pre-stimulus pupil diameter (-10 - 0 sec), 

response latency (0 - 0.3 sec), maximum constriction, escape (1 - 10 sec) and recovery 

(10 - 45 sec). (A) Pupil Light Reflex for scotopic 10.1 log photons.cm-2.s-1, 488 nm (blue 

line) and 610 nm (red line) 10 sec stimuli. (B) Pupil Light Reflex for photopic (above cone 

threshold) 12.2 log photons.cm-2.s-1, 488 nm (blue line) and 610 nm (red line) 10 sec 

stimuli. (C) Pupil Light Reflex for photopic (above cone and ipRGC threshold) 

14.2 log photons.cm-2.s-1, 488 nm (blue line) and 610 nm (red line) 10 sec stimuli. The 

post-illumination pupillary reflex of 81 % is shown by the blue dashed line. Data collected 

in the Visual Science and Medical Retina Laboratory, QUT. See text for details. 
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Figure 7. The consensual pupil light reflex (PLR) of a 30 year old male patient with retinitis 

pigmentosa with 6/6-2 acuity and a visual field ring scotoma defect of ~15° ( -7.41 dB) 

measured with a central 22° (30° nasal) visual field test . Pupil data is represented by the 

light and grey lines and pupil model data by blue and red lines. (A) Pupil Light Reflex for 

scotopic (below cone threshold) 10.1 log photons.cm-2.s-1, 10 sec stimuli (488 nm, blue 

line; 610 nm, red line). (B) Pupil Light Reflex for photopic (above cone and ipRGC 

threshold) 14.2 log photons.cm-2.s-1, 10 sec stimuli (488 nm, blue line; 610 nm, red line). 

The unimpaired post-illumination pupillary reflex demonstrates normal ipRGC cell and 

inner retinal function. Data collected in the Visual Science and Medical Retina Laboratory, 

QUT. See text for details. 


