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Abstract—Wireless Multi-media Sensor Networks (WMSNs)

have become increasingly popular in recent years, driven in

part by the increasing commoditization of small, low-cost CMOS

sensors. As such, the challenge of automatically calibrating these

types of cameras nodes has become an important research

problem, especially for the case when a large quantity of these

type of devices are deployed. This paper presents a method

for automatically calibrating a wireless camera node with the

ability to rotate around one axis. The method involves capturing

images as the camera is rotated and computing the homographies

between the images. The camera parameters, including focal

length, principal point and the angle and axis of rotation can then

recovered from two or more homographies. The homography

computation algorithm is designed to deal with the limited

resources of the wireless sensor and to minimize energy con-

sumption. In this paper, a modified RANdom SAmple Consensus

(RANSAC) algorithm is proposed to effectively increase the

efficiency and reliability of the calibration procedure.

Keywords-wireless sensor networks; camera calibration; ho-

mography;

I. INTRODUCTION

Wireless Multi-media Sensor Networks (WMSNs) are
rapidly decreasing in cost while increasing in performance
ability in terms of energy efficiency and processing capacity.
As a result, this class of device is becoming increasingly
popular for surveillance and environmental monitoring appli-
cations. If networks of wireless sensors with cameras are to be
used for higher level multiple camera surveillance tasks, such
as tracking, then they must be calibrated. The features that
make WMSNs attractive (low cost, high numbers, ability to
deploy to remote locations) additionally make manual calibra-
tion difficult and not cost-effective. As a first step towards
calibration of camera networks (in terms of multi-camera
correpsondances), efficient automatic calibration procedures
are thus required for these applications.

This paper presents a method for self calibration of a
panning wireless multimedia sensor node, where the node
consists of a camera, a servo for panning (rotating around
the vertical axis), and a DSP module. The calibration method
makes use of the panning ability to capture images at different
camera orientations and then establishes the correspondence

between the 2 consecutive image pairs. This process cannot
be done simply by using the angle of servo rotation due to the
inaccuracy of the servos and thus alternative methods must be
used. SURF feature extractor and descriptor [1] is employed,
due to its robustness and speed, to find corresponding points
between the images.

The homographies (projective transformation) between the
images are computed using the set of putative correspondences
and a modified RANdom SAmple Consensus (RANSAC) [2],
[3], [4], [5] algorithm. The intrinsic camera parameters (focal
length and principal point) are computed from two or more
homographies using a method similar to [6]. The angle of
rotation between the images and the axis of rotation (extrinsic
parameters) are also recovered.

Two main contributions of this paper are:
• A modified RANSAC algorithm is proposed. It is capa-

ble of reducing the processing time and improving the
likelihood of finding a good model.

• A practical approach towards self-calibration of WMSN
sensors is also presented.

II. BACKGROUND AND RELATED WORK

A. Self Calibration of a Stationary, Rotating Camera
Camera calibration is the process of finding the parameters

of a parametric model describing the camera operation. A brief
description of the model we use is given below where more
details can be found in [3]. We employ the perspective pinhole
camera model which may be expressed as follows:

x = MX (1)

where X = [x, y, z, 1]� is the world coordinates, in projective
3-space (M3). x = [x, y, w]� is the image coordinate in
projective 2-space (M2), and M is a 3× 4 projection matrix
that maps the world coordinates to image coordinates. The
matrix M may be decomposed as,

M = K
�

R −Rt
�

(2)

Here R is a rotation matrix representing the camera orientation
and t is a translation vector representing the camera center



point. The matrix K is referred to as the camera calibration
matrix as has the following form:

K =




γf s pu

0 f pv

0 0 1



 (3)

The parameters of this matrix are referred to as the intrinsic
camera parameters, and consist of the camera focal length f
and principal point (pu, pv), as well as aspect ratio γ, which
is 1 for most cameras, and the skew s, which is 0 for most
cameras.

During self calibration of a stationary camera, the world
coordinate system may be chosen such that the camera center
is at the origin, so that the translation vector t = 0. The camera
model presented in Equation 2 may then be simplified to,

M =
�

KR 0
�

(4)

The objective from here is to find the intrinsic calibration
parameters (K), and the extrinsic orientation (R).

A review of self calibration literature can be found in [7].
The procedure for calibrating a stationary, rotating camera
described in [6] was used in this work, since the cameras
used have the ability to rotate around the vertical axis. This
method makes use of three images taken from the same point
in space at different orientations and does not require any prior
knowledge of the camera parameter. An extended method is
presented in [8], [9] that is suitable for calibrating a rotating
and zooming camera. This may be of use in future, when
wireless sensors gain the ability to zoom, but is not used here.

A point X observed by a camera Mi = KRi produces
the imaged point xi = KRiX. Any two images of this same
point taken by cameras Mi and Mj (cameras related by a ro-
tation) are related by a homography (projective transformation
between two images) Pij ,

xi = Pijxj = KRiR−1
j K−1xj (5)

If the coordinate axes are chosen to align with reference
camera 0 such that R0 = I, then the image of point X in
any image j is related to the reference image according to:

xj = Pjx0 = KRjK−1x0 (6)

Rearranging in terms of Rj gives:

Rj = K−1PjK (7)

Because Rj is a rotation matrix, it is equal to its inverse
transpose, and therefore it follows that,

�
KK�

�
P−�

j = Pj

�
KK�

�
(8)

where KK� is a 3× 3 symmetric matrix with 6 independent
entries.

Equation 8 gives rise to nine equations in the six inde-
pendent entries in KK�. Due to redundancy, at least two
homographies are required for a unique solution, giving rise
to an over constrained system that may be solved using least
squares. Once KK� is found, K may be found by means
of Choleski factorization and the rotation matrices may be
computed using Equation 7.

B. Homography Computation using Local Feature Matching
and RANSAC

The calibration method described in the previous section
requires two or more homographies between images taken
at different camera orientations. The homographies can be
computed by iterative image alignment [10] or by matching
local image features. The local image features approach is
a natural choice for implementation in a WMSN because
it requires significantly less computation effort and memory.
Local image features are patterns in an image that are dis-
tinguishable from the surrounding image. They are matched
across views by computing a descriptor for each feature from
its local image neighborhood. A comprehensive review of
local image feature detectors was recently published in [?].
The SURF feature extractor and descriptor [1] was chosen
because it is efficient, suitable for implementation using only
integer numbers and sufficiently robust for the task. Since the
set of putative correspondences produced by matching SURF
features generates a significant proportion of incorrect matches
(outliers), the commonly used RANdom SAmple Consensus
(RANSAC) [2] was chosen for estimating homographies [3].

The basic idea of RANSAC is to randomly select the
smallest subset of data points (four pairs of correspondences
in the case of homography computation), compute the model
from this subset and then see how many of the available
data points agree with this model. This is repeated many
times in order to try and find the model that agrees with the
largest number of data points. Samples are selected at random
because it is usually not feasible to evaluate every possible
combination of data points. The number of trials required to
ensure a good likelihood of finding the best solution depends
on the number of expected outliers. The following formulation,
proposed in [2], can be used to find the number of trials N
required to achieve a probability z of obtaining the correct
solution, given that p points are required per trial (p = 4 in
this case) and the data is expected to contain w proportion
inliers:

N =
log (1− z)

log (1− wp)
. (9)

The generic RANSAC algorithm has been extended by
various authors, for example [4] introduces bias in the sample
selection probability based on the estimated reliability of
features and computes a model quality measure based on
inlier error; [5] achieves speed improvements to the model
validation stage by introducing a pre-validation check; [11]
attempts to compute the probabilities of the validities of the
correspondences and uses this information to accelerate the
process; [4] introduces a geometric constraint to remove
outliers before applying RANSAC. To the authors’ knowledge,
no published work is exists on modifying the random point se-
lection process to improve the accuracy of the homographies.
We present our method for addressing this problem in the
following section.



III. AN IMPROVED RANSAC ALGORITHM FOR
HOMOGRAPHY COMPUTATION

It has been observed that the generic RANSAC method pro-
duces inaccurate homographies when the feature correspon-
dences occupy a small section of the region of overlap between
images. This is primarily due to the fact that the algorithm
selects four pairs from a pool of putative correspondences
based on a uniform random process. Each pair of interest
points has an equal chance of being selected for computing the
homography. This implies that if the four points were selected
in a way that they are clustered (with no three co-linear) near
one edge of the image, it is highly probable that points at the
opposite edge are mismatched by the calculated homography.

To deal with this limitation, modification to the uniform
random point selection process was made in order to improve
the accuracy of RANSAC. For a set of tentative pairs ci, the
variance of all points in the first image is estimated. This is
done in both the x and y directions giving σ2

x and σ2
y , which

indicates the spread of all the putative matches. Now a set of
four points can be defined as:

p1 : (x− 2σx, y − 2σy),
p2 : (x− 2σx, y + 2σy),
p3 : (x + 2σx, y − 2σy),
p4 : (x + 2σx, y + 2σy).

The first image is then divided into st × st square tiles
(st = 10 in this implementation), and each element in ci is
indexed according to the tile in which it falls. A tile selection
process starts by sampling a random integer coordinate from
a Gaussian distribution with mean at point pi and x-axis
standard deviation of width/8, y-axis standard deviation of
height/8. This coordinate is then converted into a tile index
that indicates the tile from which a putative pair is to be
selected. In case of two or more pairs existing in the same
tile, a random pair is selected. If there is no putative pair
in a particular tile, the tile selection process is repeated. The
whole process is repeated for i ∈ {1, 2, 3, 4}, selecting a set
of four putative pairs and form the subset used to estimate a
homography model. This biases the random sample selection
process towards the boundaries of the feature cluster resulting
in an increased probability of four far-separated points being
selected. Figure 1 shows the use of a homography computed
by iRANSAC in mapping one image onto another.

Algorithm 1 lists the modified RANSAC algorithm. This
algorithm makes use of the following subroutines:

• (x, y) ← MEAN(c) computes the mean coordinates of
the elements in the set of correspondences belonging to
image 1.

• (σ2
x, σ2

y) ← VARIANCE(c) computes the variance of
coordinates of the elements in the set of correspondences
belonging to image 1.

• (ix, iy) ← RANDN (x, st, σx, σy) samples a random set
of integer coordinates from a Gaussian distribution with
mean at point x and x-axis standard deviation of σx,

Fig. 1. Mosaic of two images related by a rotation, circles represent matched
features

y-axis standard deviation of σy and zero covariance.
The integer coordinates are then converted to tile indices
(ix, iy) using tile size st.

IV. EXPERIMENTAL EVALUATION

A. System Overview

The calibration procedure presented in this paper is de-
signed to be run on the wireless camera node developed by
CSIRO [12], [13]. The node consists of three layers of devices,
which are: camera board, digital signal processor board and
a Fleck board. The node is powered by four AA batteries.
The camera board contains a replaceable camera lens and
the OV9655 high-performance image sensor, developed by
OmniVision Technologies. This chip has been selected due
to its reasonable resolution (1.3 Mega-pixel) and energy cost
(≈ 90 mW). The DSP daughter board is responsible for
image processing. It contains a BF537 Blackfin digital signal
processor, running at clock rate of 600 MHz. There is 2MB
onboard flash available for data storage and 32MB of SDRAM.
The Fleck board, consists of an Atmega128 micro-controller
running at 8 MHz, a Nordic NRF905 radio transceiver and
a 15cm whip antenna with a 500 meter range, capable of
sending data at 76.8 Kbits/s. Please refer to [12], [13] for
a more detailed description of the hardware platform.

The WMSN node is mounted on top of a high-tech
servo[14], which can be controlled to rotate through a series
of angles. The horizontal and vertical axis that are parallel
to the image plane of the camera is defined to be x and
y-axis. z-axis is then the axis that goes through the center
and perpendicular to both x and y axis. With this definition,
the unit vector of axis of rotation of the camera must be of
the form [0, 1, 0]T or [0,−1, 0]T . Although there has been
attempts to aligning the axis of rotation of the servo exactly
with the optical center of the camera, this was not as precise
as desired due to mechanical problems. The complete node
setup is shown in Figure 2.

B. Complete Calibration Procedure

When the cameras are first deployed, the following calibra-
tion procedure should take place to recover the focal length
and the principal points of the camera:



Function {Pc, cc}← iRANSAC (ci, nt, wx, wy)
Input:
ci =

�
(x1,x2)1 , (x1,x2)2 , . . . , (x1,x2)nx

�
– A set of

putative correspondences, where nx is the total number
of putative pairs.
wx, wy – The image dimensions.
Output:
nt – The number of trials to run.
cc – The consensus set – elements from ci that all fit the
selected model.
Pc – The homography fit to the consensus set using least
squares.
begin

(x, y)← MEAN(ci).
(σ2

x, σ2
y)← VARIANCE(ci).

p1 ← (x− 2σx, y − 2σy).
p2 ← (x− 2σx, y + 2σy).
p3 ← (x + 2σx, y − 2σy).
p4 ← (x + 2σx, y + 2σy).
Divide image into st × st square tiles.
Index each element in ci according to the tile in
which the point from image 1 falls.
σx ← wx/8.
σy ← wy/8.
cc ← ∅.
nc ← 0.
nt ←∞.
while i < nt do

for j ∈ {1, 2, 3, 4} do

v ← false.
repeat

(ix, iy)← RANDN (pj , st, σx, σy).
if tile (ix, iy) contains correspondences
then

Select a random correspondence from
tile (ix, iy) and store in dt{j}.
v ← true.

end

until v
end

Compute the trial model Pt from the trial set dt.
Determine the consensus set for this trial ct by
checking which of ci fit model Pt.
if SIZE (cc) > nc then

cc ← ct.
nc ← SIZE (ct).
w ← SIZE (ct) /SIZE (ci).
nt ← log(1− z)/log(1− wp).
where z = 0.99 and p = 4.

end

i← i + 1.
end

Compute the output model P using least squares fit to
consensus set cc.

end

Algorithm 1: iRANSAC Homography Algorithm with Bi-
ased Sample Selection.

Fig. 2. Wireless multimedia node developed by CSIRO

1) Capture three images that are related by pure rotations
using sevro-mechanism [12].

2) Extract SURF features from all images.
3) Match features extracted between successive images

using Euclidean distance between feature vectors.
4) Compute at least two homographies from two or more

sets of feature correspondences using the improved-
RANSAC as presented in section III

5) Calculate the focal length and principal point of the
camera using Equation 8, as described in section II-A

C. Experimental Setup
Our experimental validation was divided into two main

stages. The first stage evaluated the performance gain of the
improved RANSAC algorithm (iRANSAC) when compared
with the generic RANSAC algorithm (gRANSAC). The sec-
ond stage evaluated the accuracy of the calibration procedure.
These experiments were conducted on four pre-captured data
sets, which were obtained by placing the node at various
locations to capture VGA quality images. For each set, the
servo rotated through a fix angle(5◦, 10◦ or 15◦). The names of
the data sets are car park (C.P.), lecture theater (L.T.), process
bay (P.B.) and driveway (D.W).

1) Comparison of iRANSAC and gRANSAC: Due to the
random point selection process of RANSAC, the accuracy of
the models estimated can only be reflected in the spread of
the measurement when a large number of identical tests are
performed. Since the homography itself doesn’t reflect any
real-world quantities, angle of rotation and the axis of rotation
of the camera was chosen for comparsion.

Equation 7 describes the relationship among the homogra-
phy P, the rotational matrix R and the calibration matrix K.
K is kept constant so that the accuracy of the homography P
is reflected by R, which can be computed directly from simple
matrix operations. The constant K matrix is formed using a
focal length of 766, principal point of (313, 226), aspect ratio
of 1 and 0 skew.

K =




766 0 313
0 766 226
0 0 1



 .



This was obtained offline using the calibration toolbox
supplied by CalTech [15] with a checkerboard patter and thus
is referred to as the offline calibrated result throughout this
paper. Since R is obtained from Equation 7, the angle of
rotation around the axis of rotation and the unit vector that
represents the rotational axis are then computed from R. The
results are presented in Figure 3, 4 and 5.

2) Calibration Accuracy: The camera parameters, i.e. focal
length and principal point are recovered from each of the data
sets described above. The procedure followed are outlined in
Section IV-B. Again due to the use of RANSAC, the accuracy
is not reflected through a particular measurement, but rather
the distribution of the results over a large number of identical
test runs. The results of calibration are presented in table I.

D. Results and Evaluation

Figure 3 shows histograms of angle of rotation, generated
using both iRANSAC and gRANSAC over 5000 test runs
for a selected pair of images. Similarly Figure 4 shows the
comparison of each of the 3 components of rotational axis,
which has an ideal value of [0, 1, 0]T . It is evident that
quantities generated using iRANSAC possess a much narrower
distribution, indicating a more accurate model. This improve-
ment is a result of selecting four geometrically separated points
for computing the model.

The servo was programmed to rotate through an angle of
10◦ between the images used to generate Figure 3, but the
histograms are centered around a value of approximately 8.9◦.
This is caused by two types of errors: the inaccuracy of the
servo and the imperfect alignment of y-axis and the optical
center of the camera.
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Fig. 3. Histogram of angles calculated over 5000 test runs.

iRANSAC and gRANSAC are further compared using the
data sets described above. The algorithm was executed 500
times for each pair of images in each set to estimate the
homography and the results were averaged across all image
pairs. Figure 5 (a) and (b) shows the comparison of the two
algorithms in terms of number of trials and the standard
deviation of the angles. It is evident that the modification made
to RANSAC brings up to 50% reduction in the processing
time and increase in accuracy. The effect of the reducation
in number of trials has a more significant effect when the

number of trials is high and takes a large percentage of the
overall processing time of the calibration procedure.

Table I shows the results of calibration of the same camera
with the 4 data sets. Results are averaged from 100 identical
test runs for each data set. The last entry of table I is an offline
calibration result, calculated using the toolbox provided by
CalTech [15] with a checkerboard and manual input. It can be
seen that the focal length and the principal point is consistent
throughout all the data sets and the principal points match the
offline calibrated result but the focal lengths are 6% higher
than the offline calibrated result. This consistent bias is caused
by the imperfect alignment of the axis of rotation (y-axis) and
the optical center of the camera and the geometric distortion
of the lens which is not modelled here.

V. CONCLUSION AND FUTURE WORK

Self-calibration of camera nodes is a crucial task that must
be undertaken if the full capabilities of wireless multimedia
sensor networks are to be utilized for tasks such as tracking
and image registration. To help address this issue we have
presented an improved RANSAC method based on the use
biased random sample selection. The results have shown that
if the random sample selection process is biased towards
the boundaries of the feature cluster, a significant increase
in model accuracy and reduction in processing time can be
achieved. The accuracy of the calibration is consistent with
the offline calibrated result, but relies on the precision of
homographies.

It was also observed that in some outdoor environments,
images related by even a small rotation of 5◦ may often not
have many features in common. This is predominantly due
to a large proportion of the scene being perpendicular to the
image plane of the camera. In addition, these features may be
distributed around a certain region and do not occupy the entire
region of overlap. This could lead to inaccurate or completely
wrong homographies. Furthermore, for outdoor deployments,
the cameras have to be able to cope with dynamic scene
changes, such as moving tree branches or rapidly changing
light conditions. If moving features dominate the region of
overlap, it is not viable to compute a correct homography. The
problems raised above lead to an additional question regarding
the selection of images. Sophisticated modeling methods and
selections based on statistical beliefs could be employed to
solve this issue and will be studied in the future work.

An extension of current work to multi-camera calibration
will be the center of the future work. Algorithms presented in
this paper, including feature matching, improved RANSAC,
homography computation and self-calibration procedure are
step stones towards camera network calibration where the
correspondences among multiple cameras are computed.
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