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Abstract 

Diabetic peripheral neuropathy (DPN) is one of the most debilitating complications of 

diabetes. DPN is a major cause of foot ulceration and lower limb amputation. Early 

diagnosis and management is a key factor in reducing morbidity and mortality. Current 

techniques for clinical assessment of DPN are relatively insensitive for detecting early 

disease or involve invasive procedures such as skin biopsies. There is a need for less 

painful, non-invasive and safe evaluation methods. Eye care professionals already play 

an important role in the management of diabetic retinopathy; however recent studies 

have indicated that the eye may also be an important site for the diagnosis and 

monitoring of neuropathy. Corneal nerve morphology has been shown to be a promising 

marker of diabetic neuropathy occurring elsewhere in the body, and emerging evidence 

tentatively suggests that retinal anatomical markers and a range of functional visual 

indicators could similarly provide useful information regarding neural damage in 

diabetes – although this line of research is, as yet, less well established. This review 

outlines the growing body of evidence supporting a potential diagnostic role for retinal 

structure and visual functional markers in the diagnosis and monitoring of peripheral 

neuropathy in diabetes. 

 

Key words: diabetes mellitus, peripheral neuropathy, retina, visual function, optical 

coherence tomography, visual fields 
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Diabetes mellitus is an increasingly prevalent chronic disease, with a high rate of 

morbidity and mortality worldwide. Reducing diabetes-related morbidity and mortality 

and improving quality of life are major public health goals, which could be assisted by 

earlier disease diagnosis and improved screening protocols for associated 

complications. This could ultimately lead to earlier and more effective management of 

risk factors. Complications can include myocardial infarction, stroke and nephropathy 

as well as retinopathy – a ramification highly familiar to eye-care professionals. 

Another major complication of diabetes is neuropathy – pathological changes affecting 

the neural system throughout the body, which can lead to devastating consequences 

such as lower limb amputation. Neuropathy can also affect the eyes; however its impact 

in this regard is less familiar to health professionals. Although changes to corneal 

structure in diabetes are relatively better characterised,
1, 2

 this review will outline what 

is known about alterations in retinal structure and visual function, which may ultimately 

manifest as a consequence of neural pathology. Conversely, it will explore how retinal 

structure and visual function may hypothetically provide valuable and readily accessible 

early indicators of neuropathy elsewhere in the body.  

 

Diabetes mellitus is defined by the level of hyperglycaemia.
3
 There are two main types 

of diabetes. Type 1 diabetes mellitus, formerly known as insulin-dependant diabetes, is 

characterized by auto-immune destruction of pancreatic beta-cells, leading to a loss of 

insulin secretion. Type 2 diabetes mellitus is the most common form of the disease, 

accounting for over 90 percent of diabetes in Australia.
4
 It involves a combination of 

insulin resistance and impaired insulin secretion. Prevalence increases with age and it is 

strongly associated with obesity. Gestational diabetes is a less common form that occurs 
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in approximately 7% of all pregnancies and is a major risk factor for later development 

of Type 2 diabetes.
5
 

The prevalence of diabetes increases with age and with population growth
6
 and is higher 

amongst certain racial minorities.
7
 In 2005, over 600,000 Australians (more than 3% of 

the population) were estimated to have established diabetes, with many more cases 

remaining undiagnosed.
8
 Trends for international prevalence of the disease mirror this 

profile.
6
  Diabetes has multiple and wide-ranging health ramifications – however, 

diabetes-related mortality is predominantly caused by cardiovascular disease. Increased 

morbidity is driven by long term microvascular complications; retinopathy is the 

leading cause of premature blindness worldwide,
9
 nephropathy is the most common 

cause of end stage renal failure 
10

 and neuropathy is the leading cause of non-traumatic 

lower limb amputation.
11

 

 

Complications of diabetes 

The incidence of micro-vascular problems such as retinopathy and nephropathy, as well 

as neuropathy, is tightly linked to glycaemic control and to disease duration in both 

Type 1 and Type 2 forms.
12

 Macro-vascular complications of diabetes such as coronary 

artery disease and myocardial infarction are also frequent in this population and risk 

factors like hyperglycaemia, hypertension and dyslipidaemia are thought to play a 

strong role in their incidence.
3
  

 

Peripheral neuropathy – one of the most common complications in the diabetic 

population worldwide
13

 – is characterised by pathology of sensory, motor and 
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autonomic nerves and it has both anatomical and functional repercussions. Its effects are 

primarily evident in the feet and legs where it can result in gait disturbances, 

neuropathic pain, and an increased risk of foot ulceration and subsequent lower limb 

amputation. Although the cardiac manifestations of diabetes are primarily vascular in 

origin, a subset of people with diabetes suffer from autonomic neuropathy, 
14

 which can 

affect heart rate and rhythm, potentially resulting in exercise intolerance and postural 

hypotension. This review focuses primarily on peripheral sensory neuropathy, the most 

common form of neuropathy in diabetes.
15

. 

 

Peripheral nervous system 

The peripheral nervous system (PNS) in humans comprises a range of sensory and 

motor nerve bundles with differing characteristics. In a simplified model, afferent 

(sensory) neurons originate at sensory receptors and serve to inform the central nervous 

system (CNS) of the presence of relevant stimuli, whilst efferent (predominantly motor) 

neurons connect the CNS to muscles to precipitate movement. The somatic subdivision 

of the PNS primarily consists of efferent nerves innervating voluntary skeletal muscle 

but also includes afferent components from the skin, whereas the autonomic subdivision 

innervates involuntary muscles as well as having visceral sensory components (Fig. 1). 

The autonomic system has further sympathetic, parasympathetic and enteric 

subdivisions.
16

  

 

Axon diameter plays an important role in the classification of nerve fibres in the PNS, 

with the thicker myelinated fibres having a faster conduction velocity. Based on this 
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characteristic, fibres can be categorized into three broad groups. The largest myelinated 

axons belong to group A and these are further delineated into α, β, δ and γ according to 

their function. Group B fibres are primarily myelinated axons of autonomic pre-

ganglionic neurons and they are less well characterized than those in the other groups. 

Group C consists of sensory nerves with relatively small un-myelinated axons.
16

 A 

classification summary of peripheral nerve fibres is provided in Table 1. Diabetic 

peripheral neuropathy can potentially affect nerves from all of these classes. 

 

 

“Figure 1 approximately here” 

“Table 1 approximately here” 

 

Diabetic peripheral neuropathy 

Neuropathy is an important cause of lower limb pathology in diabetes. Pain is a frequent 

and critical end point of peripheral sensory nerve damage and can eventually result in 

depression and other negative psychological outcomes in affected individuals.
17

 Loss of 

sensation is another outcome of advanced neuropathy and contributes significantly to 

the pathogenesis of diabetic foot complications such as ulceration and amputation.
17

  

 

The true prevalence of diabetic peripheral neuropathy (DPN) is uncertain as reported 

data have been derived from varied study designs.
18

 Additionally, epidemiological 
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reports primarily focus on people who have sought medical care for their condition, 

leaving open the possibility of significant numbers of additional sufferers who have not 

attended for assessment and care. This potential incongruity is highlighted by one 

epidemiological report that indicated DPN exists in 20% of the community in general, 

but in 30% of patients who attend hospitals.
19

 Other studies, however, have reported 

prevalences as low as 14% or as high as 54%, with the discrepancy explained by 

differences in study populations and the tests used to evaluate neuropathy.
20, 21

  

 

Several factors are involved in the pathophysiology of diabetic neuropathy. 

Hyperglycaemia, however, is clearly important and is involved at a very early stages of 

diabetes.
22

 At a simplistic level, increased glucose flux through the polyol pathways can 

lead to peripheral nerve damage; the same mechanism can also produce crystalline lens 

changes in the eye.
23

 Oxidative stress and vascular compromise have been postulated as 

further factors potentially underlying DPN.
15

 

 

There are a number of classification systems for diabetic neuropathy, which are 

variously based on anatomical, pathological and pathogenetic features. However, those 

describing clinical manifestations are the most widely used. Thomas
24

 proposed a 

classification system based on a combination of anatomical site and clinical findings. 

According to this classification, diabetic neuropathy is not a sole condition but 

collectively describes a number of disorders affecting peripheral nerves. Chronic 

sensori-motor neuropathies are the most common neuropathy types encountered in 

diabetes.
15
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Methods of assessing diabetic peripheral neuropathy 

Examination of DPN can be performed using a range of methods, incorporating tools as 

simple and inexpensive as a tuning fork, through to sophisticated electrophysiological 

nerve conduction equipment and associated techniques. Symptoms of pain and 

sensation loss can be assessed using a range of questionnaires. 
25

 
26

 One clinical 

measurement of neuropathy utilises a relatively simple protocol for evaluating sensory 

deficits. This procedure is a composite known as the Neuropathy Deficiency Score 

(NDS); it assesses a number of sensation modalities such as temperature, vibration and 

touch sensitivity as well as looking at distal tendon reflexes.
25

 The Semmes-Weinstein 

monofilament also investigates touch sensitivity and is another simple screening device 

designed to detect advanced neuropathy and hence those at risk of ulceration.
15

 

Quantitative sensory testing (QST) is an established, less subjective method of 

evaluating responses to vibrating and thermal stimuli and for determining sensation and 

pain thresholds; it can be applied at a number of anatomical sites but is commonly used 

on the feet in people with suspected DPN (Fig. 2).
11

 Electrophysiological nerve 

conduction studies evaluate factors such as conduction velocity, response amplitudes, 

and latencies for major peripheral sensory and motor nerves in order to define damage 

and the rate of progression of neuropathy (Fig. 3).
27

 Electrophysiological assessment is 

considered precise and objective; however it does not assess damage to small fibres.
28

 

Additionally, the procedure is uncomfortable to undergo. Skin and nerve biopsies are 

considered to be an accurate and early diagnostic tool for peripheral neuropathy. These 

procedures, however, are invasive, painful, and may be associated with subsequent 

infection in the sampled area.
11
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“Insert Figure 2 here” 

“Insert Figure 3 here” 

 

A novel ophthalmic marker of diabetic neuropathy 

The cornea is the most densely innervated tissue in the human body.
1
 It contains C and 

Aδ sensory fibres arising from branches of the trigeminal nerve, and it has recently 

become a focus in neuropathy studies as a prospective ophthalmic marker of DPN. 

Corneal confocal microscopy (CCM) is a recently developed, sophisticated method of 

imaging the corneal sub-basal nerve plexus, which occurs as a monolayer at the level of 

Bowman’s membrane.
29

 CCM is capable of detecting changes in nerve fibre density and 

branching at early stages of diabetic neuropathy in a non-invasive manner.
1, 11

 It has 

been demonstrated that corneal nerve fibre density is reduced in people with diabetes 

when compared with healthy controls, and this nerve density reduction is associated 

with the severity of neuropathy.
1
 One CCM study has shown that pancreas 

transplantation can lead to evidence of small fibre repair in people with DPN, 

suggesting that neuropathy may be reversible with improvement in blood glucose 

status.
30

 Corneal sensitivity has also been explored as a means of assessing corneal 

structure-function relationships; reduced corneal sensitivity also appears to be related to 

the severity of diabetic neuropathy.
31

 An example of a CCM image is shown in figure 4. 

 

“Insert Figure 4 here” 
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The lower limbs are the most evident focus for DPN, particularly given the fibre-length 

dependant nature of neuropathy, but nerves anywhere in the body can theoretically be 

damaged by an underlying metabolic abnormality. However, it is not well understood 

whether nerve changes in one part of the body accurately predict what is happening 

elsewhere. In the eye, the cornea and the retina are richly endowed with sensory nerve 

cells and their axons, and are therefore potential sites for neuropathy-related damage. 

This review is primarily concerned with changes to visual function and associated 

anatomical structures, and, as such will concentrate predominantly on putative effects 

on nerves comprising the retina and visual pathways. 

 

Anatomy of the retina 

The retina is a ten-layered sensory tissue forming the internal layer of the posterior 

eye.
32

 It is the entry point for processing of visual information and, as such, much of its 

volume consists of neural elements, although it also contains glial and vascular 

components. The retina is extremely metabolically active and consumes the highest 

percentage of oxygen per weight of any human tissue.
33

 Figure 5 shows a schematic of 

the retina. 

 

“Insert Figure 5 here” 
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The retina houses complex connectivity networks but, in a conveniently over-simplified 

model, its neural components can be categorized into three broad groupings. Firstly, 

photoreceptors comprise the neural elements of the outer retina. These cells are 

specialized for converting light energy to nerve impulses. The two photoreceptor types 

are rods and cones, which have an approximate population ratio of 20:1.
32

 Secondly, the 

centrally located plexiform and nuclear layers comprise several distinct neuronal cell 

types. Bipolar cells in these layers act as afferent connectors between the photoreceptors 

and the ganglion cells of the inner retina.
34

 Horizontal cells are inter-neurons that run 

parallel with the retinal surface. They are associated with rods and cones via their long 

and short processes respectively. Amacrine cells are also inter-neurons that play an 

integrative role in retinal circuitry, synapsing with bipolar and ganglion cells. They have 

large cell bodies and no true axons. Finally, the third grouping comprises retinal 

ganglion cells (RGC) and their long axons, which form the retinal nerve fibre layer 

(RNFL) and eventually the optic nerve; these are the neural components of the inner 

retinal layers. Ganglion cells relay partially processed visual information from the retina 

to the lateral geniculate nucleus (LGN). The RNFL is discussed in more detail below. 

 

In addition to these neural cells, the retina contains glial and vascular tissue. Mϋller 

cells are the principal glial cells of the retina and they serve a role similar to that of 

astrocytes in the CNS. They span the entire retina radially and their functions include 

structurally supporting the retina, providing nourishment for neural cells and assisting 

regulation of retinal blood flow.
35

 The central retinal artery (CRA), which arises from 

the ophthalmic artery, gives rise to the inner retinal vascular network that nourishes the 

anterior two-thirds of the retina. The choriocapillaris, located outside the retinal pigment 
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epithelium (RPE), provides a blood supply for the remaining third.
32

 The blood-retinal 

barrier, which is jointly achieved by the RPE and by tight junctions between retinal 

vascular endothelial cells, protects the neural retina from large molecules and toxic 

substances while permitting diffusion of essential nutrients. 

 

Retinal nerve fibre layer  

The retinal nerve fibre layer (RNFL) comprises unmyelinated axons of ganglion cells as 

well as astrocytes, Muller cell end feet and vasculature. 
36

 The fibres converge in a 

unique pattern to eventually form the optic nerve,
32

 where they exit the eye. The RNFL 

is responsible for carrying visual information directly to the lateral geniculate nucleus 

(LGN) where the majority of axons first synapse. These axons are myelinated posterior 

to the lamina cribrosa. The fibres originate from a range of locations in the retina and 

their spread-pattern is specifically dependant on this location.
37

 For example, fibres that 

originate from the foveal area find a relatively direct path to the optic nerve head, while 

those arising temporal to this need to execute a path around the putatively earlier-

developing ones (Fig. 6). This model neatly accounts for the well-described arcuate 

conformation of the RNFL in this region.
38

 A number of glaucoma studies have pointed 

out the utility of modelling axon growth as a means of describing the relationship 

between nerve fibre location and the function these fibres subserve.
39-41

 Clinical 

evaluation of RNFL patency and determination of RNFL thickness is of great 

importance in glaucoma and may yet prove to be of interest in diabetes, even though the 

patterns of change and the aetiology may in fact be substantially different between the 

two diseases.   
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“Insert Figure 6 here” 

 

There is substantial variation in RNFL thickness in a normal, healthy population
42

 and a 

number of factors have been identified that appear to account for at least some of this 

variance. Several studies have shown a relationship between RNFL thickness and age.
43-

45
 Histological counts of optic nerve fibres in post-mortem eyes have shown a loss of 

4000-5000 fibres per year.
46

 Other studies have reported an age-related decline in RNFL 

thickness using scanning laser polarimetry (SLP) with one reporting a loss of 7.6% per 

decade
42

 and another reporting 0.39 µm per year.
43

 Optical coherence tomography 

(OCT) has been used to show thinning of the RNFL with increasing age, particularly in 

the temporal area around the optic nerve head.
47-49

 One OCT study reported that RNFL 

thickness decreased globally about 2.6 – 2.9 µm per decade
50

 while another showed that 

thickness of the superior RNFL quadrant may be selectively reduced with age.
51

 Optic 

nerve head size also has an apparent correlation with RNFL thickness (albeit at a fixed 

spatial location) with most studies finding larger optic nerve heads in conjunction with 

thicker RNFL,
48, 52

 although one study appeared to find the opposite, which may be due 

to employment of disparate techniques.
53

 RNFL thickness has been shown to have an 

inverse correlation with axial length.
48, 50

 It can also vary with ethnicity 
43, 48

 but there is 

minimal evidence of a gender difference.
48, 54

 These factors need to be considered when 

investigating the effect of diabetes on retinal morphology in general, and on RNFL 

thickness in particular. 
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Diabetes related retinal pathophysiology 

Apoptosis is a series of biochemical changes which leads to regulated cell death 

subsequent to internal cell changes that include DNA fragmentation and cell 

shrinkage.
55

 Apoptosis is believed to mediate the pathogenesis of diseases of the retina 

such as glaucoma.
56

 Neuro-degeneration in diabetes has been proposed as an underlying 

cause of retinal vascular changes, and apoptosis of retinal ganglion cells has been 

reported in post-mortem human studies and in animal models of diabetes.
57, 58

 RNFL 

thinning is a potential by-product of retinal ganglion cell apoptosis and consequent 

axonal loss. 

 

Müller cells are another potential target for apoptosis in the retina. One of the main 

functions of these cells is to biochemically support the vascular endothelial cells that 

form the inner blood-retinal barrier. Apoptosis of retinal glial cells, including Müller 

cells, can thus potentially contribute to microangiopathy, or dysfunction of small blood 

vessels, that is closely related to complications of diabetes - including retinopathy, 

neuropathy,
59

 and blood-barrier impairments. High concentration of glucose in neural 

tissue as a consequence of high blood-retinal barrier permeability, leads to impairment 

of some glial and neural cell function and hence may interrupt glucose uptake from 

retinal circulation.
60

 Müller cells also act as a transporter to remove glutamate, which is 

highly toxic to retinal neurons. There is a likelihood that impaired function of Müller 

cells in diabetic retina can cause oxidative stress,
61

 which is known to be a contributing 

factor to DPN.  
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Clinical assessment of retinal nerve fibre layer integrity 

A number of different procedures allow clinical assessment of the RNFL. These have 

historically been used to assess glaucoma risk, but are nonetheless applicable to other 

disease models. Various ophthalmoscopy techniques can be used to assess RNFL 

integrity, although decisions regarding the existence of and, in particular, the 

progression of suspected pathological damage based on ophthalmoscopy alone are 

highly subjective. The development of ocular fundus photographic techniques improved 

this situation by allowing a permanent objective record for future comparison. However, 

photographic assessment also largely relies on qualitative judgement. Hoyt et al
62

 used 

red-free photography to evaluate diffuse and local loss in the peripapillary retina and 

described the fundoscopic signs of early RNFL loss in glaucoma. This method of 

photography was further developed using black and white negatives.
63

 Other groups 

enhanced red-free photographs of the RNFL using computer programmes 
64

 or used an 

image analyser to measure grey levels in red-free photographs for normal and 

glaucomatous eyes.
65

 Yamazaki et al
66

 eventually developed an analysis programme to 

detect changes of RNFL at early stages of glaucoma. Photographic assessment 

techniques can be limited by pupil size and by the presence of media opacities, as well 

as by the contrast-processing capability of the camera and associated software.  

 

The application of laser-based techniques for imaging retinal tissue commenced with 

the development of scanning laser ophthalmoscopy. This instrument afforded 

advantages over photography such as improved resolution, the ability to be applied in 

the presence of media opacities,
67

 and accompanying quantitative software analysis 
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packages.
68, 69

 However, it also introduced relative disadvantages such as the inability to 

represent true fundus colour information. More recently evolved confocal scanning laser 

ophthalmoscopes (CSLO) and associated software have allowed an indirect measure of 

RNFL thickness at the optic nerve head margin, and generated a range of two and three-

dimensional topographic features, many of which have demonstrated commendable 

reproducibility.
70

 Scanning laser polarimetry (SLP) is another imaging technique that 

has been shown to successfully use RNFL information to discriminate between healthy 

and glaucomatous eyes.
71, 72

 SLP employed a novel imaging principle to generate 

quantitative information regarding RNFL integrity. This method was based on an 

assumption that the RNFL is a birefringent (referring to multiple direction-dependent 

refractive indices) medium; this property affects the polarisation characteristics of a 

laser beam that is reflected from the retina.
71

 

 

Optical coherence tomography (OCT) arguably provides the most direct measure of 

RNFL thickness of the established retinal imaging techniques. It is a non-invasive and 

reliable technique for quantitative analysis of axial retinal morphology in multiple 

planes.
73

 OCT uses low-coherence interferometry and is comparable to ultrasonic echo 

techniques, except that light is used instead of sound. The latest generation OCT 

techniques (fourier-domain technology) have shown improved diagnostic capacity for 

monitoring retinal pathologies by capturing higher resolution images (5 µm axially) 

with a more rapid acquisition time (65 times faster than time-domain technology) 

compared with their predecessors.
74, 75

 This has enabled improved identification of 

individual retinal layers, including the RNFL, with minimal intrusion of eye movements 
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on accuracy and repeatability.
76

 The precise optical principles of OCT are outside the 

scope of this review; they have been described in detail elsewhere.
77, 78

  

 

OCT has been used widely in identifying pathologies that are known to impact on 

retinal morphology. OCT algorithms calculate retinal thickness based on the reflectivity 

of each individual layer.
77

 A standard circumpapillary OCT image, available on most 

commercially available instruments, is acquired using a cylindrical scan pattern of 3.4 

mm diameter around the optic nerve head, and the analysis is displayed as 12 position 

sectors around the disc in a manner resembling a clock. The graphical figure of RNFL 

thickness is often referred to as temporal-superior-nasal-inferior-temporal (TSNIT) or a 

“double-hump pattern”
79

 with the inferior quadrant having, on average, the greatest 

thickness followed by superior, nasal and temporal quadrants (Fig. 7).  

 

“Insert Figure 7 here” 

 

Evaluation of retinal nerve fibre layer in diabetes 

Examination of the retinal nerve fibre layer (RNFL) has proven useful in identifying 

axonal loss prior to visual field abnormalities becoming evident.
48

 The RNFL has been 

the focus of many glaucoma studies, given that changes in the thickness of this layer has 

become an important factor in diagnosis of the pathology.
49

 However, RNFL 

morphology and its relationship to DPN may also be of interest. Although a potential 

relationship between the presence of retinal microvasculopathy in diabetes and severity 
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of DPN has been suggested,
80

 a clear link between retinopathy and DPN has not yet 

been established and only a limited number of studies have investigated this 

relationship.
80, 81

 Given that nerve damage in diabetes can be caused by a variety of 

mechanisms, including hypoxia, oxidative stress and changes to the polyol pathways,
15

  

it is reasonable to question whether such mechanisms can also damage the RFNL and, if 

so, whether RNFL changes can predict distal neuropathy elsewhere in the body.  

 

Chihara et al
82

 measured RNFL thickness in 137 patients with Type 2 diabetes. They 

used green filtered achromatic photographic negatives to assess the nerve layer, and 

they classified retinopathy into 4 groups with level 1 showing no vascular pathology, 

and other levels representing increasing stages of retinopathy. Their results showed that 

20% of patients classified as having no retinopathy had RNFL defects and they 

suggested that the severity of retinopathy was a potential risk factor for a RNFL defect. 

They also suggested that cotton-wool spots, which generally occur in more advanced 

stages of retinopathy, are likely to cause retinal nerve fibre layer defects.  

 

Lopes de-Faria et al
83

 conducted quantitative assessment of RNFL thickness, using SLP 

in a small sample (N=10) with Type 1 diabetes. Their results showed, when compared 

with controls, a significant reduction in mean RNFL thickness in the superior quadrant 

for a cohort with diabetes who had no ophthalmoscopically evident retinopathy.
83

 

Another study by Skarf et al
84

 found similarly. Sugimoto et al
85

 were one of the first 

groups to evaluate RNFL thickness in people with diabetes using OCT. Their results 

showed a general reduction in RNFL thickness in all quadrants for a diabetic cohort 
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without evident retinopathy but the reduction was more significant superiorly, in 

agreement with earlier SLP findings.
83

 Each of these studies suggested that impaired 

vasoconstriction processes in the superior quadrant, secondary to diabetes, may best 

explain the RNFL loss in this region. In contrast, a recent OCT study failed to find a 

significant difference in RNFL thickness between a diabetic group without retinopathy 

and controls, even though the diabetic group demonstrated comparatively reduced 

RNFL thickness globally and in all quadrants.
86

 Their findings did, however, show that 

reduction in RNFL thickness was more evident in proliferative rather than earlier stages 

of retinopathy, and that RNFL thickness changes correlated with longer duration of 

diabetes.  The authors also suggested that diabetes-related RNFL damage may develop 

more rapidly in men than in women, but they did not propose a specific mechanism for 

this finding.   

 

Evaluation of visual function in diabetes 

Diabetic retinopathy is a major cause of blindness in developed countries; as such, 

diagnosis and intervention prior to the onset of sight threatening vascular complications 

is crucial.
87

 Assessment for retinopathy, in line with Early Treatment for Diabetic 

Retinopathy Study (ETDRS) recommendations, has focused on the progression of 

retinal vascular changes, from background through to proliferative stages of the 

disease.
88

 The majority of published work on the retina in diabetes has investigated the 

effect of vascular changes on visual function; 
88-90

 however, several studies have shown 

visual function deficits in eyes that have normal visual acuity and minimal evidence of 

diabetic retinopathy.
91, 92

 Bresnik et al
93

 argued strongly that retinopathy should not be 
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viewed as a vascular pathology in isolation and that a similar argument can be applied 

to neuropathy; it should not be considered as isolated  neural disease. Anatomical and 

physiological changes to the retina in diabetes highlight the importance of considering 

neural and vascular complications as potentially linked processes.   

   

The electroretinogram (ERG) has been used to investigate functional and (presumed) 

biochemical changes at a retinal level.
94, 95

 There are different types of ERG. Full-field 

(flash) ERG is the basic method of recording massed retinal electrical response to light 

stimulation and it separates photoreceptor from inner retinal responses by isolating a 

number of recognisable waveforms. Pattern ERG (PERG) stimulates the retina using 

patterned stimuli such as checkerboards, and specifically investigates the activity of 

ganglion cells and associated structures. Multifocal ERG (mfERG) evaluates small 

areas of retina individually and is valuable for assessing diabetic-related retinal changes, 

such as cotton-wool spots, that may affect visual function in spatially localised 

patches.
96

 

 

There is evidence that ERG signals are impaired in diabetes prior to the onset of 

clinically evident retinopathy.
97, 98

 Papakostopoulos et al 
99

 reported decreased ERG b 

wave amplitude in a Type 1 diabetic cohort without evident retinopathy. Di Leo et al
100

 

and Caputo et al
101

 each found reduced PERG amplitudes in diabetic subjects without 

retinopathy. Multifocal ERG has also been used to demonstrate early functional changes 

in diabetes.
102, 103

 Significant reductions in the direct response amplitude and implicit 

times in diabetic patients with no evidence of retinopathy have been reported.
104, 105

 

Lovasik and Spafford
106

 as well as other studies
107, 108

 have shown changes to the 
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amplitude or onset of oscillatory potentials (OP) in diabetes in the absence of 

retinopathy. OP wave components are believed to originate from inner retinal layers 

through the activity of amacrine cells.
109, 110

 

 

Visual evoked potentials (VEP) represent electrical responses to counter-phasing visual 

stimuli (for example, checkerboard patterns). They can provide diagnostic information 

about visual pathway integrity or neuro-sensory disorders beyond the retina. The most 

commonly analysed response to visual stimuli is termed the P100, in which a 

recognisable peak of electrical activity occurs approximately 100 milliseconds after 

stimulus onset. Alterations to expected latency and waveform of the P100 can be 

indicative of visual pathway pathology. Non-visual event-related potentials can also be 

employed to investigate a range of sensory and executive functions. The P300 (also 

referred to as the cognitive potential) represents an activity peak that occurs 

approximately 300 milliseconds after the onset of non-specific task-related change.
111

 

 

VEP latencies have been investigated in people with diabetes and P100 latency has been 

proposed as a potential method for assessing neuropathy of the central nervous system 

in people with diabetes.
112

 Studies have shown significant increases in P100 latency in 

diabetic groups compared with controls.
113-116

 A positive relationship between 

peripheral nerve conduction and P100 latency in the absence of retinopathy has 

suggested a potential effect of neuropathy on optic pathways.
114

 One study using P300 

found prolonged latencies related to diabetes in people with normal cognitive function 

and no retinopathy.
117
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Very few studies have investigated the ability of commercially available standard (white 

on white) visual field tests to detect contrast sensitivity changes in diabetic individuals. 

Early investigations related to this relied on manual perimetry techniques. Roth et al
118

 

examined the effect of diabetes on visual fields using a home designed “scotometer”. 

Their findings suggested that the existence of a scotoma in the central 20 degrees could 

be an early indicator of retinal compromise in patients with no visible ophthalmoscopic 

signs. Wisznia et al
119

 studied visual field defects at various stages of retinopathy using 

Goldman perimetry. They showed a partial constriction of the central isopter in diabetic 

patients with non-proliferative retinopathy. However, there is evidence that manual 

perimetry does not always effectively detect a visual field deficit, even in the presence 

of significant loss of neural cells.
120

  

 

The evolution of static automated perimetry enabled quantitative analysis of contrast 

sensitivity for a well defined grid of test points, improving the potential for visual field 

analysis techniques to detect earlier, spatially specific changes in visual sensitivity.
120

 

Trick et al 
121

 used automated visual field assessment to examine visual sensitivity in a 

cohort of people with diabetes who had either no vascular changes, or had mild back 

ground retinopathy only. Their findings showed significantly higher pattern deviation 

and lower mean deviation values for diabetic participants than for age-matched controls.  

Subgroup analysis revealed that the mean deviation in both groups was dependent on 

the level of retinopathy. Bell et al
122

 found isolated loss of sensitivity in the central 15 

degrees of visual field in a diabetic group with normal retinal perfusion; they suggested 

that the loss may have been caused by  microangiopathy and may further reflect retinal 

glial deficits. Several studies have compared the efficacy of short-wavelength 
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automated perimetry (SWAP) and standard, white-on-white techniques for the detection 

of early psychophysical abnormalities in diabetes.
123, 124

 Findings from these studies 

tentatively suggest that SWAP has the better potential to detect early functional 

changes. 

 

Flicker sensitivity describes an observer’s ability to detect intermittent light and dark 

alternation of a visual stimulus. It has been suggested that rapidly flickering stimuli are 

preferentially perceived by the magnocellular pathway;
125, 126

  this pathway is 

characterized by fast conduction velocity, sensitivity to high temporal frequency 

stimuli, and the ability to detect movement.
127

 Flicker ERG has been used to 

demonstrate impaired retinal sensitivity in diabetes.
128

 Lobefalo et al
129

 investigated 

flicker sensitivity in the central 30 degrees of visual field in a cohort with diabetes who 

had no clinical signs of retinopathy. They examined a group of children with Type 1 

diabetes divided in two groups according to their metabolic control (good and poor). 

Results indicated that mean flicker fusion frequency values for both diabetic groups 

were significantly lower than age-matched controls and were also highly related to the 

degree of metabolic control. The authors suggested that the presence of flicker 

impairment in the absence of clinically detectable retinopathy and media opacities could 

be a result of diabetes-related RNFL abnormalities.
129

 

 

Stavrou and Wood
130

 evaluated flicker sensitivity in the central visual field for a group 

with Type 2 diabetes and compared these findings with results obtained from standard, 

white-on-white perimetry. The majority of defects detected by flicker perimetry 



25 
 

appeared in the central 6 degrees of visual field, while defects shown by the standard 

technique were located more towards the periphery. In another recent study, Zele et al
131

  

found sensitivity losses using red-on-white and white-on-white flickering and static 

stimuli across the central visual field in a diabetic cohort, compared with age-matched 

controls. The authors suggested that red-on-white perimetry is more capable of 

detecting deeper defects than the standard white-on-white technique.   

 

Metabolic control of diabetes is believed to have an impact on flicker perception. It has 

been demonstrated that a flicker stimulus increases capillary blood flow by 30%. This 

blood flow increase is maximal in peri-foveal areas where ganglion cell density is 

highest. This could indicate that a tight link exists between the microvasculature 

arrangement and areas in the retina with high metabolic demand.
132

 Mandecka et al
133

 

suggested that a flickering stimulus causes vasodilatation and showed that the 

vasodilatation response to flicker is diminished before retinopathy is clinically 

manifested.  It has been shown that retinal blood vessels do not have a conventional 

autonomic innervation despite relevant receptors in the walls of these vessels.
134

  

 

Frequency doubling technology (FDT) perimetry has been shown to be a useful 

predictor of early visual loss in glaucoma.
135

 Frequency doubling occurs when a low 

spatial frequency sinusoidal grating undergoes a high temporal frequency counter-phase 

flicker; the theory underlying frequency doubling has been described in detail 

elsewhere.
136

 The perception of this phenomenon is thought to be mediated primarily by 

the magnocellular visual pathway.
136

 Parikh et al
137

 demonstrated that FDT could 
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differentiate between diabetic patients with and without retinopathy, but it demonstrated 

poor predictive capability for macular oedema. Parravano et al 
138

 also examined the 

role of FDT in eliciting early field defects  in people with Type 1 diabetes. They 

suggested that reductions in retinal sensitivity in people with diabetes might relate to 

magnocellular pathway dysfunction, indicating that this pathway may be more 

susceptible to damage under hyperglycemic conditions. However, they acknowledged 

that this may alternately represent the capacity of the less populated parallel pathway to 

detect earlier functional loss. The authors further suggested that these visual function 

changes may be a result of neural loss, implying that neuropathy, rather than 

vasculopathy, is the primary underlying mechanism. Table 2 represents a summary of 

the findings of key retinal and functional studies with potential neuropathy-related changes. 

 

Other measurements of visual function 

Impaired colour vision has been reported to be an early sign of visual function loss in 

diabetes.
139, 140

 Acquired blue-yellow losses using the Farnsworth-Munsell 100 Hue 

(FM100) test in a diabetic cohort have been reported to occur before the onset of 

retinopathy.
141, 142

  Hardy et al
143

 found abnormal colour vision using FM100 in 57% of 

a cohort who had no evidence of microvascular disease of the retina. Roy et al 
144

 also 

reported colour vision losses in a group of people with diabetes who had minimal 

retinopathy. These findings suggest that colour discrimination losses in diabetes may 

not necessarily be of vascular aetiology.  

Contrast sensitivity measurements can elicit defects that are not readily detectable by 

commonly employed conventional clinical techniques, such as visual acuity.
91

 Changes 

in contrast sensitivity, some of which are spatial frequency dependent, have been 
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demonstrated in both children and adults with diabetes. Della Sala et al 
91

  demonstrated 

contrast sensitivity changes up to two standard deviations below normal values in a 

diabetic cohort, compared with age-matched controls. Ghafour et al
145

 reported 

increased contrast thresholds at high spatial frequencies in people with diabetes without 

clinically evident retinal vascular changes. Another group also found a reduction in 

contrast sensitivity in patients with early diabetic retinopathy.
146

 The impact of 

metabolic control of diabetes on contrast sensitivity has also been investigated.  Di Leo 

et al
147

 suggested that, rather than hyperglycaemia, repeated hypoglycaemia events may 

be more important factors in the pathogenesis of neuronal damage. Ewing et al
148

 also 

found contrast sensitivity losses during hypoglycaemic events in subjects with Type 1 

diabetes who had no evidence of retinopathy. The authors suggested that 

hypoglycaemic related neural damage may be associated with increased “neural noise” 

at retinal and brain levels.
149

  

 

Other psychophysical measurements such as dark adaptation have also been 

investigated in diabetes,
150-152

 although a number of groups have focused primarily on 

post-photocoagulation outcomes.
153, 154

 Some findings however, have suggested that 

longer dark adaption times occur in diabetes and that final adaptation thresholds are 

higher than age-matched norms.
152

 A recent study reported that adaptation changes are 

related to retinopathy levels but could be observed before the onset of vascular 

changes.
155

 This provides further evidence that changes to visual sensitivity in diabetes, 

prior to clinical manifestation of retinopathy, may relate to neuropathy. Other studies 

have used techniques such as flavoprotein autofluorescence, macular photostress test 

and electroocculogram to demonstrate changes to visual function related to diabetes or 
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to sudden blood glucose spikes in healthy individuals. 
156-158

  However these outcomes 

have been attributed to retinal pigment epithelium function or metabolic tissue stress 

and are less likely to be strictly aligned with peripheral neuropathy. 

 

Summary and conclusion 

Neuropathy is a major complication of diabetes, and is known to have widespread 

impact on many vital organs of the body. Furthermore, at least fifty percent of 

individuals with diagnosed diabetes will eventually suffer from peripheral neuropathy, 

which is a major risk factor for foot ulceration and amputation. The establishment of 

earlier, safe, non-invasive and less painful diagnostic tools to determine the presence 

and severity of neuropathy needs to be a research priority. Eye-care professionals who 

provide care for people with diabetes understandably focus on vascular aspects of the 

disease. However, emerging evidence that corneal nerve structure is a potential marker 

of early peripheral neuropathy has introduced the prospect of a new and important role 

for eye care professionals in the management of diabetes. Retinal anatomy and visual 

function markers similarly have potential to contribute to this process; demonstrated 

structural and functional changes in diabetes prior to the development of retinopathy can 

reasonably be presumed to be neuropathic in origin. However, it is yet to be established 

whether these factors will prove to be clinically useful predictors of diabetic peripheral 

neuropathy. 
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Table 1. Classification of peripheral nerve fibres. † Source of skeletal muscle contraction, ‡ 

Controlling muscle spindle sensitivity, ¶ visceral sensory fibres, ŧ Less myelinated than A and C 

fibres. (derived from reference 16 with modification) 

Source 

 

Classification Myelination Diameter (µm) Conduction 

velocity (m/s) 

Efferent 

α-motoneurons to 

muscles  † 

Aα Yes 8 - 13 44 -78 

γ-motoneurons to 

muscles ‡            

Aγ Yes 3 - 8 18 - 48 

Preganglionic 

autonomic fibres ¶     

B Yes ŧ < 3 3- 14 

Afferent 

Limb position and 

motion                

Aα Yes 12 - 20 75 - 120 

Touch, pressure, 

vibration 

Aα / Aβ Yes 6 - 12 30 - 75 

Sharp pain, cold 

sensation             

Aδ Yes 1 - 6 5 - 30 

Dull pain, warm 

sensation              

C No < 1.5 0.5 - 2 
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Method 

 

Study Finding 

 

Visual field 

studies 

Roth et al 1969 

 

 

 

Trick et al 1990 

 

 

 

 

Afrashi et al   2003 

 

 

 

 

Lobefalo et al 1997 

 

 

 

 

 

Stavrou and Wood 2005 

 

 

Central 20 degree scotoma occurs prior to 

diabetic retinopathy development 

 

 

Contrast sensitivity reduction in superior 

quadrant for T2DM cohort with minimal 

or no retinopathy 

 

 

Blue on yellow perimetry finds sensitivity 

reductions not evident in standard 

perimetry for T1DM cohort without 

evident retinopathy 

 

 

Flicker sensitivity reduced in central 30 

degrees of visual field for T1DM cohort 

without angiographic evidence of 

retinopathy 

 

 

Flicker but not static perimetry thresholds 

reduced in T2DM cohort with minimal 

retinopathy 

 

Retinal nerve fibre 

layer (RNFL) 

studies 

Sugimoto et al 2005 

 

 

 

 

Takahashi et al 2006 
(159) 

 

Lopes de Faria et al 2002 

Decreased superior RNFL thickness 

(OCT) for T2DM cohort without evident 

retinopathy 

 

Decreased RNFL thickness (SLP) for 

T2DM cohort with mild retinopathy 

 

Decreased superior RNFL thickness (SLP) 

for T1DM cohort without evident 

retinopathy 

 

 

 

 

Electrophysiological 

visual function 

studies 

Lovasik and Spafford 

1988 

 

 

Papakostopoulos et al. 

1996 

 

 

Yaltkaya et al 1988 

 

ERG b wave and oscillatory potentials 

altered for T1DM cohort without evident 

retinopathy 

 

Decreased ERG b wave amplitude in 

T1DM cohort without evident retinopathy 

 

VEP P100 latency prolonged in cohort 

with diabetes but no evident retinopathy 

 

Table 2. Summary of the findings of key retinal and functional studies with potential 

neuropathy-related changes. T1DM: Type 1 diabetes mellitus, T2DM: Type 2 diabetes 

mellitus, OCT : optical coherence tomography, SLP: scanning laser polarimetry, ERG: 

electroretinogram, VEP: visual evoked potential 
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Figure 1. An illustration of interaction between the central nervous system and the peripheral 

nervous system (courtesy of Kimball's Biology Pages (http://biology-pages.info), February 

2010, with modification) 

 

Figure 2. Quantitative sensory testing unit (left) featuring vibration and thermal modalities. 

Outcome-based colour graphic reports (right) with automated narrative discussion of test results 

(from Medoc Ltd 2007 website http://www.medoc-web.com/medoc_en_home.aspx)  

 

Figure 3. Electrophysiology test of the peroneal nerve 

 

Figure 4. Corneal confocal microscopy image of a diabetic cornea (right) and normal cornea 

(left)  

 

Figure 5. Illustration of the retina showing retinal layers (left) and specific neural components 

(right) 

 

Figure  6. RNFL unique spread pattern 

 

Figure 7. OCT retinal nerve fibre layer histogram illustrating a double hump pattern (courtesy of 

Optovue RTVue™). TSNIT (temporal-superior-nasal-inferior-temporal) 
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